37
vWD—Disorder of Primary Hemostasis Most common of the congenital bleeding disorders 12 % of the general popula@on Symptoma@c in only about 1/10,000 1926 – Erik von Willebrand 5 yof and her family who lived on the Åland Islands – Hereditär pseudohemofili, 1926 Ini@ally described as pseudohemophilia1

Lecture 5, part 2 fall 2014

Embed Size (px)

Citation preview

Page 1: Lecture 5, part 2 fall 2014

vWD—Disorder  of  Primary  Hemostasis  

}  Most  common  of  the  congenital  bleeding  disorders  }  1-­‐2  %  of  the  general  popula@on    }  Symptoma@c  in  only  about  1/10,000  

}  1926  –  Erik  von  Willebrand  à  5  y-­‐o-­‐f  and  her  family  who  lived  on  the  Åland  Islands  –  Hereditär  pseudohemofili,  1926  

}  Ini@ally  described  as  “pseudohemophilia”        

1

Page 2: Lecture 5, part 2 fall 2014

vWD—Disorder  of  Primary  Hemostasis  

} Clinical  manifesta@ons  } Mucocutaneous  bleeding  of  varying  severity  in  males  and  females  1. Ecchymoses  2. Epistaxis  3. Gastrointes@nal  bleeding  4. Menorrhagia  

} Defec@ve  platelet  adhesion  } Reduced  FVIII  levels    

2

Page 3: Lecture 5, part 2 fall 2014

vWF  •  Large  mul@meric  protein  –  ranges  from  600  kD  to  >20  million  kD  

–  Synthesized  by  endothelial  cells  and  megakaryocytes  •  Endothelial  cells  source  of  plasma  vWF  

•  Gene  for  vWF  is  located  on  chromosome  12p  •  178  kB,  52  exons  

 

3 Hoffman:  Adapted  from  Ginsburg  D,  Bowie  EJW:  Molecular  geneGcs  of  von  Willebrand  disease.  Blood  79:2507,  1992.)  

Page 4: Lecture 5, part 2 fall 2014

Synthesis  of  vWF  

}  vWF  synthesized  in  endothelial  cells  and  megakaryocytes  1.  Stored  in  Weibel-­‐Palade  bodies  of  

endothelial  cells  2.  Stored  in  α-­‐granules  of  platelets  

 Steps  in  synthesis  of  vWF    1.  First  synthesized  as  a  pre-­‐

pro-­‐vWF  monomer  2.  DimerizaGon  occurs  in  ER  3.  Pre-­‐pro-­‐vWF  monomers  

linked  together  at  the  carboxyl  terminal  end    

4.  Dimeric  molecules  pass  to  the  Golgi  apparatus  

5.  Dimers  mulGmerize  6.  Propep@de  is  cleaved  off  

à  mature  subunit  4

N-Terminal Multimerization

C-Terminal Dimerization

High Molecular

Weight Multimer

ER Golgi

Page 5: Lecture 5, part 2 fall 2014

vWF  Release  

Valentijn K M et al. Blood 2011;117:5033-5043

5

Page 6: Lecture 5, part 2 fall 2014

Func@on  of  vWF  }  vWF  serves  two  important  biologic  func@ons  

1.  Serves  as  a  carrier  protein  for  plasma  FVIII  a.  VWF  protects  Factor  VIII  in  circula@on  b.  VWF  co-­‐localizes  FVIII  at  sites  of  vascular  injury  

2.  Serves  as  a  ligand  that  binds  to  the  gpIb  receptor  on  platelets  to  ini@ate  platelet  adhesion  to  the  damaged  endothelium    a.  VWF  binds  to  extravascular  collagen  b.  Platelets  adhere  to  the  bound  vWF  c.  Adherent  platelets  become  ac@vated    

6

Platelets

Clotting factors Vessel wall

VWF

Page 7: Lecture 5, part 2 fall 2014

Func@on  of  vWF  

7

Elsevier  

Page 8: Lecture 5, part 2 fall 2014

8 Elsevier  

Page 9: Lecture 5, part 2 fall 2014

Classifica@on  of  vWD  •  vWD  –  extremely  heterogenous,  complex  disorder  with  >  20  dis@nct  

subtypes  

•  Types  of  vWD  

1.  Quan@ta@ve  Defects  

•  Type  1  –  Par@al  quan@ta@ve  deficiency  –  Autosomal  dominant    

•  Type  3  –  Complete  absence/severely  decreased    –  Autosomal  recessive    

2.  Qualita@ve  Defects    

•  Type  2  –  2A  –  2B  –  2M  –  2N        –  Autosomal  recessive    

9

Subgroups  

Page 10: Lecture 5, part 2 fall 2014

Type  I  vWD  

}  Most  common  type  of  vWD  }  80%  of  pa@ents  with  vWD  fall  into  this  category  

}  Caused  by  heterozygous  muta@on  leading  to  a  par@al  quan@ta@ve  deficiency  of  vWF  }  Gene@c  abnormality  in  ONE  of  the  vWF  alleles  }  Accounts  for  a  50%  reduc@on  in  vWF  }  Mild  secondary  deficiency  in  FVIII  

}  Endothelial  cells  and  platelets  contain  normal,  but  reduced  levels  of  vWF  }  DDAVP  can  induce  the  release  the  stored  vWF  

}  Bleeding  symptoms  range  from  asymptoma@c  to  mild      

10

Page 11: Lecture 5, part 2 fall 2014

Type  I  vWD  }  Lab  findings  }  Normal  to  decreased  

1.  FVIII  (aPTT)  2.  vWF:Ac@vity  (Ristoce@n  Cofactor)  3.  vWF:An@gen    

4.  Prolonged  BT    •  (PFA-­‐100—Col/EPI,  Col/ADP)  

5.  Propor@onal  decrease  of  ALL  vWF  mul@mers    

11

Page 12: Lecture 5, part 2 fall 2014

Type  3  vWD  

}  Most  severe  form  of  the  disease  

}  Results  from  the  homozygous  muta@on  leading  to  a  deficiency  of  vWF  with  absent  or  profound  deficiency  in  levels  of  plasma  vWF  

}  Autosomal  recessive    

}  vWF  levels  are  <5%  }  FVIII  is  markedly  cleared  from  the  plasma  with  levels  below  5-­‐10%  }  FVIII  is  not  as  severely  depressed  as  in  severe  Hemophilia  A  }  Spontaneous  bleeding    }  Severe  mucocutaneous  bleeding  }  Soj  @ssue/musculoskeletal  bleeding  

}  1-­‐5%  of  case  }  Prevalence  increases  in  regions  of  consanguineous  marriages    

  12

Page 13: Lecture 5, part 2 fall 2014

Type  2A  vWD  

•  Muta@ons  commonly  occur  in  the  A2  region  

•  Presence  of  only  the  smaller  vWF  mul@mers  in  plasma  à  reduced  binding  to  platelets    •  LOSS  platelet-­‐dependent  funcGon  

•  Two  proposed  mechanisms:  ▫  Abnormal  assembly  and  secre@on  of  

large  vWF  mul@mers  ▫  Increased  suscep@bility  of  vWF  to  

proteolysis  in  circula@on    

•  Pa@ents  exhibit  moderate  to  severe  mucocutaneous  bleeding    

13

Page 14: Lecture 5, part 2 fall 2014

Type  2B  •  Muta@on  in  the  A1  domain  of  the  vWF  

gene  •  Absence  of  the  high-­‐molecular-­‐weight  

mul@mers  –  Caused  by  “gain  of  func7on”  muta@on  in  

vWF  à  increased  affinity  to  bind  to  the  gpIb  platelet  receptor  

–  Spontaneous  binding  of  vWF  to  platelets  –  Large  mul@mers  are  synthesized  but  

rapidly  cleared  due  to  increased  binding  to  platelets    

–  Thrombocytopenia    

•  DDAVP  contraindicated  à  would  cause  increased  thrombocytopenia  as  platelets  would  be  hyper-­‐reacGve  to  the  released  vWF  

14

Page 15: Lecture 5, part 2 fall 2014

Type  2M  vWD  

•  Muta@ons  in  Exon  28  in  A1  domain  

•  Defect  leads  to  decreased  or  absent  binding  of  vWF  to  platelet  gpIb  receptor  

•  Decreased  platelet  dependent  func@on  

•  Normal  mul@mer  profile    

•  Plasma  binding  to  FVIII  is  normal    

 

 

15

FVIII GPIb collagen RGDSGPIIb/IIIacollagen

D1 D2 D‘D3 A1 A2 A3 D4 B1B2 B3 C1 C2N C

Page 16: Lecture 5, part 2 fall 2014

Type  2N  vWD  

•  Also  referred  to  as  “autosomal  hemophilia”  or  the  Normandy  variant  •  Caused  by  muta@ons  in  the  FVIII  binding  region  of  vWF  

•  Markedly  decreased  affinity  for  binding  to  FVIII    –  Rapid  turnover  of  the  unbound  FVIII  à  reduced  levels    •  Lab  findings  

1.  Decreased  FVIII    2.  Normal  vWF  an@gen  and  ac@vity  3.  Normal  bleeding  Gmes  (PFA-­‐100)  4.  Platelet  binding  to  vWF  is  normal  5.  Similar  to  “mild”  hemophilia  

•  GeneGc  counseling    and  treatment  is  different  from  hemophilia  

16

FVIII GPIb collagen RGDSGPIIb/IIIacollagen

D1 D2 D‘D3 A1 A2 A3 D4 B1B2 B3 C1 C2N C

Page 17: Lecture 5, part 2 fall 2014

Pseudo-­‐von  Willebrand  Disease  –  (Platelet  type  vWD)  

}  NO  gene@c  defect  of  the  vWF  molecule  –  vWF  molecule  is  NORMAL  

}  “Gain  in  func@on”  muta@on  in  the  platelet  gpIb  receptor  }  Increased  affinity  of  platelets  for  vWF  }  Enhanced  clearance  of  vWF  and  platelets  from  circula@on  

}  Defect  is  in  the  platelet  à  standard  approaches  to  trea@ng  vWD  are  not  helpful  

}  Lab  findings    1.  Loss  of  high  molecular  weight  mul@mers  2.  Platelet  count  is  low**  3.  Platelet  aggrega@on  with  low  dose  ristoce@n  (RIPA)  

17

Page 18: Lecture 5, part 2 fall 2014

Acquired  vWD  

•  Qualita@ve,  structural,  or  func@onal  disorder  of  vWF  not  inherited  and  is  associated  with  an  increased  risk  of  bleeding  

•  Associated  with  –  Autoimmune  clearance  –  lymphoprolifera@ve,  MGUS,  SLE,  hypothyroidism    

•  Autoan@bodies  à  increased  clearance  of  vWF  from  plasma  

–  Fluid  shear  stress-­‐induced  proteolysis  –  aor@c  stenosis,  LVAD      

18

Aspect   Acquired  vWD   Congenital  vWD  Personal  History   Late  onset  bleeding   Early  onset  bleeding  

Family  History   Nega@ve   Posi@ve  

AVWS  associated  disorder  

Posi@ve   Nega@ve  

Laboratory  associated  disorder  

Inhibitor  to  vWF   Gene@c  muta@on  

Treatment   •  Remission  ajer  IVIg  •  Short  lived  response  

ajer  vWF-­‐containing  product  

vWF-­‐containing  product  

Page 19: Lecture 5, part 2 fall 2014

Assays  for  vWD  

•  Platelet  Func@on  Screen  (BT)  •  vWF  an@gen  assay  •  vWF  ac@vity  assay  •  FVIII:C    

•  Mul@mer  Analysis  

19

Page 20: Lecture 5, part 2 fall 2014

Assays  for  vWD  

•  vWF:An@gen  –  Immunoassay  that  measures  the  concentra@on  of  vWF  protein  in  plasma    

•  Actual  protein  responsible  for  binding  to  FVIII  and  gp  Ib/IX/V  complex    –  Detects  all  forms  of  vWF  (func@onal  and  nonfunc@onal  forms)  –  Cannot  discriminate  between  mul@mer  size    

20

Patient vWF å

Testing well

Reagent beads coated with anti-vWF

å

åå

å

å

å

å

åå

å

å

Incubate

LIA  based  tesGng  

Instrument reading—changes in optical density secondary to aggregates

Page 21: Lecture 5, part 2 fall 2014

Assays  for  vWD  

•  vWF:Ac@vity    –  Ristoce@n  cofactor  assay  (gold  standard)    

•  Measures  the  ability  of  vWF  (pa@ent)  to  induce  agglu@na@on  of  normal  fixed  platelets  in  the  presence  of  Ristoce@n  

•  Mix  paGent’s  plasma  +  normal  donor  platelets  +  ristoceGn  à  platelet  aggluGnaGon  reacGon  occurs  on  platelet  aggregometer  

 

21

Page 22: Lecture 5, part 2 fall 2014

Assays  for  vWD  

•  vWF:Ac@vity    –  Latex  par@cle  enhanced  immunoturbidimetric  assay  

•  Specific  anG-­‐vWF  monoclonal  anGbody  adsorbed  onto  latex  reagent  directed  against  the  platelet  binding  site  of  vWF  (gp  Ib  receptor)  

•  Reacts  with  vWF  in  the  pa@ent’s  plasma  •  Degree  of  agglu@na@on  is  directly  propor@onal  to  ac@vity  of  vWF  in  

pa@ent's  plasma  –   Mix  paGent’s  plasma  +  latex  beads  coated  with  an  anG-­‐vWF  

monoclonal  anGbody  è  aggluGnaGon  of  parGcles  

22

Page 23: Lecture 5, part 2 fall 2014

Assays  for  vWD  

•  FVIII  ▫  Circula@ng  level  of  FVIII  ▫  Clot-­‐based  assay  that  measures  the  ability  of  plasma  FVIII  to  shorten  

the  clopng  @me  in  FVIII-­‐deficient  plasma  

•  Mul@mer  Analysis      ▫  QualitaGve  assay  (electrophoresis)  to  depict  the  variable  

concentraGons  of  different-­‐sized  vWF  mulGmer    

23

Page 24: Lecture 5, part 2 fall 2014

Preanaly@cal  Variables  

– Race  • Higher  levels  seen  in  African/African-­‐Americans  

– Age  •  Levels  increase  with  age    

– ABO  Blood  Groups    

24

ABO  Type   N   Mean   Mean  +/-­‐    2SD  

O   456   74.8   35.6  –  157.0  

A   240   105.9   48.0  –  233.9  

B   196   116.9   56.8  –  241.0  

AB   109   123.3   63.8  –  238.2  

Page 25: Lecture 5, part 2 fall 2014

Preanaly@cal  Variables  

–  Condi@ons  with  elevated  vWF  levels  •  Age  •  Acute  and  chronic  inflamma@on  •  Diabetes  •  Malignancy  •  Pregnancy  or  OCT  •  Stress,  exercise  •  Hyperthyroidism  

–  Condi@on  with  reduced  vWF  levels  •  Hypothyroidism  •  Type  O  blood    

25

Page 26: Lecture 5, part 2 fall 2014

Treatment  of  von  Willebrand  Disease  

1. DDAVP  (deamino-­‐8-­‐arginine  vasopressin)    •  Synthe@c  analogue  of  the  natural  pituitary  hormone  •  Releases  intracellular  vWF  from  endothelial  cells  à  raises  plasma  levels  of  

vWF    •  Treatment  of  choice  in  Type  I  

•  Variable  response  in  2A  and  2M  •  Ineffec@ve  in  Type  3    •  Contraindicated  in  2B  

•  Can  be  given  as  an  inhaler—S@mate      

26

Page 27: Lecture 5, part 2 fall 2014

Treatment  of  von  Willebrand  Disease  

2.  Humate-­‐P  –  contains  FVIII  and  vWF  (large  mul@mers)  –  FDA-­‐approved  –  Alphanate,  Koate  

 3.  ε-­‐Aminocaproic  Acid  (EACA)  and  Tranexamic  Acid  

–  Fibrinolysis  inhibitors    

4.  Cryoprecipitate  –  Source  of  fibrinogen,  factor  VIII  and  VWF  –  Only  plasma  frac@on  that  consistently  contains  VWF  mul@mers  –  USE  WITH  CAUTION!!!    

27

Page 28: Lecture 5, part 2 fall 2014

LAB  

28  

Page 29: Lecture 5, part 2 fall 2014

Current Instrumentation

Page 30: Lecture 5, part 2 fall 2014

Methods  of  Endpoint  Detec@on  

•  Mechanical    

Ø  Electromechanical  

(Impedance)  Method  

Ø  Magne@c,  Steel  Ball  Method  

•  Op@cal    

–  Photo-­‐op@cal    

–  Nephelometric    

–  Chromogenic    

–  Immunologic  

•  Electrochemical    

•  Automa@on  approaches  to  clot  detec@on:  –  SEE  

•  Turbidometric  •  Nephelometric  

–  FEEL  •  Mechanical  •  Viscosity  based  

Page 31: Lecture 5, part 2 fall 2014

Electromechanical  Method. •  When coagulation process takes

place, the concentration of clotting factors (charges) and inorganic ions will change along the time and the measured impedance or conductance w i l l b e a l s o c h a n g e d correspondingly at the same time.

•  During the reaction, one probe moves in and out of the solution at constant intervals. The electrical circuit between the two probes is not maintained as the moving probe rises in and out of the solution.

•  When a clot (fibrin) is formed in the solution, the fibrin strands maintain electrical contact between the two probes when the moving probe leaves the solution, which stops the timer.

Page 32: Lecture 5, part 2 fall 2014

Magne@c,  Steel  Ball  Method Mechanica l   c lot   detec@on   invo lves  monitoring   the   movement   of   a   steel   ball  within   the   test   solu@on   using   a   magne@c  sensor  As   clot   forma@on   occurs,   the   movement   of  the   ball   changes,   which   is   detected   by   the  sensor    

•  The  sample  is  introduced  to  a  cuvete  that  has  a  small  steel  ball  inside  

•  The  cuvete  con@nuously  moves  when  tes@ng  begins  

•  The  clot  ini@a@ng  reagents  are  added  to  the  sample  

•  The  fibrin  strands  begin  to  form  and  atach  to  the  moving  ball  

•  An  electrical  circuit  is  either  opened  or  closed  when  the  ball  moves  away  from  the  magnet  because  of  the  fibrin  strands  

•  Clot  @me  is  recorded.  

Page 33: Lecture 5, part 2 fall 2014

Photo-­‐op@cal  Method  •  Detec@on  of  clot  forma@on  measured  by  a  change  in  OD  of  

a  test  sample   is  the  basis  of  photo-­‐op@cal   instrumenta@on,  which  is  also  known  as  turbidometric  methodology:    

•  When  a   light  source  of  a  specified  wavelength   is  passed  through   a   test   solu@on   (plasma),   a   certain   amount   of  light  is  detected  by  a  photodetector  or  photocell  located  on  the  other  side  of  the  solu@on.    

•  The  amount  of   light  detected   is  dependent  on   the  color  and  clarity  of  the  plasma  sample  and  is  considered  to  be  the  baseline  light  transmission  value.    

•  When   soluble  fibrinogen  begins   to  polymerize   into   a  fibrin  clot,   forma@on   of   fibrin   strands   causes   light   to   scater,  allowing   less   light   to   fall   on   the   photodetector   (i.e.,   the  plasma   becomes  more   opaque,   decreasing   the   amount   of  light  detected.  

•  When   the   amount   of   light   reaching   the   photodetector  decreases   to   an   exact   point   from   the   baseline   value   as  predetermined  by  the  instrument,  this  change  in  OD  triggers  the  @mer  to  stop,  indica@ng  clot  forma@on.    

Page 34: Lecture 5, part 2 fall 2014

Op@cal  Clot  Detec@on  (Turbidimetry)  

•  Sample  is  added  to  a  cuvete  •  A  light  source  is  directed  through  the  

cuvete  •  Ini@al  absorbance  of  transmited  light  is  

measured  •  Clot  ini@a@ng  reagents  are  added  by  the  

automated  instrumenta@on  •  The  plasma  becomes  more  opaque  

when  clopng  is  ini@ated,  decreasing  the  light  transmited  through  the  cuvete  

•  The  change  in  transmited  light  is  used  to  calculate  the  result  

Page 35: Lecture 5, part 2 fall 2014

Nephelometric  Clot  Detec@on  Nephelometry  uses  a  light  -­‐emipng  diode  at  a  high  wavelength  (usually  >600  nm)  to  detect  varia@ons  in  light  scater  as  an@gen-­‐an@body  complexes  are  formed.  When  the  light  rays  encounter  insoluble  complexes  such  as  fibrin  strands,  they  are  scatered  in  both  forward  (l80-­‐degree)  and  side  (90-­‐degree)  angles  

•  Sample  is  added  to  a  sample  cuvete  •  The  op@cally  clear  cuvete  passes  in  front  of    light  

source  •  The  clot  ini@a@ng  reagents  are  added  •  Light  is  scatered  as  the  fibrin  strands  form  •  The  light  scaters  at  different  angles  and  is  measured  

by  detectors  •  A  clot  curve  is  generated  by  consecu@ve  readings  

un@l  clot  comple@on.  

Page 36: Lecture 5, part 2 fall 2014

36  

Page 37: Lecture 5, part 2 fall 2014

37