19
ENGAGING STUDENTS IN ENGINEERING THROUGH THEIR EVERYDAY EXPERIENCES Eann A. Patterson School of Engineering

Eann a. patterson liverpool l and t june 2011

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Eann a. patterson   liverpool l and t june 2011

ENGAGING STUDENTS IN ENGINEERING THROUGH THEIR EVERYDAY EXPERIENCES

Eann A. PattersonSchool of Engineering

Page 2: Eann a. patterson   liverpool l and t june 2011

2

Background

• NSF grant #0431756– Enhancing Diversity in the Undergraduate Mechanical Engineering

Population by Curriculum Change– Ilene Busch-Visniac (Johns Hopkins) & Susan Metz (Stevens)

• DEEP: Deconstructing Engineering Education Programs– Busch-Vishniac et al, 2011 Deconstructing Engineering Education Programs:

The DEEP Project to Reform the Mechanical Engineering Curriculum, European Journal of Engineering Education, in press.

• Everyday Engineering Examples– Patterson et al, 2011, The effect of context on student engagement in

engineering, European Journal of Engineering Education, in press.– NSF Extension Program: Engaging Students in Engineering

• Outreach to 30 US universities over three years (2010-2012)

Page 3: Eann a. patterson   liverpool l and t june 2011

3

Context

• old-fashioned meaning: ‘a construction of speech’ 1

• modern meaning: ‘surrounding conditions’ 2

– importance of teaching by reference to surrounding conditions is so obvious as to require no comment

– except professors forget conditions experienced by students are different to their own – now and when they were students

• cultural gap between student and professor is large enough to have warranted an anthropological study3

1. Little W, Fowler HW, Coulson J, Onions CT, The Shorter Oxford English Dictionary, Guild Publishing, London, 19832. Microsoft Encarta dictionary: The first dictionary for the internet age, edited by A. H. Soukhanov, St. Martin’s Press, New York, 20023. Nathan R, My freshman year: What a professor learned by becoming a student, Cornell University Press, Ithaca, New York, 2005

Page 4: Eann a. patterson   liverpool l and t june 2011

4

Principle of familiarity

• Lack of familiarity may induce students to panic about the context and fail to listen1

• Also applies to evaluation – students more likely to give correct answer if the context is familiar2,3

1. Rosser SV, Gender issues in teaching science, in S. Rose. and B. Brown (eds.), Report on the 2003 Workshop on Gender Issues in the Sciences, pp. 28-37, 2004. 2. Chipman S, Marshall S, & Scott P, Content effects on word problem performance: A possible source of test bias? American Educational Research Journal, 28(4), 897-915, 1991.3. Linn M, & Hyde J, Gender, mathematics, and science, Educational Researcher, 18(8), 17-19, 22-27, 1989

Page 5: Eann a. patterson   liverpool l and t june 2011

5

Engineering idiom

• Context: old-fashioned meaning: ‘a construction of speech’ • Engineering education has a ‘language’ of models &

analogies – Engineering science taught in context of idealized applications;

e.g. colliding spheres, beams, nozzles, etc• Wrong to say that they have no relevance to the subject

– Relevance is often only apparent to those well-versed in subject and, by definition, students are not

• Perceived usefulness of learning influences students’ motivation1

– Many engineeing examples perceived as tedious intellectual exercises– Mastery experiences

1. Wigfield A, & Eccles JS, Expectancy-value theory of motivation, Contemporary Educational Psychology, 25(1): 68-81, 2000

Page 6: Eann a. patterson   liverpool l and t june 2011

6

Self-efficacy

• Self-efficacy is a ‘belief in one’s capabilities’ 1 – Student success closely related to self-efficacy2

– Self-efficacy is powerful motivational construct relating to choices to engage in class activities and to persist in engineering3

• Four sources that contribute to success:1

– Mastery experiences e.g. positive experience of completing a course– Social persuasion e.g. peer pressure– Psychological state e.g. feelings that arise when doing a task– Vicarious experiences e.g. experience via observation of someone

else’s engagement1. Bandura A, Self-efficacy: the exercise of control, Freeman & Co, New York, 19972. Marra RM, Rodgers KA, Shen D, & Bogue B, Women engineering students and self-efficacy: a multi-year, multi-institution study of women engineering student self-efficacy, J. Enging Education, 99(1):27-38, 2009. 3. Hackett G, Betz NE, Casas JM, & Rocha-Singa IA, Gender ethinicity and social cognitive factors predicting the academic achievement of students in engineering, J. Counselling Psychology, 39(4):527-538, 1992.

Page 7: Eann a. patterson   liverpool l and t june 2011

7

Self-efficacy: some observations

• Mastery experiences– Women of equal of STEM ability self-report lower competency1 – Critical to the self-efficacy belief of men2

• Social persuasion– Supportive staff increase women’s self-efficacy in maths-related subjects2 – Social support is a predictor of female performance in physics courses3

• Psychological states– Reduced performance induced by anxiety due to negative stereotyping4

• Vicarious experiences – Verbal persuasion & vicarious experiences more important to women2

– Effect on self-efficacy dependent on similarity of observer and observed1. Besterfield-Sacre MB, Moreno M, Shuman LJ, & Atman CJ. Gender and ethnicity differences in freshman engineering student attitudes: a cross-institutional study, J. Engineering Education, 90(4):477-90, 2001. 2. Zeldin A, & Pajares F, Against the odds: self efficacy beliefs of women in mathematical, scientific and technical careers, Am.Educational Res. J, 1:215-46, 2000.3. Hazari Z, Tai RH, & Sadler PM, Gender differences in introductory university physics performance: the influence of high school physics preparation and affective factors, Science Education, 91(6):847-76, 2007..4. Steele CM, & Aronson J, Stereotype threat and the intellectual test performance of African Americans, J. Personality and Social Psychology, 69:797-811, 1995

Page 8: Eann a. patterson   liverpool l and t june 2011

8

Convergers(doing & thinking)

Accommodators(doing & feeling)

Divergers(watching & feeling)

Assimilators(watching & thinking)

watching

Kolb’s Learning Style Indicator

doing

thinking

feeling

Active Experimentation

Reflective Observation

Abst

ract

Con

cept

ualiz

ation

Conc

rete

Exp

erie

nce

Kolb DA, Learning style inventory technical manual. McBer and Co., Boston, MA, 1976.

Page 9: Eann a. patterson   liverpool l and t june 2011

9

Learning Style Distribution

1. Philbin M, Meier E, Huffman S, & Boverie ,. A survey of gender & learning styles, Sex Roles, 32(7/8):485- 494, 19952. Based on Philbin et al, but adapted by Patterson EA, 2009.3. Kolb D. Learning Style Inventory. Boston, MA: McBer & Co. 1985

Engineering professors2

Divergers

Assimilators

Convergers

Accommodators

Divergers

AssimilatorsConvergers

Accommodators

General Population1

• Assimilators are best suited to academic careers3

– Assimilators most likely to shape the academic world

– So, learning style favors the assimilator

– And, mastery experiences predominate

• Rationalism and objectivity are valued over intuitive, personal knowledge1

Page 10: Eann a. patterson   liverpool l and t june 2011

10

Cycling through learning modes

1. Having an

experience

ACTIVIST

2. Reviewing the

experienceREFLECTOR

3. Conclu

ding from

the experience

THEORIST

4. Planning the

next steps

PRAGMATIST

Honey P, Mumford A, The Manual of Learning Styles 3rd Ed. Maidenhead, 1992

watchingdoing

thinking

feeling

EVERYDAY EXPERIENCE

INSTRUCTOR LEAD

INSTRUCTOR/STUDENT ACTIVITY

STUDENT LEAD

Page 11: Eann a. patterson   liverpool l and t june 2011

11

Everyday Examples of Engineering Concepts

• familiar real-life objects & situations used to illustrate engineering principles

• level of idealization minimized to retain relevance and context – from students’ perspective

• choice of examples is critical – transparent connection to students’ experience i.e. familiar to all

students– basis for straightforward implementation of engineering principles

• pose questions with useful or interesting answers• perceived usefulness of learning influences students’ motivation1

1. Wigfield A, Eccles JS, Expectancy-value theory of motivation, Contemporary Educational Psychology, 25(1): 68-81, 2000

Page 12: Eann a. patterson   liverpool l and t june 2011

12

Lesson plans

• Dovetail into existing course plans

• 5E lesson plans– Engage, Explore, Explain, Elaborate & Evaluate– not original: Biological Sciences Curriculum Study in the 1980s from

work by Atkin and Karplus1

• “Disease of the modern age: continuous partial attention” 2

– Short pieces (of theatre) & active learning– may need to re-engage at each step

1. Atkin JM, & Karplus R, Discovery or invention? Science Teacher 29(5): 45, 19622. Friedman TL, Hot, Flat and Crowded – Why we need a green revolution and how it can renew America, Farrar, Straus & Giroux, New York, 2008

Page 13: Eann a. patterson   liverpool l and t june 2011

13

E3 Exemplar #1

EARPHONES & iPod• For Sophomore Mechanics of Solids • Topic: Stress in uni-axial solid & hollow bars• Activity:

– Wear earphones & iPod into class – Pass around lengths of broken cable, discuss stiffness and strengthen

of copper, insulation and cable– Calculate of the stress in the copper of the earphone

cable when the iPod is dangled from it.– Repeat the calculation for the cable introducing

statically indeterminancy.

Page 14: Eann a. patterson   liverpool l and t june 2011

14

E3 Exemplar #2

VIBRATING RULER• For Junior Dynamics • Topic: Free and Forced Vibration• Activity:

– Clamp one end on the bench and flick the free end of the ruler so that it vibrates. Slide it onto the bench so that the pitch of the noise changes – the frequency will go up.

– Show the students how to equate kinetic and strain energy to find the natural frequency.

– Ask students to repeat the analysis for a whip aerial with a ball on the tip.

Page 15: Eann a. patterson   liverpool l and t june 2011

15

E3 Exemplar #3

CUP CAKES WITH A CANDLE• For Sophomore Thermodynamics • Topic: Reacting mixtures and combustion• Activity:

– Take a cup cake, candle and glass jar into class– Light the candle & invite sealed bids on time to extinguish candle

when covered with jar. Give cupcake to winner.– Discuss combustion of paraffin & evaluate energy

emitted– Invite students to calculate quantity of natural gas to

cook pan of pasta

Page 16: Eann a. patterson   liverpool l and t june 2011

16

BALSA WOOD PLANES• For Sophomore Fluids • Topic: Turbomachines• Activity:

– Invite students to assemble and fly planes.– Ask students to draw a velocity diagram for an element of the

propeller blade. – Discuss pitch angle and local angle of attack.– Explain about thrust coefficients and advance ratios– Discuss how pumps are characterized

E3 Exemplar #4

Page 17: Eann a. patterson   liverpool l and t june 2011

17

E3 enhance learning1

• For concepts illustrated with E3 – Significantly more students rated their learning as high or significant

than in the control class – E3 overall value correlated very highly with contribution to

understanding– Learning not tied to level of difficulty

• Teaching effectiveness rated significantly higher compared to control classes

1. Campbell PB, Patterson EA, Busch Vishniac I, Kibler T, Integrating Applications in the Teaching of Fundamental Concepts, Proc. 2008 ASEE Annual Conference and Exposition, (AC 2008-499), 2008

Page 18: Eann a. patterson   liverpool l and t june 2011

18

Conclusions

• “educational role of faculty is not to impart knowledge; but to design learning environments that support … knowledge acquisition”1 [for all students]

• E3 enhance learning and teaching effectiveness2

– Using common experiences to progress round the learning cycle

• Easy to implement via 5Es lesson plans– www.EngineeringExamples.org

• Implementation program to 30 US universities in progress– www.EngageEngineering.org

1. Adams RS, & Felder RM, Reframing professional development: A systems approach to preparing engineering educators to educate tomorrow’s engineers. J. Engineering Education, 97(3):230-240, 2008.2. Campbell PB, Patterson EA, Busch Vishniac I, Kibler T, Integrating Applications in the Teaching of Fundamental Concepts, Proc. 2008 ASEE Annual Conference and Exposition, (AC 2008-499), 2008

Page 19: Eann a. patterson   liverpool l and t june 2011

“That is what learning is. You suddenly understand something you've understood all your life, but in a new way. ”

Doris Lessing, Nobel Laureate for Literature