30
ESP2110 WIFI ANTENNA DESIGN PROJECT Picture from [1], p. 353

Antenna Project ESP2110 Design Project

Embed Size (px)

DESCRIPTION

Final Presentation for ESP Design Project 2110

Citation preview

Page 1: Antenna Project ESP2110 Design Project

ESP2110WIFI ANTENNA DESIGN PROJECT

Picture from [1], p. 353

Page 2: Antenna Project ESP2110 Design Project

ContentsIntroduction1. Fabrication, design and parts

2. Reason for choice

Theory3. Loop

4. Archery-target antenna

5. Impedance matching

6. VSWR

User design and future considerations

Performance analysis

Field testing

Conclusion

Credits

Page 3: Antenna Project ESP2110 Design Project

Introduction

FabricationArchery target antenna

Parasitic elements Main back reflector Front annular reflector Center small reflector Wooden back base for physical support

Driven element Z-shape 1λ circular loop

Page 4: Antenna Project ESP2110 Design Project

Design overview

Basic design and dimensions from existing literature

Optimum dimensions derived mainly from experimentation and occasionally FD-TD method

Modifications not tested before include

1. the addition of secondary rim

2. use with specified driven element

Picture modified [2], p. 227

Page 5: Antenna Project ESP2110 Design Project

Back Reflector

Page 6: Antenna Project ESP2110 Design Project

Front + center reflector

Page 7: Antenna Project ESP2110 Design Project

1λ circular loop

Page 8: Antenna Project ESP2110 Design Project

Introduction

Reason for choice Good match with project

requirement

Relatively small size for its Performance

Flexibility with modifications : type of driven element used configuration of reflectors

Characteristics required

Archery-target

Antenna

High gain √

High directivity √

Fixed, narrow band

WIFI frequency band

Page 9: Antenna Project ESP2110 Design Project

Loop theory

1λ circular loop

Radiation pattern

Pictures modified from [3]

Page 10: Antenna Project ESP2110 Design Project

4:1 delay line type coax Balun 1λ loop feedpoint impedance (Ω) ≈ 80-150 L = 1/2λ

Causes 180° phase shiftas desired

Provides balanced input

Balun theory

Pictures from [5] and [6]

Page 11: Antenna Project ESP2110 Design Project

Endoresonance antenna: open cavity Can be considered similar to

waveguide operation (resonant modes)

Archery-target antenna theory

Pictures from [1], p. 19

Page 12: Antenna Project ESP2110 Design Project

Archery-target antenna theory

Influence of sub-reflector size

Small

Large

Pictures modified from [7], p. 4

Page 13: Antenna Project ESP2110 Design Project

Archery-target antenna theory

Evolution of front reflectors

Maintaining backfire effect while enlarging aperture size

Increasing directivity with secondary rim on reflectors

Page 14: Antenna Project ESP2110 Design Project

Archery-target antenna theory Estimated radiation plot and

directivity

Graphs from [2], p. 226

Page 15: Antenna Project ESP2110 Design Project

Impedance matching

Determine lengths x1 and x2 using software Smith v3.10

Page 16: Antenna Project ESP2110 Design Project

Smith chart and VSRW of antenna with original 1λ line segment

Impedance matching

Page 17: Antenna Project ESP2110 Design Project

Practical approach to impedance matching

Since Smith chart of antenna line segment is favourable

And accuracy loss due to connectors and small physical length of λ

Take x1 ≈ 0

Impedance matching

Page 18: Antenna Project ESP2110 Design Project

Impedance matching

New Smith’s Chart and VSWR with stub

Page 19: Antenna Project ESP2110 Design Project

User design & future considerations

User design Handle/ portable Rigid back wooden support Weather resistant due to lacquered wood

Future considerations Selective frequency using translucent aperture Increase aperture efficiency by using better dielectric Wider bandwidth using main conical

reflector and a smaller centre reflector

Pictures from [8], p. 115

Page 20: Antenna Project ESP2110 Design Project

Performance analysis

-80

-60

-40

-20

0

20

40

60

80

100

120

RSSI

signalQuality

2m

• RSSI -10 to 15• Signal Quality 100

25m

• RSSI -50• Signal Quality 80

2m

• RSSI -10 to 15• Signal Quality 100

Loop A (Directed)

Loop A

Loop B

Loop B (Opposite)

2m

• RSSI -35• Signal Quality 100

25m

• RSSI -58• Signal Quality 80

2m

• RSSI -37• Signal Quality 97

Page 21: Antenna Project ESP2110 Design Project

Field hunting

Page 22: Antenna Project ESP2110 Design Project

Field hunting – Objective A

Page 23: Antenna Project ESP2110 Design Project

Field hunting – Objective A

Page 24: Antenna Project ESP2110 Design Project

Field hunting – Objective B

Page 25: Antenna Project ESP2110 Design Project

Field hunting – Objective B

Page 26: Antenna Project ESP2110 Design Project

Field hunting – Objective C

Page 27: Antenna Project ESP2110 Design Project

Field hunting – Objective C

Page 28: Antenna Project ESP2110 Design Project

Field hunting - Summary

Page 29: Antenna Project ESP2110 Design Project

Conclusion

Fabrication Our antenna is durable and portable Well suited for the Objective

Overall Performance Up to standard for field testing Good Signal Quality

Page 30: Antenna Project ESP2110 Design Project

References and Credits [1] A. Kumar, H.D. Hristov, Microwave cavity antennas , Norwood, MA :

Artech House , 1989 [2] M. Vidmar, “An Archery-Target Antenna”, Microwave Journal, Vol.

48, No. 5, pp.222-230, May 2005. [3] J. Bernhard, E.Michielssen and L. C.Godara, Eds., “Antenna

Parameters, Various Generic Antennas and Feed Systems, and Available Software”, in Handbook of antennas in wireless communications , Boca Raton, FL : CRC Press, 2002, ch. 5, sec. 3.2

[5] T. Tribuzio. (2011, Mar. 2). About Balun [Online]. Available: http://www.dxzone.com/cgi-bin/dir/jump2.cgi?ID=3767

[6] A. Vernucci. (2011, Mar. 2). A Simple 50-ohm Single-Band Balun [Online PDF]. Available: www.qsl.net/i0jx/balun.pdf

[7] M. Rayner, A.D. Olver, A.D. Monk, “FD-TD design of short backfire antennas”, IEE Proc.-Microw. Antennas Propag., Vol. 144, No. 1, pp. 1-6, Feb 1997

[8] G. S. Kirov, “Design of Short Backfire Antennas”, IEEE Antennas Propagat. Mag., Vol. 51, No. 6, pp. 110-120, Dec 2009