19

Click here to load reader

A Survey on Localization of Wireless Sensors

Embed Size (px)

Citation preview

Page 1: A Survey on Localization of Wireless Sensors

A Survey on Localization of Wireless Sensor Nodes

Masooda

&

Zuvairiya

Page 2: A Survey on Localization of Wireless Sensors

Introduction

What is a Wireless Sensor Network(WSN)?• A collection of sensing devices that can communicate wirelessly• Each device can sense, process, and talk to its peers• Sensor nodes can detect the the changes in the particular region or area• Sensor nodes are made up of off-the shelf materials• Each node requires GPS service

Localisation is widely used to find the location of these sensor nodes

Page 3: A Survey on Localization of Wireless Sensors

Fields of application of wireless sensor networks

Page 4: A Survey on Localization of Wireless Sensors

Concepts and Properties of Localization

Known location

Proximity based

Angle based

Range based

GPS IR, Bluetooth

AoA RssI, TDoA, ToA

LOCALIZATION

Figure :overview of localization

Page 5: A Survey on Localization of Wireless Sensors

Known Location Based Localization

• Sensor nodes know their location in prior• Manually configuring or using a GPS• Manual configuration of the sensor node is done with

the help of GPS GPS device can be effective where there are no reference nodes

• available to get localized

Page 6: A Survey on Localization of Wireless Sensors

Known Location Based Localization-GPS

• Location is calculated with the help of GPS satellites• A minimum of four satellites are required to calculate

the location of the GPS receiver• The distance between the GPS receiver and the GPS

satellites are calculated using the time taken for the signal to reach the device

• Once the distances are known, the GPS receiver uses Triangulation or Trilateration technique to determine its location

Page 7: A Survey on Localization of Wireless Sensors

Proximity Based Localization

• The WSN is divided into several clusters• Each cluster has a cluster head which is equipped

with a GPS device• Using Infrared (IR), Bluetooth, etc., the nodes find

out the nearness or proximity location

 

Page 8: A Survey on Localization of Wireless Sensors

Angle based localization

• Angle based localization uses the received signals angle or Angle of Arrival (AoA) to identify the distance

• Angle of Arrival can be defined as angle between the received signal of an incident wave and some reference direction

• The reference direction is called orientation, which is a fixed direction and against that the measurement of AoA is carried out

• Using antenna array on each sensor node is the most common approach

• Once the AoA is determined, triangulation is used to identify the location co-ordinates

Page 9: A Survey on Localization of Wireless Sensors

Localization Using Triangulation With Orientation Information

Figure :Localization using triangulation with oriented information

Page 10: A Survey on Localization of Wireless Sensors

Range Based Localization

• Localization is carried out based on the range• The range is calculated using the Received Signal

Strength (RSSI) or Time of Arrival (ToA) or Time Difference of Arrival (TDoA)

• In RSSI based localization the receiver sends the signal strength with reference to the sender, and sender calculates the distance based on the signal strength

• ToA and TDoA use timing to calculate the range

Page 11: A Survey on Localization of Wireless Sensors

Localization Schemes-Problems

Known Location based Localization• Expensive • GPS go wrong - underground, underwater or indoor

environment 

Proximity based Localization • Larger the range of central node smaller is the accuracy • Localization is not achievable when the central server is down 

Angle based Localization • The angle measurement error can vary from 1◦ to 25◦ as an

effect of noise 

Range based Localization • Environmental changes

Page 12: A Survey on Localization of Wireless Sensors

Performance Of Localization Schemes - Comparison

Localization Techniques Used

Accuracy (in meters) Limitations

GPS 2 to 15 Indoor localization is not possible in many cases

Proximity based 1 to 30 Depends on the range of the signal used

Angle based approach 1 to 8 Require special antenna

Range based approach 4 to 10 Require special hardware and time synchronization

Table : Comparison of localization techniques

Page 13: A Survey on Localization of Wireless Sensors

Summary

• Introduction to localization• Localization techniques• Problems in localization schemes• Comparison of localization techniques

Page 14: A Survey on Localization of Wireless Sensors

References I

1. R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The Active Badge Location System,” ACM Trans. Information Systems, vol. 10, pp. 91 - 102, 1992.

2. J. Liu, Y. Zhang, and F. Zhao, “Robust Distributed Node Localization with Error Management,” Proc. ACM MobiHoc,2006

3. M.W. Carter, H.H. Jin, M.A. Saunders, and Y. Ye, “SpaseLoc: An Adaptive Subproblem Algorithm for Scalable Wireless Sensor Network Localization,” SIAM J. Optimization, 2006.

4. P. Bahl and V.N. Padmanabhan, “RADAR: An In-Building RFBased User Location and Tracking System,” Proc. IEEE INFOCOM, 2000.

5. D. Niculescu and B. Nath, “DV Based Positioning in Ad Hoc Networks,” J. Telecomm. Systems, vol. 22, pp. 267-280, 2003.

6. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket Location-Support System,” Proc. ACM MobiCom,2000.

Page 15: A Survey on Localization of Wireless Sensors

7. R. Stoleru and J.A. Stankovic, “Probability Grid: A Location Estimation Scheme for Wireless Sensor Networks,” Proc. First IEEE Conf. Sensor and Ad Hoc Comm. and Networks (SECON 04), 2004.

8. N. Bulusu, J. Heidemann, and D. Estrin, “GPS-Less Low Cost Outdoor Localization for Very Small Devices,” IEEE Personal Comm. Magazine, vol. 7, no. 5, pp. 28-34, Oct. 2000.

9. Domenico Porcino and Walter Hirt, “Ultra-Wideband Radio Technology: Potential and Challenges Ahead,” IEEE Communications Magazine, pp. 66-74, July 2003.

10. Z. Li, W. Trappe, Y. Zhang, and B. Nath, “Robust Statistical Methods for Securing Wireless Localization in Sensor Networks,” 2005.

11. D. Liu, P. Ning, and W. Du, “Attack-Resistant Location Estimation in Sensor Networks,” 2005.

12. L. Fang, W. Du, and P. Ning, “A Beacon-Less Location Discovery Scheme for Wireless Sensor Networks,” 2005.

13. N.B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Anchor-Free Distributed Localization in Sensor Networks,” 2003. 

Page 16: A Survey on Localization of Wireless Sensors

References II

14. X. Ji and H. Zha, “Sensor Positioning in Wireless Ad-Hoc Sensor Networks Using Multidimensional Scaling,” Proc.IEEE INFOCOM, 2004.

15. Murtuza Jadliwala, Sheng Zhong, Shambhu Upadhyaya, Chunming Qiao and Jean-Pierre Hubaux, “Secure Distance-Based Localization in the Presence of Cheating Beacon Nodes,” IEEE Transactions on Mobile Computing, 2010.

16.  Guiling Wang, Wensheng Zhang, Jinsook Kim, Taiming Feng, Chuang Wang, “Catching Packet Droppers and Modifiers in Wireless Sensor Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 5, pp. 835-843, May 2012.

17. Roy Want, Andy Hopper, Veronica Falcao and Jonathan Gibbons, “The active badge location system,” ACM Transactions on Information Systems (TOIS), Volume 10 Issue 1, Jan. 1992, Pages 91-102.

Page 17: A Survey on Localization of Wireless Sensors

18. Nils Ole Tippenhauer and Srdjan Capkun, “ID-based Secure Distance Bounding and Localization,” Computer Security ESORICS 2009 Lecture Notes in Computer Science Volume 5789, pp 621-636, 2009.

19. Ravi Garg, Avinash L. Varna and Min Wu, “An Efficient Gradient Descent Approach to Secure Localization in Resource Constrained Wireless Sensor Networks,” IEEE Transactions on Information Forensics and Security, Vol. 7, No. 2, April 2012.

20. Zheng Yang and Yunhao Liu, “Quality of Trilateration: Confidence-Based Iterative Localization,” IEEE Transactions on Parallel and Distributed Systems, May 2010

Page 18: A Survey on Localization of Wireless Sensors

Thank You

Page 19: A Survey on Localization of Wireless Sensors

Queries?