6
@ IJTSRD | Available Online @ www ISSN No: 245 Inte R Effect of Lime on E Lecturer, Departme ABSTRACT Soil is a unique natural material and the soils can be altered by adding stabilizin as lime. Lime is the oldest traditional s for soil stabilization. Lime is one o products that can be used in the impro engineering characteristics of soils. presents the effect of lime on engineer of cohesive soil. In order to identify an soil, at first physical properties of soil a And then, mechanical property tests a Next, lime is added to natural soils. Lim selected as 4%, 6% and 8% by weight o The plasticity index decrease with i percentage of lime content. Soil is selected lime contents at their maximum In cohesive soil, the more the lime con the cohesion. The lowest value of coh kg/cm2 at lime 4% and it increases acc content. The percentage of lime increase is also increased. KEYWORD: Cohesive Soil, Stabilizatio I. INTRODUCTION Cohesive soils are those possessing co have a higher water content and a natu "ball" together when squeezed. Under loads these type of soils settle and cons number of years. These soils cont quantities of clay to render soil m impermeable when properly compacte are all verities of clay or clayey soils. Co available everywhere in Myanmar an suitable for engineering construc Addition of lime to clayey soils to engineering properties is a well-establi Lime used in stabilization is the produc w.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 56 - 6470 | www.ijtsrd.com | Volum ernational Journal of Trend in Sc Research and Development (IJT International Open Access Journ Engineering Properties of Cohe Nyein Nyein Thant ent of Civil Engineering, Technological Univers Mandalay, Myanmar e properties of ng agents such stabilizer used of the several ovement of the This research ring properties nd classify this are determined. are conducted. me contents are of natural soils. increasing the s mixed with m dry density. ntent, the more hesion is 0.59 cording to lime ed, CBR value on, Lime ohesion. They ural tenancy to pressure from solidate over a tain sufficient mass virtually ed. Such soils ohesive soil is nd this is not ction works. improve their ished practice. ct of calcining limestone. Lime is most comm of cohesive soils. The quan stabilization of most soils us 2% - 10%. The main benefit f the reduction of the soil's becomes more rigid. It also in workability of the soil, and red swell. Soil lime stabilization i region than in cold region. S base course for low traffic roa surface course as it has little and impact. II. TESTING OF SOIL M The following tests are perfo engineering properties of cohe 1. Water Content Determinat 2. Specific Gravity Test 3. Grain-size Analysis Test 4. Atterberg Limits Test 5. Free Swell Test 6. Standard Proctor Compact 7. Triaxial Shear Test 8. California Bearing Ratio (C A. Water Content Determinat Water content is defined as th water to the weight of solids in the specific gravity for various ϖ = c w w w w - - 2 2 1 x Where, ϖ = water content (%) W1 = Weight of contain 2018 Page: 1757 me - 2 | Issue 5 cientific TSRD) nal esive Soil sity, monly used as a modifier ntity of lime used for sually is in the range of from lime stabilzation is plasticity, and the soil ncreases the strength and duces the soil's ability to is more suitable in warm Soil-lime can be used as ads. It cannot be used as e resistance to abrasion METHODS ormed to determine the esive soils. tion tion Test CBR) Test tion he ratio of the weight of n the soil. Table 1 shows s types of soil. x 100% ner plus wet soil

Effect of Lime on Engineering Properties of Cohesive Soil

  • Upload
    ijtsrd

  • View
    4

  • Download
    0

Embed Size (px)

DESCRIPTION

Soil is a unique natural material and the properties of soils can be altered by adding stabilizing agents such as lime. Lime is the oldest traditional stabilizer used for soil stabilization. Lime is one of the several products that can be used in the improvement of the engineering characteristics of soils. This research presents the effect of lime on engineering properties of cohesive soil. In order to identify and classify this soil, at first physical properties of soil are determined. And then, mechanical property tests are conducted. Next, lime is added to natural soils. Lime contents are selected as 4 , 6 and 8 by weight of natural soils. The plasticity index decrease with increasing the percentage of lime content. Soil is mixed with selected lime contents at their maximum dry density. In cohesive soil, the more the lime content, the more the cohesion. The lowest value of cohesion is 0.59 kg cm2 at lime 4 and it increases according to lime content. The percentage of lime increased, CBR value is also increased. Nyein Nyein Thant "Effect of Lime on Engineering Properties of Cohesive Soil" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-5 , August 2018, URL: https://www.ijtsrd.com/papers/ijtsrd18162.pdf Paper URL: http://www.ijtsrd.com/engineering/civil-engineering/18162/effect-of-lime-on-engineering-properties-of-cohesive-soil/nyein-nyein-thant

Citation preview

Page 1: Effect of Lime on Engineering Properties of Cohesive Soil

@ IJTSRD | Available Online @ www.ijtsrd.com

ISSN No: 2456

International

Research

Effect of Lime on Engineering Properties of Cohesive Soil

Lecturer, Department of Civil Engineering

ABSTRACT Soil is a unique natural material and the properties of soils can be altered by adding stabilizing agents such as lime. Lime is the oldest traditional stabilizer used for soil stabilization. Lime is one of the several products that can be used in the improvement of the engineering characteristics of soils. This research presents the effect of lime on engineering properties of cohesive soil. In order to identify and classify this soil, at first physical properties of soil are determined. And then, mechanical property tests are conducted. Next, lime is added to natural soils. Lime contents are selected as 4%, 6% and 8% by weight of naThe plasticity index decrease with increasing the percentage of lime content. Soil is mixed with selected lime contents at their maximum dry density. In cohesive soil, the more the lime content, the more the cohesion. The lowest value of coheskg/cm2 at lime 4% and it increases according to lime content. The percentage of lime increased, CBR value is also increased.

KEYWORD: Cohesive Soil, Stabilization, Lime I. INTRODUCTION Cohesive soils are those possessing cohesion. They have a higher water content and a natural tenancy to "ball" together when squeezed. Under pressure from loads these type of soils settle and consolidate over a number of years. These soils contain sufficiequantities of clay to render soil mass virtually impermeable when properly compacted. Such soils are all verities of clay or clayey soils. Cohesive soil is available everywhere in Myanmar and this is not suitable for engineering construction works. Addition of lime to clayey soils to improve their engineering properties is a well-established practice.Lime used in stabilization is the product of calcining

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific

Research and Development (IJTSRD)

International Open Access Journal

Effect of Lime on Engineering Properties of Cohesive Soil

Nyein Nyein Thant

Department of Civil Engineering, Technological University,Mandalay, Myanmar

Soil is a unique natural material and the properties of soils can be altered by adding stabilizing agents such

he oldest traditional stabilizer used for soil stabilization. Lime is one of the several products that can be used in the improvement of the engineering characteristics of soils. This research presents the effect of lime on engineering properties

ive soil. In order to identify and classify this soil, at first physical properties of soil are determined. And then, mechanical property tests are conducted. Next, lime is added to natural soils. Lime contents are selected as 4%, 6% and 8% by weight of natural soils. The plasticity index decrease with increasing the percentage of lime content. Soil is mixed with selected lime contents at their maximum dry density. In cohesive soil, the more the lime content, the more the cohesion. The lowest value of cohesion is 0.59 kg/cm2 at lime 4% and it increases according to lime content. The percentage of lime increased, CBR value

Cohesive Soil, Stabilization, Lime

Cohesive soils are those possessing cohesion. They have a higher water content and a natural tenancy to "ball" together when squeezed. Under pressure from loads these type of soils settle and consolidate over a number of years. These soils contain sufficient quantities of clay to render soil mass virtually impermeable when properly compacted. Such soils

Cohesive soil is available everywhere in Myanmar and this is not suitable for engineering construction works.

tion of lime to clayey soils to improve their established practice.

Lime used in stabilization is the product of calcining

limestone. Lime is most commonly used as a modifier of cohesive soils. The quantity of lime used stabilization of most soils usually is in the range of 2% - 10%. The main benefit from lime stabilzation is the reduction of the soil's plasticity, and the soil becomes more rigid. It also increases the strength and workability of the soil, and reducesswell. Soil lime stabilization is more suitable in warm region than in cold region. Soilbase course for low traffic roads. It cannot be used as surface course as it has little resistance to abrasion and impact. II. TESTING OF SOIL METHODSThe following tests are performed to determine the engineering properties of cohesive soils.1. Water Content Determination2. Specific Gravity Test 3. Grain-size Analysis Test 4. Atterberg Limits Test 5. Free Swell Test 6. Standard Proctor Compactio7. Triaxial Shear Test 8. California Bearing Ratio (CBR) Test A. Water Content DeterminationWater content is defined as the ratio of the weight of water to the weight of solids in the soil. Table 1 shows the specific gravity for various types of soil.

ω =cww

ww

−−

2

21 x 100%

Where, ω = water content (%) W1 = Weight of container plus wet soil

Aug 2018 Page: 1757

6470 | www.ijtsrd.com | Volume - 2 | Issue – 5

Scientific

(IJTSRD)

International Open Access Journal

Effect of Lime on Engineering Properties of Cohesive Soil

, Technological University,

limestone. Lime is most commonly used as a modifier of cohesive soils. The quantity of lime used for stabilization of most soils usually is in the range of

10%. The main benefit from lime stabilzation is the reduction of the soil's plasticity, and the soil becomes more rigid. It also increases the strength and workability of the soil, and reduces the soil's ability to swell. Soil lime stabilization is more suitable in warm region than in cold region. Soil-lime can be used as base course for low traffic roads. It cannot be used as surface course as it has little resistance to abrasion

TESTING OF SOIL METHODS The following tests are performed to determine the engineering properties of cohesive soils.

Water Content Determination

Standard Proctor Compaction Test

California Bearing Ratio (CBR) Test

Water Content Determination Water content is defined as the ratio of the weight of water to the weight of solids in the soil. Table 1 shows the specific gravity for various types of soil.

x 100%

W1 = Weight of container plus wet soil

Page 2: Effect of Lime on Engineering Properties of Cohesive Soil

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1758

W2 = Weight of container plus dry soil WC = Weight of container B. Specific Gravity Test Specific gravity is defined as the ratio of the unit weight of a given material to the unit weight of water. Table.1 displays the specific gravity for various types of soil.

Gs =21 WWW

WK

s

s

+−×

Where, Gs = Specific gravity of soil K = Specific gravity of water at temperature (t) WS = Weight of air-dry soil W1 = Weight of bottle plus water plus soil W2 = Weight of bottle plus water

Table1. Specific Gravity for Various Types Of Soil Type of soil Gs

Sand 2.65-2.67 Silty sand 2.67-2.70

Inorganic soil 2.7-2.80 Soils with micas

of iron 2.75-3.00

Organic soil Variably but may be under 2 C. Grain Size Analysis Grain size analysis is the determination of the size range of particles present in a soil, expressed as a percentage of the total dry weight. Two methods are used to find the particle size distribution of soil. 1. Sieve Analysis is used for particle sizes larger

than 0.075 mm in diameter, and 2. Hydrometer Analysis is used for particle sizes

smaller than 0.075 mm in diameter D. Atterberg Limit Test The Atterberg limit tests provide measurements of the water content of clayey soils. Atterberg limit test includes; 1. Liquid Limit ( LL ) 2. Plastic Limit ( PL ) 3. Shrinkage Limit (SL ) Liquid Limit (LL) – Liquid limit is defined as the moisture content, in percent, at which the soil changes from a liquid state to a plastic state. Plastic Limit (PL) – Plastic limit is defined as the moisture content, in percent, at which the soil changes from a plastic stage to a semi-solid state.

Shrinkage Limit (SL) – The moisture content, in percent, at which the volume of the soil mass ceases to change, is defined as the shrinkage limit. Plasticity index (PI) - Plasticity index is the difference between the liquid limit and plastic limit.

PI = LL – PL E. Free swell Test Free swell test is performed to determine the increase volume of the soil. Table2. Shows soil classification based on free swell ratio.

FSR=s

w

V

V

Where, FSR = Free swell ratio Vw = Sediment volume of soil in distilled water (cm3) Vs = Sediment volume of soil in kerosene (cm3) Table2. Soil Classification Based on Free Swell Ratio

Free swell ratio

Clay type Degree of expansion

≤ 1.0 Non-swelling Negligible

1.0-1.5 Mixture of swelling and

non-swelling Low

1.5-2.0 Swelling Moderate 2.0-4.0 Swelling High ˃ 4.0 Swelling Very High

F. Standard Proctor Compaction Test Use to obtain the maximum dry density of the soil sample and the optimum moisture content. Compaction reduces in soil void ratio by expulsion of air from the voids or by expulsion of water from the voids.

γd = ωγ+1

γ =V

W

Where, γd = dry unit weight of soil γ = moist unit weight of soil W = weight of the compacted soil V = volume of the compacted soil ω = water content of the compacted soils

Page 3: Effect of Lime on Engineering Properties of Cohesive Soil

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1759

G. Triaxial Shear Test Triaxial shear test is one of the most reliable methods for determining the shear strength parameter.

σ1= σ3 + ∆σf Where, σ1 = major principal stress σ3 = minor principal stress (confined pressure) ∆σf = deviator stress at failure (piston stress) H. California Bearing Ratio (CBR) Test The determination of the potential strength of sub-grade, sub-base, and base course material, including recycle materials for use in road and airfield pavement. Classification system on the basic of CBR number is shown in Table.3.

CBR = s

T

P

P × 100

Where, PT = total test load Ps = standard test load

Table3. Classification System on the Basic of CBR number

CBR number General rating Uses 0-3 Very poor Sub-grade 3-7 Poor to fair Grade 7-20 fair Sub-base 20-50 good Sub-base, base ˃50 Very good Base

III. TEST RESULTS OF STUDIED SOIL The results of cohesion soil are as follows.

Table4. Result of Water Content Determination Determination no. 1 2 3

Container no. 33 43 60 Wt. of container + wet soil,

W1 (gm) 23.30 26.30 22.50

Wt. of container + dry soil, W2 (gm)

18.90 21.30 18.40

Wt. of container, Wc (gm) 8.20 9.20 8.50 Wt. of water, W1 - W2 (gm) 4.40 5.00 4.10

Wt. of dry soil, W2 - Wc (gm) 10.70 12.10 9.90 Water content,ω (%) 41.12 41.32 41.41 Mean water content,

ω (%) 41.28

Table5. Result of Specific Gravity Bottle no. 1 1 1

Wt. of bottle + water + soil, W1 (gm)

685.3 684.9 684.8

Temperature, t (oC) 40

o 42

o 44

o

Wt. of bottle + water, W2 (gm)

626.3 626.1 625.6

Wt. of dish + dry soil 374.1 374.1 374.1 Wt. of dish 281.1 281.1 281.1

Wt. of dry soil, Ws 93 93 93 Specific gravity of water

at t, Gt 0.9922 0.9915 0.9907

Specific gravity, Gs 2.71 2.70 2.73 Mean specific gravity, Gs 2.71

Fig1. Particle Size Distribution Curve

Fig2. Flow Curve for Liquid Limit Determination of

Cohesive Soil

Table.6 Results of Atterberg Limit Test LL PL PI SL

74.3 28.81 45.49 6.71

Table.7 Results of Free Swell Test

Soil Vw Vk FSR =VV

k

w

Cohesive 22 12 1.83

Page 4: Effect of Lime on Engineering Properties of Cohesive Soil

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1760

Fig 3. Compaction Curve for Cohesive Soil

Normal Stress(kg/cm2)

Fig 4. Result for Triaxial Curve

Table 8. Results of CBR Test for Cohesive Soil at OMC

Penetration (in)

Standard load

(psi)

Dial gauge reading

Load (psi) CBR

(%) Top

Bottom

Top

Bottom

0.025 24 14 0.050 34 16 0.075 42 22

0.100 1000 49 26 196

104 15

0.150 56 30

0.200 1500 60 34 240

136 12.5

4 0.300 65 39 0.400 68 43 0.500 71 46

Engineering properties of natural soils are Summarized in Table9.

Table9. Physical and Mechanical Properties of Studied Soil

Sr No. Property Values

1

Grain size distribution

(a) Gravel (%) -

(b) Sand (%) 5.5

(c) Clay (%) 62

(d) Silt (%) 32.5

2 Specific gravity 2.71

3

Consistency limits

Liquid limit (%) 74.3

Plastic limit (%) 28.81

Plasticity index (%) 45.49

Shrinkage limit (%) 6.71

4 Free swell

Free swell ratio 1.83

5

Standard proctor compaction test

OMC (%) 20.8

Max dry density (lb/ft3) 90.5

6

Triaxial Test

c (kg/cm2) 0.89

φ (degree) 10° 7 CBR value (%) 15

IV. EXPERIMENTAL INVESTIGATION ON

EFFECT OF LIME The consistency limits, compaction characteristics, triaxial test and CBR values of the lime treated cohesive soil are determined. 4%, 6% and 8% of lime is considered for investigation. A. Consistency Limit Fig. 5 shows the variation of consistency limits with lime content. It decreases the liquid limit and increases the plastic limit of cohesive soil resulting in a decrease in plasticity index. The plasticity index decreases from about 45% to 8% for lime contents varying from 0 to 8%. The consistency limits with various lime percent are shown in Table.10.

Table.10 Consistency Limits

Type 0% Lime

4% Lime

6% Lime

8% Lime

LL 74.3 68.18 59.4 52.08

PL 28.81 39.42 42.73 44

PI 45.49 28.76 16.67 8.08

Page 5: Effect of Lime on Engineering Properties of Cohesive Soil

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1761

Fig5. Consistency Limits

B. Compaction Characteristics Fig. 6 and 7 show the comparison of compaction characteristic untreated and lime treated cohesive soil. It can be observed that, the maximum dry density is increases when the lime is added. But the increase in percentage of lime, maximum dry density goes on decreasing. The more the percent dosage of lime, the higher the OMC, the maximum OMC is found at 6% of lime, and at 8%, the OMC is decreased.

Table.11 Results of Compaction Test Comparison

Type 0% Lime

4% Lime

6% Lime

8% Lime

Optimum moisture content (%)

20.8 22.2 24.5 23

Maximum dry density(lb/ft3)

90.5 93.6 93.2 92.5

Fig6. Variation in Optimum Moisture Content Treated

with Lime

Fig7. Variation in Maximum Dry Density Treated with Lime

C. Triaxial Test Table.12 shows the value of cohesion and angle of internal friction of cohesive soil with and without lime. The percentage of lime from 4 to 6%, the value of cohesion is decreased. It is increased nearly about the value of natural soil at 8% of lime content. The maximum value of angle of internal friction, φ is found at 4% of lime, after that its value decrease with increasing percent dosage of lime.

Table.12 Results of Triaxial Test Comparison

c(kg/cm2)

0% Lime 0.89 4% Lime 0.59 6% Lime 0.62 8% Lime 0.83

φ(degree)

0% Lime 10° 4% Lime 21° 6% Lime 20° 8% Lime 13°

D. California Bearing Ratio (C. B. R.) Fig. 8 shows the variation of CBR values with and without lime. CBR test results comparisons are also shown in Table.13. The CBR samples are treated with 4, 6 and 8% of lime are tested under unsoaked condition. The value of CBR increase, the lime content increase. According to Table.3, CBR samples are treated with 4% of lime, the general rating is changed fair to good condition. At 8% of lime, the general rating is very good.

Table.13 CBR Test Results Comparison Samples CBR value General rating 0% Lime 15.00 Fair 4% Lime 37.60 Good 6% Lime 44.00 Good 8% Lime 58.80 Very Good

Fig8. CBR values

0

20

40

60

80

LL (%) PL (%) PI (%) SL (%)

0%

4%

6%

8%

20.8

22.5

24.5

23

20

21

22

23

24

25

0 2 4 6Op

timum

ois

ture

co

nten

t (%

)

Lime content (%)

90.5

93.693.2

92.5

90

91

92

93

94

0 2 4 6Max

imum

dry

dns

ity

(lb

/ft3 )

Lime (%)

0

10

20

30

40

50

60

70

0% Lime 4% Lime 6% Lime 8% Lime

CBR

Page 6: Effect of Lime on Engineering Properties of Cohesive Soil

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

V. CONCLUSIONS This research deals with the effect of lime on engineering properties of cohesive soil. In this study, to identify and classify the studied soil, physical property tests are firstly carried out. Soil sample is taken from the depth of 3ft. It is used for thcontent determination, specific gravity, grain size analysis, Atterberg limits; free swell test, compaction characteristics, triaxial and CBR test. According to the test results, the natural soil can be concluded that; it has 62% of clay, 32.5% of silt, 5.5% of sand and 0% of gravel. And then, the studied soil has specific gravity of 2.71, free swell ratio of 1.83, liquid limit of 74.3%, plastic limit of 28.81%, plasticity index of 45.49%, Shrinkage limit of 6.71%, cohesion of 0.89 kg/cm2, angle of internal friction of 1015. According to Table.1 and 2, the studied soil is inorganic soil and the degree of expansion is moderate. The general rating of studied soil is fair such as shown in Table.3. To know the effect of lime on engineering properties of cohesive soil, consistency limit, compaction characteristics, triaxial and CBR test are performed. Lime contents are selected as 4%, 6% and 8% of lime by weight of natural soil. From the result of consistency limit, it

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018

This research deals with the effect of lime on engineering properties of cohesive soil. In this study, to identify and classify the studied soil, physical property tests are firstly carried out. Soil sample is taken from the depth of 3ft. It is used for the water content determination, specific gravity, grain size

free swell test, compaction characteristics, triaxial and CBR test. According to the test results, the natural soil can be concluded that;

silt, 5.5% of sand and 0% of gravel. And then, the studied soil has specific gravity of 2.71, free swell ratio of 1.83, liquid limit of 74.3%, plastic limit of 28.81%, plasticity index of

Shrinkage limit of 6.71%, cohesion of 0.89 10° and CBR of

15. According to Table.1 and 2, the studied soil is inorganic soil and the degree of expansion is moderate. The general rating of studied soil is fair

To know the effect of lime gineering properties of cohesive soil,

consistency limit, compaction characteristics, triaxial and CBR test are performed. Lime contents are selected as 4%, 6% and 8% of lime by weight of natural soil. From the result of consistency limit, it

can be observed that decrease in liquid limit and plasticity index with an increase of lime contents. When the lime contents are increased, the optimum moisture content and maximum dry density is slightly increased. From the triaxial test results, the more percentage of lime, the cohesion is increased but the angle of internal friction is decreased. Not only the CBR value but also the general rating is increased when the dosage of lime increased. REFERENCES 1. [78 Jos] Joseph E. Bowels.

Properties of Soils andSecond Edition.USA. MC Graw

2. [05 Thu] Thu Zar Win. Ma. Properties of Clay treated with LimeDepartment of Civil Engineering MTU (2005)

3. Braja M. Das,: Advanced Soil Mechanics,Edition. (2008)

4. Braja M. Das,: Principal of Geotechnical Engineering, Seventh Edition. California State University, Sacramento, PWS Publishing Company (2010).

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Aug 2018 Page: 1762

ed that decrease in liquid limit and plasticity index with an increase of lime contents. When the lime contents are increased, the optimum moisture content and maximum dry density is slightly increased. From the triaxial test results, the more

f lime, the cohesion is increased but the angle of internal friction is decreased. Not only the CBR value but also the general rating is increased when the dosage of lime increased.

[78 Jos] Joseph E. Bowels. Engineering Properties of Soils and Their Measurement. Second Edition.USA. MC Graw-Hill, Inc(1978)

[05 Thu] Thu Zar Win. Ma. Study on Engineering Properties of Clay treated with Lime. ME Thesis. Department of Civil Engineering MTU (2005)

Advanced Soil Mechanics, Third

Principal of Geotechnical Seventh Edition. California State

University, Sacramento, PWS Publishing