20
Wind energy – challenges Ewa Lazarczyk Carlson [email protected] 1

Wind energy – challenges

Embed Size (px)

Citation preview

Page 1: Wind energy – challenges

Wind  energy  – challenges  Ewa  Lazarczyk  [email protected]

1

Page 2: Wind energy – challenges

Windmills  – over  time…  

2

Page 3: Wind energy – challenges

Windmills  – over  time…  

3

Page 4: Wind energy – challenges

Windmills  – over  time…  

4

Page 5: Wind energy – challenges

EU  wind  capacity  in  MW

Installed  2014

End  2014 Installed  2015

End  2015

Denmark 104.9 4881.7 216.8 5063.8France 1042.1 9285.1 1073.1 10358.2Germany 5242.5 39127.9 6013.4 44946.1Poland 444.3 3833.8 1266.2 5100Spain 27.5 23025.3 -­‐ 23025.3Sweden 1050.2 5424.8 614.5 6024.8Norway 48 819.3 22.5 837.6

Source: EWEA: Wind in power, 2015 European statistics, February 2016

Denmark has one of the largest share of wind power use in the world - in 2013 33.2 percent of the Danish electricity consumption was covered by wind.

5

Page 6: Wind energy – challenges

Source: EWEA: Wind in power, 2015 European statistics, February 2016 6

Page 7: Wind energy – challenges

Current  statistics

• In  2015  across  the  28  EU  member  states,  wind  accounted  for:

• 44%  of  all  new  power  installations,  • connecting  a  total  of  12.8GW  to  the  grid• 9,766MW  in  onshore  and  3,034MW  offshore.  • The  volume  of  new  installations  was  6.3%  higher  as  compared  with  2014.• Total  wind  capacity  in  Europe  now  stands  at  142GW  and  covers  11.4%  of  Europe’s  electricity  needs.  (2016,  EWEA)

7

Page 8: Wind energy – challenges

European  targets

• 2020  renewable  energy  targets• The  EU's  Renewable  energy  directive  sets  a  binding  target  of  20%  final  energy  consumption  from  renewable  sources  by  2020.  To  achieve  this,  EU  countries  have  committed  to  reaching  their  own  national  renewables  targets  ranging  from  10%  in  Malta  to  49%  in  Sweden.  

https://ec.europa.eu/energy/en/topics/renewable-­‐energy 8

Page 9: Wind energy – challenges

Wind  energy  – challenges  

• “Merit  order  effect”• Increased  price  volatility• Increased  wear  and  tear• Balancing  issues• Towards  the  European  Balancing  Market• “[…]  a  cross  border  balancing  market  will  help  to  counteract  the  effects  of  intermittent  generation  and  allow  the  integration  of  more  renewable  energy  sources”.  

9

Page 10: Wind energy – challenges

10

Page 11: Wind energy – challenges

“Merit  order  effect”

• Price-­‐reduction  effect  of  wind  power  due  to  displacing  of  expensive  generation  with  cheap  wind.• Demonstrated  for  Spain  (Gil  et  al.  2012),  Germany  (Ketterer 2014),  Denmark  (Jacobsen  and  Zvingilaite 2010),  California  (Woo  et  al.  2016)  and  many  others• Adverse  effect  on  conventional  power  plants  -­‐>  capacity  markets

-­‐>  weaker  investment  incentive  for  CCGT  plants  (Steggals et  al.  2011)

• Lower  income  for  renewable  generation  -­‐>  the  relative  market  value  of  renewables  decreases  with  higher  intermittent  shares  (all  else  being  equal)  (Hirth 2013)  (their  income  per  generated  unit  of  electricity  relative  to  the  average  market  price  decreases)

http://www.nasdaqomx.com/digitalAssets/86/86050_npspotjune112013.pdf11

Page 12: Wind energy – challenges

Increased  price  volatility

• Residual  load  is  usually  more  volatile  than  the  demand  alone  (Green  and  Vasilakos 2010)• With  a  sufficiently  large  share  of  wind  generation,  hourly  wind  output  volatility  would  have  a  strong  influence  over  wholesale  spot  prices.  (G&V)• Negative  prices  are  supposed  to  incentivize  the  restructuring  of  the  power  system:  inflexible  plants  pay  for  producing  while  demand  storage  and  demand  management  could  bring  benefits

12

Page 13: Wind energy – challenges

Increased  wear  and  tear

• The  frequent  start-­‐ups  and  shut-­‐downs  put  a  strain  on  conventional    generators  -­‐-­‐>  frequent  failures  or  increased  needs  for  maintenance  compared  to  when  wind  power  is  not  part  of  the  energy  mix  (Troy  et  al.,  2010;  Troy,  2011;).  • The  cost  of  operating  the  power  system  as  a  whole  increases  already  at  the  10%  of  wind  power  penetration  (Georgilakis 2008).  • It  is  increasingly  difficult  to  put  one  number  on  the  costs  related  with  frequent  start-­‐ups  and  shut-­‐downs  of  the  conventional  power  plants.  • for  e.g.  a  gas  unit  has  been  found  to  range  from  $300  to  $80,000  in  the  operation  and  maintenance  costs

• “(…)  uncertainty  surrounding  cycling  cots  can  lead  to  these  costs  being  under-­‐estimated  by  generators,  which  in  turn  can  lead  to  increased  cycling”  (Troy  2011).  

13

Page 14: Wind energy – challenges

Balancing  

• Imbalances  due  to  intermittent  power  increase,  so  number  of  unscheduled  flows  rises• Currently  TSOs  are  starting  up  the  process  of  defining  the  rules  of  cooperation.• Network  codes  on  balancing  and  reserves  have  recently  been  developed  by  ENTSO-­‐E

European network of transmission system operators for electricity 14

Page 15: Wind energy – challenges

https://www.entsoe.eu/Documents/Network%20codes%20documents/Implementation/Pilot_Projects/pilot_projects_map.png

TERRE:  Trans-­‐European  Replacement  Reserves  Exchange  established  between  UK,  France,  Spain,  Portugal,  Italy,  Switzerland  and  Greece

15

Page 16: Wind energy – challenges

Cooperative  balancing  

• Exchange  of  reserves  allows  for  cost  arbitrage  • Makes  it  possible  to  procure  part  of  the  required  level  of  reserves  in  adjacent  zone/area  but  these  reserves  are  exclusively  for  one  TSO  -­‐ they  cannot  contribute  to  meeting  another  TSO’s  required  level  of  reserves.  • Expensive  reserves  can  be  substituted  for  cheaper

• Reserves  sharing  allows  both  cost  arbitrage  and  variance  reducing  pooling  of  reserve  needs• Allows  multiple  TSOs  to  take  into  account  the  same  reserves  to  meet  their  reserve  requirements  resulting  from  reserve  dimensioning.• Less  reserve  capacity  is  needed• Expensive  reserves  can  be  substituted  for  cheaper

16

Page 17: Wind energy – challenges

Thank  you.

17

Page 18: Wind energy – challenges

Literature

• Woo  C.K.,  Moorse.  J,  Schneiderman B.,  Ho.  T.,  Olson,  A.,  Alagappan.  L,  Chawla.  K.,  Toyama.  N.,  Zarnikau.  J.,    Merit-­‐order  effects  of  renewable  energy  and  price  divergence  in  California’s  day-­‐ahead  and  real-­‐time  electricity  markets.  Energy  Policy,  V  92,  May,  2016,  pp.  299  – 312.  

• Nicolosi,  M.,  Wind  power  integration  and  power  system  flexibility–An  empirical  analysis  of  extreme  events  in  Germany  under  the  new  negative  price  regime,  Energy  Policy.  3.  2010.  pp.  7257  – 7268.  

• Steggals,  W.,  Gross.  R.,  Heptonstall,  P.  Winds  of  change:  How  high  wind  penetrations  will  affect  investment  incentives  in  the  GB  electricity  sector.  Energy  Policy,  39,  2011,  pp.  1389  – 1396.  

• Baldursson,  F.  M.,  Lazarczyk,  E.,  Ovaere,  M.,  &  Proost,  S.  2016a.  Cross-­‐border  Exchange  and  Sharing  of  Generation  Reserve  Capacity.  IAEE  Energy  Forum.  July.

• Baldursson,  F.  M.,  Lazarczyk,  E.,  Ovaere,  M.,  &  Proost,  S.  2016b.  Multi-­‐TSO  system  reliability:  Cross-­‐border  balancing.  IEEE  International  Energy  Conference  (ENERGYCON).

• Fogelberg,  S.,  Lazarczyk,  E.,  2015,  Wind  Power  Volatility  and  the  Impact  on  Failure  Rates  in  the  Nordic  Electricity  Market,  IFN  Working  Paper  1065.  

18

Page 19: Wind energy – challenges

Literature• Hirth,  L.,  2013.  The  market  value  of  renewables:  the  effect  of  solar  and  wind  power  variability  on  their  relative  price.  Energy  

Economics.  38.  pp.  218  – 236.  • Gil  H.A.,  Gomez-­‐Quiles,  C.,  Riquelme,  J.,    2012,  Large  scale  wind  power  integration  and  wholesale  electricity  trading  benefits:  

Estimation  via  ex  post  approach  Energy  Policy  41.  pp.  849  – 859.  • Ketterer 2014,  The  impact  of  wind  power  generation  on  the  electricity  price  in  Germany.  Energy  Economics.  44.  pp.  270  – 280.    • Jacobsen  and  Zvingilaite,  2010,    Reducing  the  market  impact  of  large  shares  of  intermittent  energy  in  Denmark.  Energy  Policy.  

38(7).  3304-­‐ 3413.  • Georgilakis,  P.S.  (2008).  “Technical  challenges  associated  with  the  integration  of  wind  power  into  power  systems.”  Renewable  and  

Sustainable  Energy  Reviews  12,  pp.  852-­‐863.• Kumar,  N.,  Besuner,  P.,  Lefton.  S.,  Agan,  D.  and  D.  Hilleman  (2012).  “Power  plant  cycling  costs.”  NREL.  Accessed  on  April  13th  2015  

from  http://www.osti.gov/scitech/biblio/1046269• Troy,  N.,  Denny,  E.  and  M.  O’Malley  (2010).  “Base-­‐load  cycling  on  a  system  with  significant  wind  penetration.”  IEEE  Transactions  on  

power  systems 25,  pp.  1088-­‐1097• Troy,  N.  (2011).  Generator  cycling  due  to  high  penetrations  of  wind  power. Doctoral  Thesis,  School  of  Electrical,  Electronic  and  

Communications  Engineering,  University  College  Dublin,  Ireland.• Kumar,  N.,  Besuner,  P.,  Lefton.  S.,  Agan,  D.  and  D.  Hilleman  (2012).  “Power  plant  cycling  costs.”  NREL.  Accessed  on  April  13th  2015  

from  http://www.osti.gov/scitech/biblio/1046269• Green,  R.,  Vasilakos,  N.,  2010,  Market  behaviour with  large  amounts  of  intermittent  generation.  Energy  Policy.  38.  pp.  3211  – 3220.  

19

Page 20: Wind energy – challenges

Sources  for  images

• https://en.wikipedia.org/wiki/Windmill• http://www.lehuaparker.com/2014/06/18/tilting-­‐at-­‐windmills/• https://en.wikipedia.org/wiki/History_of_wind_power#Antiquity

20