21
1 RF Structure Comparison for Low Energy Acceleration M. Vretenar, CERN ESS-B Workshop 1. Motivations 2. Figures of merit 3. Structure catalogue 4. An attempt of comparison

ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

Embed Size (px)

DESCRIPTION

RF structure comparison for low energy acceleration. Maurizio Vretenar (CERN).

Citation preview

Page 1: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

1

RF Structure Comparison for Low Energy Acceleration

M. Vretenar, CERNESS-B Workshop

1. Motivations2. Figures of merit3. Structure catalogue4. An attempt of comparison

Page 2: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

2

Definitions

“Standard” block-diagram of a high-energy linac:

1. Front-end (ion source, LEBT, RFQ, MEBT);

2. Low-energy, from 3 MeV to some 100-200 MeV → different choices

3. Medium and high-energy (usually superconducting, elliptical).

Whereas front-end and high-energy have a well-established architecture, the low-energy section:

a. includes the “debated” transition NC – SCb. presents a large variety of choices for the accelerating structures

Transition energies:

General consensus on 3 MeV as transition front end – low energy (highest energy achievable without activation of MEBT components).

SC elliptical structures can start at energies in the range 160 – 200 MeV.

Page 3: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

3

What architecture for “low-energy”?

Generally no consensus on the type of structure to be used !

Comparing the 2 most recent linac projects (SNS and JPARC) and the 2 European linacs in construction or close to construction (Linac4 and FAIR):

Frequency: basic in the 325-402 MHz range, doubling only in SNS SCL

2.5 MeV 87 MeV 186 MeV

SNS DTL SCL 2f

3 MeV 50 MeV 191 MeV

JPARC DTL SDTL

3 MeV 50 MeV 160 MeV

CERN-Linac4 DTL CCDTL PIMS

3 MeV 70 MeV

GSI-FAIR CH-DTL

Common features: all designs normal conducting, sequence of different accelerating structures

402 MHz1.4mA avg.

325 MHz0.7mA avg.

352 MHz0.02-2.4mA

325 MHz5 µA avg.

Page 4: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

4

Figures of merit – Power efficiency

Shunt impedance = efficiency in transforming RF power into voltage on the gap Z = V2/PIs one of the main figures of merit, depends on operating mode and frequency

1. TM-0 modes have Z decreasing with energy.2. TM-π modes have Z increasing with energy.3. TE modes have high Z, decreasing with energy.4. In general terms, Z scales as �f

3 – 200 MeV

TM modes (Linac4) TE mode (GSI)

TE mode structures used (high efficiency) for ions at very low β, recently extended to protons

0-mode

π-mode

Page 5: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

5

Beam dynamics constraints

( ) ( )8

13sin2 3233

00332

0

22

2 −−−−���

����

�=��

����

�=γβπε

λγβλ

ϕπβγβλ

σmcr

fIqmc

TEqmc

GlqN

k tt

������������� ����������������� ������������� ��������

� ���� �� ��� ��������������������� �������!��� ������������������ �� �����!���������������������� �" ������������#����

The “low-energy” linac section is dominated by space charge and RF defocusing forces.

Approximate expression for phase advance in an ideal linac channel

Phase advance per period must stay in reasonable limits (30-80 deg), phase advance per unit length must be continuous (smooth variations).

→ At low β, we need a strong focusing term to compensate for the defocusing, butthe limited space limits the achievable G and l → needs to use short focusing periods N βλ.

Note that the RF defocusing term ∝f sets a higher limit to the basic linac frequency (whereas for shunt impedance considerations we should aim to the highest possible frequency, Z ∝�f) .

Page 6: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

6

Mechanical constraints

Variety (cells matched to the particular beta profile) and complexity (need to integrate focusing elements, cooling, vacuum and RF tightness) can considerably add to the cost: the LEGO can be complex and expensive…

CERN DTL design GSI CH-DTL design

Page 7: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

7

HIPPI: for a fair comparison of structures

→ Clear need for a zoological classification of linac structures, which requires an agreement on the terms of comparison and on the figures of merit.

→ The HIPPI Joint Research Activity of EU FP6 (=High Intensity Pulsed Proton Injectors), active from 2004 to 2008, has tried this classification at the end of the activity of Workpackage #2 (Normal Conducting Structures). The WP has pushed the developments of structures for Linac4, FAIR linac and RAL upgrades and has published a comparison paper:

Comparative Assessment of HIPPI Normal Conducting StructuresC. Plostinar (Editor), CARE-Report-08-81-HIPPI

http://irfu.cea.fr/Phocea/file.php?class=std&&file=Doc/Care/care-report-08-072.pdf

Page 8: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

8

Drift Tube Linac

The workhorse of linacs, is there since 1946.Evolved a lot from the early age (single stem, post couplers,..) Still, quite a lot of development to be done, for:

1. Integrating the focusing elements.2. Optimising the drift tube alignment mechanism.3. Simplify construction (and reduce cost).

Recent R&D work at CERN in the frame of HIPPI, resulted in the construction of a prototype funded by INFN-Legnaro.

The prototype has been successfully assembled, aligned and tested at low RF power. High power tests in spring 2009.

Measured TolerancesX (horiz) 0.058 0.1 mmY (long) 0.073 0.1 mmZ (vert) 0.029 0.1 mmY (yaw) 1.506 3.0 mradZ (roll) 1.795 3.0 mrad

• All drift tube positions within tolerances

First bead-pull measurements of Ez0

0.2

0.4

0.6

0.8

1

0 120Position

Ez

Page 9: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

9

CCDTL and SDTL

CCDTL=Cell-Coupled Drift Tube Linac SDTL=Separated Drift Tube LinacMain idea: as β increases, can have longer focusing periods with same phase advance →

take the quadrupoles outside of the drift tubes.Advantages:1. Smaller diameter of the drift tube, potential for higher shunt impedance.2. Quadrupoles between tanks can be EM, accessible for replacement and interventions.3. Drift tubes w/o quadrupoles have less stringent alignment tolerances, drift tube

adjustment system can be simpler and less expensive.2 options:-Short tanks connected by coupling cells, no or minimum power spitting → CCDTL (CERN)-Longer tanks fed separately, splitting from RF source. → SDTL (JPARC)

CCDTL (CERN) SDTL (JPARC)

Page 10: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

10

SDTL & CCDTL power distribution

0.8 MW 0.8 MW

3 MW klystron 1.3 MW klystron

1 MW 1 MW 1 MW

2.8 MW klystron

JPARC SDTL Linac4 CCDTL initial Linac4 CCDTL final configuration

5 cells/tank 3 cells/tank

Page 11: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

11

Shunt Impedance – SDTL and CCDTL

Page 12: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

12

Pi-mode : SCL and PIMS

Quadrupole

Coupling CellsBridge Coupler

Quadrupole

Coupling CellsBridge Coupler

Quadrupole

Coupling CellsBridge Coupler

Side Coupled Linac structure Pi-Mode StructureBoth operating in π-mode, PIMS at the basic frequency, SCL at 2*basic frequency

SCL long chain of cells (>100) fed by a single klystron, 2 PIMS fed by 1 klystron (splitting)

Page 13: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

13

CERN comparison SCL - PIMS

PRF ~ 10% lowerfor SCL

(approximate est.)

Single frequency is an additional advantage for Linac4 (160 MeV)

Page 14: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

14

TE mode: CH-DTL

������������ ���������� �

��

�� ������������ ������������ �

��

��

f 300 MHz<~0.3β <~

21 (0)H

H210

L

DT

Low and Medium - Structures in H-Mode Operationβ

Q

RF

11 (0)H

H110<~f 100 MHz

0.03β <~100 - 400 MHz

0.12β <~

VH

SN

OIYAE

250 - 600 MHz0.6β <~

SNO

ITHGIL

� �

��

��

������� � ������������ �

��

��

������� � ���������

$�����������% �& ������' ���������( �))��� ��( ���������������*�����+�#,����������������#�

- �����������!�β.� �"

/% �& �����������������( �0)�!��������������������β.� �1

% ����2 ( 0 #���� ������������#�� ��,��� ���3����������������������������#�4�

Page 15: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

15

CH-DTL: mechanics and beam dynamics

Need special “KONUS” beam dynamics (no synchronous phase particle, acceleration around the crest of the wave, internal rebunching on some gaps) to have a zero RF defocusing component → can afford the long focusing periods required by the TE mode of operation, but the beam has to spend long time in non-linear regions of phase space.

Emittances at FAIR linac (no errors)

Present simulations indicate that the CH can accept a high space charge beam (large bunch current), but show some beam loss (up to 5%) in presence of errors.

Strong effort at GSI for the engineering of the CH structure(internal triplet, coupling cell, drift tube supports).

Page 16: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

16

The HIPPI structure comparison� �������

���

������ � ���� ����� ���� ��� ��

�������������� ����� ��������� ������� �������� ��������� ������ �� ������� ��

����� �� ��� � ��! ��� "�

��##�����! ����� $ ��

�������� �� ������� ���������� �� ���� ��������� ���������

�%��� �"& ��� ���� ������������ ����� ����� � �

'(��)����� ����������� ���������� ����������

�������

���� ���� ����

� �*�& +& �(+�,�������������

,���)��-��#���

�� � ��� �� ���� ���� ���

���.+����� ������ ��� ���� ������ ���� ������

/���� �(����0� ���)�����

�� �"& ���

���� ��� � ����� ���� ��� � �� ��

�� ��! ��"������� �����

� $ "� ���� 1� ! ��2�+��

3��& ����)����

�� � �� �� ��� ��� ����

4��� 5 2& "& ��1�

� ��"� �*�

���� � ������� ������� ������� ������ � ������ �

����������2��& �� ���� � � � ��� ���� ��� ���

��(�����+���������6 � ��� ���� ����� ��� ��� ���

Page 17: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

17

Comparison of Shunt Impedances

Calculated ZTT values per meter (“real estate”) scaled down to take into account additional losses:DTL – 20% reduction. CH-DTL – simulations in good agreement with measurements, 5% reduction. CCDTL – 17% reduction.SCL – 20% reduction.PIMS – 30% reduction.

Page 18: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

18

Comparison of beam dynamics results

���+��+�

���

��(���3+����� ��#+���& ���������

�� �7�8 ��& 9��

:7;��<�& & �& ��)��

������<�)���� ����

5 +�#+���& ��������

�� �7�8 ��& 9��

:7;��<�& & �& ��)��

������<�)���� ����

�& ��������

���! �2��6 ��

���(& �((��

��

�6 ��

���������� ��������� ����

��������� ���������� ����

��� ���� ����� �

����� �� �

!"#��$ ��� %&�� �!�#'������ � �!�#'������� ��� �

����

� � � � �

���������� ������� �� � �

��������� ������� �� ��

� ����

()* �+ ,�-,��

$���� %&�

�!�#'������� � �!�#'���������� ��

����

� � � � �

��������� ��������� �����

���������� ���������� ����

�����

���� ����� �

����. /�

$ ��� %&� �!�#'������� �!�#'������� ���

����

� � � � �

��������� ��������� �����

���������� ���������� ���

����

���� ����� �

����00. /�

$���� %&� �!�#'�������� �!�#'�������� ����

����

� � � � �

������������ ������������ �����

��������� �� ��������� �� ���� �

��� ��

���� ����� �

����00. /�

$���� %&� �!�#'���������� �!�#'���������� ������

����

Page 19: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

19

Superconducting options A triple-spoke SC linac for the energy range 100-200 MeV has beenanalysed in HIPPI as a possible option for Linac4 and SPL:

SUPERCONDUCTING SPOKE LINAC DESIGN AS AN ALTERNATIVE OPTION FOR THE CERN LINAC4 HIGH ENERGY PART E. Sargsyan, A. Lombardi, CERN - CARE-Note-2006-009-HIPPI

HIPPI Triple-spoke cavity prototype built at FZ Jülich, now under test at IPNO

Spoke Version 1

Spoke Version 2

SCL

frequency 352.2 352.2 704.4 MHz V0 7.28 6 - MV synchronous phase -20 -20 -20 deg Wout 163.9 159.8 163.4 MeV no. of cavities/tanks 14 16 20 no. of cryomodules 7 8 - total length 22.4 25.6 28.7 m �x growth 2.2 2.3 2.3 % �y growth 3.5 3.5 4.7 % �z growth 4.4 5.3 3.1 % rbeam, max/raperture 0.315 0.319 0.505 transmission 100 100 100 %

A 90 - 160/180 MEV SPOKE LINAC AS AN OPTION FOR THE CERN LINAC4 /SPL"Jean-Luc Biarrotte, Guillaume Olry, CNRS, IPN Orsay - CARE-Note-2006-008-HIPPI

HIPPI comparison of spoke and SCL

Page 20: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

20

Other ideas…

IH Accelerating Structures with PMQ Focusing for Low-energy Light IonsS. S. Kurennoy, S. Konecni, J. F. O'Hara, L. Rybarcyk, EPAC08

Proposed for deuterons, 1 – 4 MeV

An interesting idea, combining the high shunt impedance of TE modes (in this case IH, TE110) with a classical beam optics ensuring low beam losses and minimum emittance growth.

Possible now because we have compact permanent quadrupoles (PMQ) that fit into small drift tubes and we have 3D RF simulation codes that allow designing complicated structures.

To be investigated for the energy range 3 – 50 MeV, applied to the CH.

Page 21: ESS-Bilbao Initiative Workshop. RF structure comparison for low energy acceleration

21

(my personal) conclusions

Some personal conclusions, based on the experience of HIPPI and of the Linac4 R&D, not required to be objective…

If I would have to build a linac in the range 3-200 MeV, with average current in the mA range:

1. In the short term → take the Linac4 (and SNS/JPARC) architecture, in case reconsidering CCDTL/SDTL vs. DTL for a new “low-cost” DTL design.

2. In the medium term → consider a spoke option for the 100-200 MeV range, which needs R&D on the cavities.

3. In the long term → consider possible alternatives or improvements to the DTL, (TE-mode structures with PMQs, multiple cavities with power splitting, ...)

A final warning: for a linac with duty cycle of 5-10%, cost considerations indicate that the optimum transition energy warm to cold is in the range 80 – 180 MeV.