45
Direct Probing the Electronic Structures of Topological Insulators Yulin Chen SLAC National Accelerator Laboratory Stanford University APS March Meeting Tutorial 20 March 2011

Aps tutorial 2011_yulin_chen

  • Upload
    jakeyu

  • View
    721

  • Download
    12

Embed Size (px)

DESCRIPTION

Topological Insulator

Citation preview

Page 1: Aps tutorial 2011_yulin_chen

Direct Probing the Electronic Structures of

Topological Insulators

Yulin Chen SLAC National Accelerator Laboratory

Stanford University

APS March Meeting Tutorial 20 March 2011

Page 2: Aps tutorial 2011_yulin_chen

Condensed matter physics Understand the collective properties of assemblies of particles

Conductor Insulator Semi-conductor

Superconductor

Page 3: Aps tutorial 2011_yulin_chen

Electronic structures

Insulator Conductor

Kx

Ky

E

Page 4: Aps tutorial 2011_yulin_chen

An Insulator that conducts

What is a topological insulator (TI)

3D real space Band structure

In gap 2D surface state

Conduction

band

Valence

band

Band structure

In gap 1D surface state

Valence band

Conduction band

2D real space

Page 5: Aps tutorial 2011_yulin_chen

Why “topological”

Sphere Torus

Regular insulator Topological insulator

Topologically distinct objects

Page 6: Aps tutorial 2011_yulin_chen

No back-scattering rule (by non-magnetic impurities)

“Locking” between current & spin

Unique surface state properties of TIs

Robustness of the topological surface state

Surface state in topological insulator

robust Surface state in regular insulator

vulnerable

Page 7: Aps tutorial 2011_yulin_chen

(Wilczek, 1987)

(Qi, et. al., 2009)

(Qi, Hughes & Zhang, 2008)

Majorana Fermion

Akhmerov, Nilsson, & Beenakker, 2009

Scientific implications

Image magnetic monopole from a source charge

Half charge on a magnetic domain wall

Axion electrodynamics

……

Page 8: Aps tutorial 2011_yulin_chen

Application potentials

Electronics more efficient (Longer functional time)

Spintronics without magnet (Faster & less consumption)

Quantum Computation

……

Higher density integrated circuit

Thermoelectric generators

Page 9: Aps tutorial 2011_yulin_chen

Theory: Kane, Fu, Zhang, Qi, Moore, Roy, Nagosa, Franz, Lee, Dai, Fang, …

Materials: Molenkamp, Cava, Fisher, Cui, Lee, Ando…

Transport: Molenkamp, Ong, Fisher, Cui, Ando, Morpurgo, Jarillo-Herrero…

ARPES: Hasan, Hsieh, Shen, Chen, Xue, Taniguchi Boresenko, Nuh Gedik…

STM: Yazdani, Kapitulnik, Xue, Hanaguri, Manoharan…

Optical: Basov, Paglione …

Intensive research activities

World wide effort:

ARPES

Transport STM/STS

Optical Spectroscopy

Theory Development

Material Development

Page 10: Aps tutorial 2011_yulin_chen

How to find TIs Search for the unique band structure

Topological insulator

Regular conductor

Regular insulator

Page 11: Aps tutorial 2011_yulin_chen

How to “see” band structures Angle Resolved Photoemission Spectroscopy (ARPES)

Z

e-

q hn

Heinrich Hertz Albert Einstein

ARPES: k-space Microscope

Energy Conservation EB= hn - Ekin - F

Momentum Conservation K|| = k||+ G||

Page 12: Aps tutorial 2011_yulin_chen

General principle

𝐼𝑃𝐸𝑆 ∝ 𝐹(𝑇) ∙ 𝛿(𝐸𝑓−𝐸𝑖−ℏ𝜔) ∙ | 𝝍𝒇, 𝑵𝑯𝒊𝒏𝒕 𝝍𝒊, 𝑵

|𝟐

𝐹(𝑇) ∙ | 𝝓𝒇,𝑬𝒌 𝑯𝒊𝒏𝒕 𝝓𝒊,𝒌 |2 𝝍𝒇𝒌𝑺(𝑵−𝟏)|𝝍𝒊

𝒌 (𝑵−𝟏) |2

𝑆 𝛿(𝐸𝑓,𝐸𝑘+𝐸𝑆(𝑁−1)−𝐸𝑖−ℏ𝜔)

+ (Suddent approximation)

|𝜓𝑖, 𝑁 = |𝜙𝑖,𝑘 |𝜓𝑖𝑘(𝑁−1)

|𝜓𝑓, 𝑁 = |𝜙𝑓,𝐸𝑘 |𝜓𝑓𝑘(𝑁−1)

+

𝐹(𝑇) ∙ 𝛿(𝐸𝑓−𝐸𝑖−ℏ𝜔) ∙ | 𝝓𝒇,𝑬𝒌𝑯𝒊𝒏𝒕 𝝓𝒊,𝒌 𝝍𝒇

𝒌(𝑵−𝟏)|𝝍𝒊

𝒌(𝑵−𝟏) |2 =

Interacting system

E

k

EF

One electron state

Remaining N-1 Electron state

Band dispersion Non-interacting system

E

k

E

k

EF EF

ARPES Spectra Electron band

𝐹(𝑇) ∙ 𝛿(𝐸𝑓−𝐸𝑖−ℏ𝜔) ∙ | 𝝓𝒇,𝑬𝒌𝑯𝒊𝒏𝒕 𝝓𝒊,𝒌 |2

= (Non-interacting system)

Page 13: Aps tutorial 2011_yulin_chen

3D FS (e.g. FS from bulk state)

kz

kx ky

kz

kx ky

2D FS (e.g. FS from surface state)

How to discriminate bulk & surface?

E1

E2

E3

kx

ky

E1

E2

E3

E1

E2

E3

kx

ky

E1

E2

E3

Ek =ℏ2

2𝑚(𝑘𝑥

2 + 𝑘𝑦2 + 𝑘𝑧

2)

Page 15: Aps tutorial 2011_yulin_chen

Synchrotron based ARPES station

2D Electron

analyzer

Photon

in

Experiment

Chamber

Sample

ALS Bemline 10

Page 16: Aps tutorial 2011_yulin_chen

Modern ARPES data taking

Data acquired Experimental setup

2D Electron

analyzer

Photon

in

Experiment

Chamber

Sample

ALS Bemline 10

Page 17: Aps tutorial 2011_yulin_chen

ARPES on TI Princeton

Stanford

International efforts

Page 18: Aps tutorial 2011_yulin_chen

Bulk band structure

Realization of TI state in Bi2Te3 Y. L. Chen, et. al., Science 325, 178 (2009)

Crystal Structure Bulk Fermi surface

(n-type)

TI Checklist: 1. There exist Dirac surface states 2. There are odd number of Dirac fermions in a Brillouin Zone

EF

3. The EF is in the gap

Page 19: Aps tutorial 2011_yulin_chen

0 0.2 -0.2

k y(1

/Å)

0

0.2

-0.2

0

0.2

-0.2

0

0.2

-0.2

Dirac Fermion’s Surface nature

0 0.2 -0.2

Realization of TI state in Bi2Te3

Dirac fermion

TI Checklist: 1. There exist Dirac surface states 2. There are odd number of Dirac fermions in a Brillouin Zone 3. The EF is in the gap

Bulk band gap E2=165meV

Y. L. Chen, et. al., Science 325, 178 (2009)

Page 20: Aps tutorial 2011_yulin_chen

TI Checklist: 1. There exist Dirac surface states 2. There are odd number of Dirac fermions in a Brillouin Zone 3. The EF is in the gap

Single Dirac fermion in each BZ

Realization of TI state in Bi2Te3

Evolution of the Band

Y. L. Chen, et. al., Science 325, 178 (2009)

Page 21: Aps tutorial 2011_yulin_chen

TI Checklist: 1. There exist Dirac surface states 2. There are odd number of Dirac fermions in a Brillouin Zone 3. The EF is in the gap

Realization of TI state in Bi2Te3

EF(undoped) BCB bottom

Dirac point position

BVB top

Fermi- Surface

Band Dispersion

Gap Gap Gap Gap

Different charge doping

Y. L. Chen, et. al., Science 325, 178 (2009)

Page 22: Aps tutorial 2011_yulin_chen

Other single Dirac cone TIs

TlBiSe2

K. Kuroda, et.al., PRL (2010) T. Sato, et.al., PRL (2010) Y. L. Chen, et.al., PRL (2010)

Bi2Se3

Y. Zhang, et.al., Nat. Phys. (2010) Y.L. Chen, et.al., Science (2010) Y. Xia, et.al., Nat. Phys. (2009)

Page 23: Aps tutorial 2011_yulin_chen

Protection of the time reversal symmetry (TRS)

Massless Dirac fermion is protected by time reversal symmetry (Kramers’ theorem)

Non-magnetic bulk & surface doing

Dirac point

kx

ky

E

ky kx

ky

E

Page 24: Aps tutorial 2011_yulin_chen

TRS protection – bulk doping Y. L. Chen, et. al., Science 329, 659 (2010)

In gap Dirac point of Bi2Se3

Compare to Bi2Te3

Bulk doping

Non-magnetic impurities

Page 25: Aps tutorial 2011_yulin_chen

Oxygen Hydrogen Carbon monoxide Carbon dioxide Potassium

… Surface doping

(i) (ii) (iii) (iv) (v)

Photo assisted surface Oxygen doping

TRS protection – surface doping Y. L. Chen, et. al., Science 329, 659 (2010)

Page 26: Aps tutorial 2011_yulin_chen

Another example

NO2

Surface adsorption

D. Hsieh, et.al., Nature (2009)

Page 27: Aps tutorial 2011_yulin_chen

What if TRS is broken?

Formation of massive Dirac fermion if TRS is broken

kx

ky

E

ky kx

ky

E

+

Magnetic doing

Dirac Gap

Page 28: Aps tutorial 2011_yulin_chen

Dirac fermion becomes massive

Magnetic impurities

Braking the Dirac point

Summary of different doping effects

(Bi1-dFed)2Se3

Y. L. Chen, et. al., Science 329, 659 (2010)

Page 29: Aps tutorial 2011_yulin_chen

Another example

Fe Surface deposition

A. Wray, et.al., Nat. Phys. (2011)

Page 30: Aps tutorial 2011_yulin_chen

Realize insulating massive Dirac fermion state

Magnetic impurity

+ EF Tuning

Realize new phenomena Provide control for applications

I/M

TI

Why insulating massive Dirac fermion state?

Image Surface Monopole

Half Hall conductance sH=e2/2h

Turn off surface conduction

All electric magnetic writing

2D quantum anomalous Hall state

Quantum spin Hall

Quantum anomalous Hall

Y. L. Chen, et. al., Science 329, 659 (2010)

Page 31: Aps tutorial 2011_yulin_chen

New topological states Search for topological superconductors

Some candidates

CuxBi2Se3 , PdxBi2Te3 TlBiTe2

Hor, et. al., (2010) Fu, Berg, (2010)

Wray, et.al., (2010)

Cu/Pd Bi Se

Bi2Se3

Bi2Se3

(Cu/Pd)x

(Cu/Pd)x

(Cu/Pd)x

Hein/Swiggard, (1970) Yan, et. al., (2010)

Chen, et. al., (2010)

Majorana fermion

Quantum computation

Fu, Kane (2008) Hasan, Kane (2010)

Qi, Zhang (2010)

Page 32: Aps tutorial 2011_yulin_chen

A candidate for topological superconductors

Band structure of TlBiTe2

Y. L. Chen et. al., Phys. Rev. Lett. 105, 266401 (2010)

Hein & Swiggard Phys. Rev. Lett. 24, 53 (1970)

Superconducting transition

Page 33: Aps tutorial 2011_yulin_chen

A candidate for topological superconductors Y. L. Chen et. al., Phys. Rev. Lett. 105, 266401 (2010)

Page 34: Aps tutorial 2011_yulin_chen

Part I: Summary

Electronic structures of Bi2Te3/Bi2Se3 and TlBiSe2/TlBiTe2 families show a

single Dirac cone on the surface

EF can be tuned into the bulk gap upon proper doping; and both p- & n-

dopings can be achieved for possible applications

The topological surface state is robust against impurities when the TRS is

present

Dirac fermions become massive when TRS is broken

Unusual band structure of TlBiTe2 makes it a possible candidate for

topological superconductor

Page 35: Aps tutorial 2011_yulin_chen

Advanced instrumentation development Future of photoemission spectroscopy

Lower sample temperature (~ 1K)

Improve energy reso lut ion (~ 100meV)

Improve s ignal intensi ty (Brighter l ight source)

f(k,E,s,t)

Spin-resolution Time-resolution

t1 t2 t3

T = 0

Explore new dimensions

More efficient data taking (2D->3D)

Prototype 3D time-of-flight analyzer

(Developed in LBNL)

Page 36: Aps tutorial 2011_yulin_chen

Explore electron spin

Charge “e”

Spin “S” f(k,E,s)

Spin Energy

Momentum

Heavy nuclei target

e-counter

e-

e- +

Mott scattering

e-

Analyzer Entrance Slit

Analyzer Exit Slit

Mott-detector

hn

Data dimension: 0D Relative efficiency: 10-4

(Compared to regular ARPES)

Page 37: Aps tutorial 2011_yulin_chen

Spin-resolved electronic structure

D. Hsieh, et. al., Nature 460, 1101 (2009)

ARPES Spin-ARPES

Page 38: Aps tutorial 2011_yulin_chen

Regular ARPES 3D structure

Spin-ARPES 1D structure

Y. L. Chen, Ph.D Thesis 2008

D. Hsieh, et. al., Science 323, 919 (2009)

Sb

Y. L. Chen, et. al., PRL 105 266401 (2010)

Souma, et. al., arxiv.org/abs/1101.3421 (2011)

TlBiSe2

Y. L. Chen, et. al., Science 325, 178 (2009)

D. Hsieh, et. al., Nature 460, 1101 (2009)

Bi2Te3

Spin-resolved electronic structure

Page 39: Aps tutorial 2011_yulin_chen

Mott Scattering Exchange Scattering

Heavy nuclei target

e-counter

Magnetic thin film

e-

e-

e-

e-

e-counter

Electron energy: 20~100keV

Electron energy: 2~5eV

Lower Efficiency (10-4) Higher Efficiency

( 1~2 order higher than Mott detector)

More efficient spin-detection is needed

Page 40: Aps tutorial 2011_yulin_chen

Even more degrees of freedom can be explored

Study on the dynamics of electrons f(k,E,s,t)

Pump Pulse

Probe Pulse

Photoelectron

Sample

Data collection & analysis

Page 41: Aps tutorial 2011_yulin_chen

An example of time-resolved ARPES

Time-resolution Bi2Te3

Figures courtesy of J. Sobota

Page 42: Aps tutorial 2011_yulin_chen

What’s next?

New TIs with richer properties

Larger bulk gap, better chemical, physical & electronic properties

Correlated TI systems

Topological Quantum materials

Thin film and nano-scale Topological quantum materials Topological phenomena in low dimension

Better control on properties

Novel topological quantum phases Topological superconductors

Quantum anomalous Hall insulator

Novel topological functional devices, or “topotronics”

Page 43: Aps tutorial 2011_yulin_chen

ALS BL 10.0.1 (S-K Mo, M. Hashimoto, Z. Hussain)

CAS: X. Dai, Z. Fang

DOE: Funding support

Shen group (Z-X Shen, Z.K. Liu & whole group)

Fisher group (I. R. Fisher, J. Analytis, J-H Chu)

Zhang group (S.C. Zhang, H.J. Zhang, B.H. Yan)

X. L. Qi

BL 5-4 (D.H. Lu, R. Moore)

TIT: T. Sasagawa

Acknowledgement

Page 44: Aps tutorial 2011_yulin_chen

Thank you!

Page 45: Aps tutorial 2011_yulin_chen

H. Peng, et. al., Nat. Mat. 9, 225 (2010)

ARPES results supported by transport

A-B effect