19
Probing materials at ILL: an overview of structure inves7ga7on with neutrons Viviana CRISTIGLIO Instrument Scien6st at the Ins6tut Laue Langevin Neutrons science at high T Carbon nanotubes Li ba=eries Industrial materials, Energy

Viviana Cristiglio (May 27th 2014)

Embed Size (px)

Citation preview

Page 1: Viviana Cristiglio (May 27th 2014)

Probing  materials  at  ILL:  an  overview  of  structure  inves7ga7on  with  neutrons  

Viviana  CRISTIGLIO  Instrument  Scien6st  at  the  Ins6tut  Laue  Langevin  

   -­‐  Neutrons  science  at  high  T  -­‐   Carbon  nanotubes  -­‐   Li  ba=eries  

 Industrial  materials,  Energy  

Page 2: Viviana Cristiglio (May 27th 2014)

The  liquid  state  is  fundament  state  of  the  ma=er  and  is  an  essen6al  stage  for  various  technological  applica1ons  

Metallurgy   Op6c  fibers   Aerospace  propulsion  

Why  do  we  need  HT?  

Glass  making  :  from  liquid  to  glass  by  quenching    Design  of  new  glasses  :  Storing  nuclear  waste    

Food  and  drink  Chemistry,  Pharmaceu6cs,  Cosme6cs  

Page 3: Viviana Cristiglio (May 27th 2014)

Structure  of  Liquids  by  diffrac6on  

Unlike  crystals,  the  structural  informa6on  for  liquids  and  glasses  is  described  in  terms  of:  

1.  Probabilis6c  atomic  distribu6on  func6ons.  

2.  Mean  atomic  distribu6on  around  each  chemical  species   given   by   the   Pair   Distribu6on   Func6on      g(r).  

g(r)   is   the   probability   to   find   an   atom   at   a  distance  r  from  another  taken  at  the  origin  

Interatomic  distances  

Coordina6on  number  

Page 4: Viviana Cristiglio (May 27th 2014)

Spa6al  distribu6on  of  atoms  or  

molecules  in  the  system  

Crystalline  solids  

Equilibrium  posi6ons  

Well  defined  Bragg  peaks  

Amorphous  

Distribu6on  of  equilibrium    

posi6ons  

       No  Bragg  peaks  

Structure of Crystalline and Amorphous Solids

Page 5: Viviana Cristiglio (May 27th 2014)

Diffusive  Mo6ons  Internal    Dynamics  

Structural  informa7on  Collec6ve  dynamics  

Coherent  

σcoh  4π  

Incoherent  

σinc  4π  

Sca=ering  cross  sec6on   σ  =  σcoh  +  σinc  

Coherent  and  Incoherent  ScaAering  

Page 6: Viviana Cristiglio (May 27th 2014)

More  sensi6ve  to  light  elements  (H,  Li,  Bo)    But  

 Isotopic  subs6tu6on  ()    H/D  exchange    

Complexity    in  the  data  interpreta6on  à Mul6-­‐techniques  approach                

Why  neutrons  are  useful  for  liquids?  

neutrons  

X-­‐rays  

Bragg law

Page 7: Viviana Cristiglio (May 27th 2014)

Radioactive waste disposal

Page 8: Viviana Cristiglio (May 27th 2014)

Aqueous Solutions in Confined Systems

Underground  Research  Laboratory  at  Meuse  Haute-­‐Marne,  ANDRA,  French  Na6onal  Agency  for  the  

Management  of  Radioac6ve  Waste  

Clays have wide environmental applications, but particularly in waste disposal

Radioactive waste disposal

Page 9: Viviana Cristiglio (May 27th 2014)

SiO2  (Network  former)  

Si-­‐O    Strong  bond  

Al2O3  (Intermediate  element)  

Ca/Mg/Na-­‐O  (Network  modifier)  

Al-­‐O  Less  strong  

bond  

+   +  

4  Bridging  oxygens  3  Bridging  oxygens  Strong  liquid   Fragile  liquid  

Alumino-­‐silicates              Ca/Mg/Na  -­‐  Al2O3  -­‐  SiO2  

Page 10: Viviana Cristiglio (May 27th 2014)

Alumino-­‐silicates  Ca/Mg/Na  -­‐  Al2O3  -­‐  SiO2  

©  Britannica  

©  D.  Neuville  

Etna,  Sicily  

Crust  and  mantle  forma6on,  magma6c  ocean  

Candidate  for  waste  storage  

New  class  of  cements  

Page 11: Viviana Cristiglio (May 27th 2014)

ü Maintain  the  purity  of  the  sample  

ü Access  very  high  temperatures  (>  3000°C)  

ü Absence  of  heterogeneous  nuclea6on  

ü Easy  access  to  metastable  states  

ü Undercooling  (Several  hundreds  degrees  below            the  mel6ng  point)  

Aerodynamic  levita7on  

Page 12: Viviana Cristiglio (May 27th 2014)

r (Å)

g(r)

Glass  

Ca-­‐O  correla6on  less  pronounced    Difficult  to  solve  the  Ca-­‐O  because  its  mostly  composed  by  O-­‐O  (50%of  the  total  g(r))    Molecular  dynamics  model  for  experimental  data  interpreta6on  

Ca-­‐O  

Liquid  

r (Å)

Pair  Distribu6on  Func6on:  

From  Molecular  Dynamics  calcula6ons    

Liquid  CA  (SiO2  =  0)  

Page 13: Viviana Cristiglio (May 27th 2014)

Diffusion  coefficient:  D  [1

0-­‐10

  m2 s

-­‐1]

1000/T  [K]  

Arrhenius  plot  

1-­‐  Si  atoms  have  a  lower  self  diffusion  

2-­‐  Si  

SiO4  tetrahedra  

O,  Ca  

Dcoherent   When  SiO2  

Page 14: Viviana Cristiglio (May 27th 2014)

Introduc6on   Instrumenta6on   Structure   Dynamic   Conclusion  •  QENS  setup  •  Mul6-­‐nozzle  Aero.  Lev.  

•  Benefits  •  Objec6ves  

• Glassy  state  • Liquid  state  

• QENS  • IXS  

What  is  the  common  point  between:  Volcanic  lava,  Magma,  Silicate  melt,  Glass  ?  

• Amorphous  material  • Disordered  at  the  atomic  length  scale  • Very  high  temperature  • SiO2  -­‐  Al2O3  -­‐  CaO    

How  the  viscosity  of  a  volcanic  lava  changes  with  temperature?    With  its  chemical  composi6on?  

©  Britannica  

©  Britannica  

©  D.  Neuville  

Etna,  Sicily  

The liquid state is also an essential stage for various technological applications:

Metallurgy   Op6c  fibers  

• Design  of  new  glasses  (storing  nuclear  waste,…)  

Applica6ons  

Aerospace  propulsion  

3  

Crust  and  mantle  forma6on,  magma6c  ocean  

Page 15: Viviana Cristiglio (May 27th 2014)

Calcium  AluminoSilicate  (CAS)  

SiO2  (Network  former)  

Tetrahedral  

Si-­‐O  Strong  bond  

Al2O3  (Intermediate  element)  

CaO  (Network  modifier)  

Tetrahedral  

Al-­‐O  Less  strong  bond  >>  

+   +  

4  Bridging  oxygens  

3  Bridging  oxygens  

Strong  liquid   Fragile  liquid  

4  

Introduc6on   Instrumenta6on   Structure   Dynamic   Conclusion  •  QENS  setup  •  Mul6-­‐nozzle  Aero.  Lev.  

•  Benefits  •  Objec6ves  

• Glassy  state  • Liquid  state  

• QENS  • IXS  

Page 16: Viviana Cristiglio (May 27th 2014)

Objec6ves  of  this  thesis  (1)  

Two  furnaces,  same  principle!  • High  temperatures  • Silicate  Melts  

Important  to  be  able  to  study  the  proper6es  of    high  temperature  liquids:  

First  objec1ve  of  this  thesis:  Develop  and  Combine  different  techniques  on  large  scale  instruments  in  order  to  study  the  structure  and  dynamics    of  high  temperature  liquids.  

ESRF  

ILL  

5  

Introduc6on   Instrumenta6on   Structure   Dynamic   Conclusion  •  QENS  setup  •  Mul6-­‐nozzle  Aero.  Lev.  

•  Benefits  •  Objec6ves  

• Glassy  state  • Liquid  state  

• QENS  • IXS  

Page 17: Viviana Cristiglio (May 27th 2014)

Objec6ves  of  this  thesis  (2)  

Monitor  the  evolu1on  of  viscosity  η  Study  the  dynamics  

Neutron  and  X-­‐ray  Inelas6c  Sca=ering  

Angell  Plot  

Study  the  structure  (Neutron  and  X-­‐ray  Diffrac6on)  

The microscopic mechanisms approaching the glass transition are still not well understood:   Rapid  change  in  the  

dynamical  proper6es  like  the    viscosité  (  η  )  

Correlate  Structure    and  Dynamics?  

Add  strong  glass  former  “SiO2”  

+  

6  

Introduc6on   Instrumenta6on   Structure   Dynamic   Conclusion  •  QENS  setup  •  Mul6-­‐nozzle  Aero.  Lev.  

•  Benefits  •  Objec6ves  

• Glassy  state  • Liquid  state  

• QENS  • IXS  

Page 18: Viviana Cristiglio (May 27th 2014)

The  common  principle  is  to  apply  a  force  to  counteract  the  gravity  

G  

F  

Various  levita7on  techniques  have  been  developed  

Levita7on  techniques  

Electromagne6c  field  

Electrosta6c  field  

Acous6c  wave  

Gas  flow   Gas  film  levita6on    

Aerodynamic  levita1on    

Possible  to  reach  very  high  liquid  temperatures  (>3000°C)  No  container  effect  These  methods  maintain  the  sample  purity  Easy  access  to  the  supercooled  state      

Advantages  :  

(few  hundred  degrees  below  the  mel6ng  point)    

Page 19: Viviana Cristiglio (May 27th 2014)

Limita6ons  for  QENS  

X-­‐rays:  

Diffrac6on  Inelas6c  Sca=ering  

o   Flux  of  X-­‐ray                              >>                              Flux  of  Neutrons  

o   Current  configura6on:  Half  of  the  sample  is  s6ll  masked  by  the  nozzle.  

Neutrons:  

Diffrac6on  

Inelas6c  Sca=ering  

1.  Bigger  diameter  2.  Levitated  completely  outside  the  nozzle  

Sample:  

Diameter  ∼  2.7  mm  

9  

Introduc6on   Instrumenta6on   Structure   Dynamic   Conclusion  •  QENS  setup  •  Mul6-­‐nozzle  Aero.  Lev.  

•  Benefits  •  Objec6ves  

• Glassy  state  • Liquid  state  

• QENS  • IXS