Transcript
  • Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2013, Article ID 340174, 5 pageshttp://dx.doi.org/10.1155/2013/340174

    Research ArticleHopf-Pitchfork Bifurcation in a Phytoplankton-ZooplanktonModel with Delays

    Jia-Fang Zhang and Dan Zhang

    School of Mathematics and Information Sciences, Henan University, Kaifeng 475001, China

    Correspondence should be addressed to Jia-Fang Zhang; [email protected]

    Received 21 October 2013; Accepted 12 November 2013

    Academic Editor: Allan Peterson

    Copyright Β© 2013 J.-F. Zhang and D. Zhang. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

    The purpose of this paper is to study the dynamics of a phytoplankton-zooplankton model with toxin delay. By studying thedistribution of the eigenvalues of the associated characteristic equation, the pitchfork bifurcation curve of the system is obtained.Furthermore, on the pitchfork bifurcation curve, we find that the system can undergo aHopf bifurcation at the positive equilibrium,and we derive the critical values where Hopf-Pitchfork bifurcation occurs.

    1. Introduction

    The study of the dynamical interaction of zooplankton andphytoplankton is an important area of research in marineecology. Phytoplanktons are tiny floating plants that live nearthe surface of lakes and ocean. They provide food for marinelife, oxygen for human being, and also absorb half of thecarbon dioxide which may be contributing to the globalwarming [1]. Zooplanktons are microscopic animals that eatother phytoplankton. Toxins are produced by phytoplanktonto avoid predation by zooplankton. The toxin producingphytoplankton not only reduces the grazing pressure onthem but also can control the occurrence of bloom; seeChattopadhyay et al. [2] and Sarkar and Chattopadhyay [3].Phytoplankton-zooplankton models have been studied bymany authors [4–9]. In [6], models of nutrient-planktoninteraction with a toxic substance that inhibit either thegrowth rate of phytoplankton, zooplankton, or both trophiclevels are proposed and studied. In [7], authors have dealtwith a nutrient-plankton model in an aquatic environmentin the context of phytoplankton bloom. Roy [8] has con-structed a mathematical model for describing the interactionbetween a nontoxic and a toxic phytoplankton under a singlenutrient. Saha and Bandyopadhyay [9] considered a toxinproducing phytoplankton-zooplankton model in which thetoxin liberation by phytoplankton species follows a discretetime variation. Biological delay systems of one type or

    another have been considered by a number of authors [10,11]. These systems governed by integrodifferential equationsexhibit much more rich dynamics than ordinary differentialsystems. For example, Das and Ray [5] investigated the effectof delay on nutrient cycling in phytoplankton-zooplanktoninteractions in the estuarine system. In this paperwe present aphytoplankton-zooplanktonmodel to investigate its dynamicbehaviors. The model we considered is based on the fol-lowing plausible toxic-phytoplankton-zooplankton systemsintroduced by Chattopadhayay et al. [2]

    𝑑𝑃

    𝑑𝑑= π‘Ÿ1𝑃(1 βˆ’

    𝑃

    𝐾) βˆ’ π‘Žπ‘ƒπ‘,

    𝑑𝑍

    𝑑𝑑= π‘π‘βˆ«

    𝑑

    βˆ’βˆž

    𝐺 (𝑑 βˆ’ 𝑠) 𝑃 (𝑠) 𝑑𝑠 βˆ’ 𝑐𝑍 βˆ’ 𝑑𝑃 (𝑑 βˆ’ 𝜏)

    𝑒 + 𝑃 (𝑑 βˆ’ 𝜏)𝑍,

    (1)

    where 𝑃(𝑑) and 𝑍(𝑑) are the densities of phytoplankton andzooplankton, respectively. π‘Ÿ

    1, 𝐾, π‘Ž, 𝑏, 𝑐, 𝑑, and 𝑒 are positive

    constants. 𝜏 is toxin delay, 𝐺(𝑠) is the delay kernel and a non-negative bounded function defined on [0,∞] as follows:

    ∫

    ∞

    0

    𝐺 (𝑠) 𝑑𝑠 = 1, 𝐺 (𝑠) = πœŽπ‘’βˆ’πœŽπ‘ 

    , 𝜎 > 0. (2)

    For a set of different species interacting with each otherin ecological community, perhaps the simplest and probablythe most important question from a practical point of view is

  • 2 Abstract and Applied Analysis

    whether all the species in the system survive in the long term.Therefore, the periodic phenomena of biological system areoften discussed [12–16].

    The primary purpose of this paper is to study the effectsof toxin delay on the dynamics of (1). That is to say, we willtake the delay 𝜏 passes through a critical value, the positiveequilibrium loses its stability and bifurcation occurs. Bystudying the distribution of the eigenvalues of the associatedcharacteristic equation, the pitchfork bifurcation curve of thesystem is obtained. Furthermore, we derive the critical valueswhere Hopf-Pitchfork bifurcation occurs.

    Thepaper is structured as follows. In Section 2, we discussthe local stability of the positive solutions and the existenceof Pitchfork bifurcation. In Section 3, the conditions for theoccurrence of Hopf-Pitchfork bifurcation are determined.

    2. Stability and Pitchfork Bifurcation

    In this section, we focus on investigating the local stabilityand the existence of Pitchfork bifurcation of the positiveequilibrium of system (1). It is easy to see that system (1) hasa unique positive equilibrium πΈβˆ—(π‘ƒβˆ—, π‘βˆ—), where

    π‘ƒβˆ—=

    𝑐 + 𝑑 βˆ’ 𝑏𝑒 + √(𝑐 + 𝑑 βˆ’ 𝑏𝑒)2+ 4𝑏𝑐𝑒

    2𝑏,

    π‘βˆ—=

    π‘Ÿ

    π‘Ž(1 βˆ’

    π‘ƒβˆ—

    𝐾) > 0,

    (3)

    where (𝐻1) : 𝐾 > 𝑃

    βˆ—.Let

    π‘Š(𝑑) = ∫

    𝑑

    βˆ’βˆž

    πœŽπ‘’βˆ’πœŽ(π‘‘βˆ’π‘ )

    𝑃 (𝑠) 𝑑𝑠. (4)

    By the linear chain trick technique, then system (1) can betransformed into the following system:

    𝑑𝑃

    𝑑𝑑= π‘Ÿ1𝑃(1 βˆ’

    𝑃

    𝐾) βˆ’ π‘Žπ‘ƒπ‘,

    𝑑𝑍

    𝑑𝑑= π‘π‘π‘Š βˆ’ 𝑐𝑍 βˆ’ 𝑑

    𝑃 (𝑑 βˆ’ 𝜏)

    𝑒 + 𝑃 (𝑑 βˆ’ 𝜏)𝑍,

    π‘‘π‘Š

    𝑑𝑑= πœŽπ‘ƒ (𝑑) βˆ’ πœŽπ‘Š (𝑑) .

    (5)

    It is easy to check that system (5) has an unique positiveequilibrium 𝐸(π‘ƒβˆ—, π‘βˆ—,π‘Šβˆ—) with π‘ƒβˆ— = π‘Šβˆ— provided that thecondition (𝐻

    1) holds.

    Let 𝑃 = 𝑒+π‘’βˆ—,𝑍 = V+ Vβˆ—, andπ‘Š = 𝑀+π‘Šβˆ—; then system(5) can be transformed into the following system:

    οΏ½Μ‡οΏ½ (𝑑) = βˆ’π‘Ÿ

    πΎπ‘ƒβˆ—π‘’ (𝑑) βˆ’ π‘Žπ‘ƒ

    βˆ—V (𝑑) βˆ’ π‘Žπ‘’ (𝑑) V (𝑑) βˆ’π‘Ÿ

    𝐾𝑒2(𝑑) ,

    VΜ‡ (𝑑) = βˆ’π‘‘π‘’

    (𝑒 + π‘ƒβˆ—)π‘βˆ—π‘’ (𝑑 βˆ’ 𝜏) + 𝑏𝑍

    βˆ—π‘€ (𝑑)

    + βˆ‘

    𝑖+𝑗+π‘˜β‰₯2

    𝑓(π‘–π‘—π‘˜)

    2𝑒𝑖(𝑑 βˆ’ 𝜏) Vπ‘—π‘€π‘˜,

    οΏ½Μ‡οΏ½ (𝑑) = πœŽπ‘’ (𝑑) βˆ’ πœŽπ‘€ (𝑑) ,

    (6)

    where

    𝑓(π‘–π‘—π‘˜)

    2=

    1

    𝑖!𝑗!π‘˜!

    πœ•π‘–+𝑗+π‘˜

    𝑓2

    πœ•π‘’π‘– (𝑑 βˆ’ 𝜏) πœ•Vπ‘—πœ•π‘€π‘˜,

    𝑓2= 𝑏V𝑀 βˆ’ 𝑐V βˆ’ 𝑑

    𝑒 (𝑑 βˆ’ 𝜏)

    𝑒 + 𝑒 (𝑑 βˆ’ 𝜏)V.

    (7)

    Then linearizing system (6) at πΈβˆ—(π‘ƒβˆ—, π‘βˆ—,π‘Šβˆ—) is

    οΏ½Μ‡οΏ½ (𝑑) = βˆ’π‘Ÿ

    πΎπ‘ƒβˆ—π‘’ (𝑑) βˆ’ π‘Žπ‘ƒ

    βˆ—V (𝑑) ,

    VΜ‡ (𝑑) = βˆ’π‘‘π‘’

    (𝑒 + π‘ƒβˆ—)π‘βˆ—π‘’ (𝑑 βˆ’ 𝜏) + 𝑏𝑍

    βˆ—π‘€ (𝑑) ,

    οΏ½Μ‡οΏ½ (𝑑) = πœŽπ‘’ (𝑑) βˆ’ πœŽπ‘€ (𝑑) .

    (8)

    It is easy to see that the associated characteristic equation ofsystem (11) at the positive equilibrium has the following formand thus the characteristic equation of system (5) is given by

    𝐹 (πœ†) = πœ†3+ 𝑝2πœ†2+ 𝑝1πœ† + 𝑝0βˆ’ [π‘ž1πœ† + π‘ž0] π‘’βˆ’πœ†πœ

    = 0, (9)

    where

    𝑝2= 𝜎 +

    π‘Ÿπ‘ƒβˆ—

    𝐾, 𝑝

    1=

    π‘Ÿπ‘ƒβˆ—πœŽ

    𝐾, 𝑝

    0= π‘Žπ‘π‘ƒ

    βˆ—π‘βˆ—πœŽ,

    π‘ž1=

    π‘Žπ‘‘π‘’π‘ƒβˆ—π‘βˆ—

    (𝑒 + π‘ƒβˆ—)2, π‘ž

    0=

    π‘Žπ‘‘π‘’π‘ƒβˆ—π‘βˆ—πœŽ

    (𝑒 + π‘ƒβˆ—)2

    .

    (10)

    Obviously, 𝑝2> 0, 𝑝

    1> 0, 𝑝

    0> 0, π‘ž

    1> 0, and π‘ž

    0> 0.

    From (9), the following lemma is obvious.

    Lemma 1. If the condition 𝐻2: 𝑝0= π‘ž0holds, then πœ† = 0 is

    always a root of (9) for all 𝜏 β‰₯ 0.

    Let 𝑑0= (𝑏/𝑒)(𝑒+𝑃

    βˆ—)2, 𝑑1= 𝑝1(𝑒+π‘ƒβˆ—)2/(1βˆ’πœπœŽ)π‘Žπ‘’π‘ƒ

    βˆ—π‘βˆ—,

    and 𝑑2= (𝑒+𝑃

    βˆ—)2[𝜏2π‘Žπ‘π‘ƒβˆ—π‘βˆ—πœŽβˆ’2(𝜎+(π‘Ÿπ‘ƒ

    βˆ—/𝐾))]/2πœπ‘Žπ‘’π‘ƒ

    βˆ—π‘βˆ—;

    we have the following results.

    Lemma 2. Suppose that the condition (𝐻2) is satisfied.

    (i) If 𝑑 = 𝑑0

    ΜΈ= 𝑑1, then (9) has a single zero root.

    (ii) If 𝑑 = 𝑑1

    ΜΈ= 𝑑2, then (9) has a double zero root.

    Proof. Clearly, πœ† = 0 is a root to (9) if and only if 𝑝0= π‘ž0,

    whichmeans𝑑 = 𝑑0. Substituting𝑑 = 𝑑

    0into𝐹(πœ†) and taking

    the derivative with respect to πœ†, we obtain

    𝐹(πœ†)

    𝑑=𝑑0= 3πœ†2+ 2𝑝2πœ† + 𝑝1βˆ’ [π‘ž1(1 βˆ’ πœπœ†) βˆ’ πœπ‘ž

    0] π‘’βˆ’πœ†πœ

    .

    (11)

    Then we can get

    𝐹(0)

    𝑑=𝑑0= 𝑝1βˆ’ [π‘ž1βˆ’ πœπ‘ž0] . (12)

    For any 𝜏 > 0, by solving (12), we can obtain 𝑑 = 𝑑1. If 𝑑 =

    𝑑0

    ΜΈ= 𝑑1, 𝐹(0) ΜΈ= 0which means that πœ† = 0 is a single zero root

    to (9), and hence the conclusion of (i) follows.

  • Abstract and Applied Analysis 3

    From (11), it follows that

    𝐹(πœ†)

    𝑑=𝑑1= 6πœ† + 2𝑝

    2βˆ’ [π‘ž1(βˆ’2𝜏 + 𝜏

    2πœ†) + 𝜏

    2π‘ž0] π‘’βˆ’πœ†πœ

    .

    (13)

    Then we get

    𝐹(0)

    𝑑=𝑑1= 2𝑝2βˆ’ [𝜏2π‘ž0βˆ’ 2π‘ž1𝜏] . (14)

    For any 𝜏 > 0, by solving (14), we can obtain 𝑑 = 𝑑2. If

    𝑑 = 𝑑1

    ΜΈ= 𝑑2, 𝐹(0) ΜΈ= 0 which means that πœ† = 0 is a double

    zero root to (9), and hence the conclusion of (ii) follows.Thiscompletes the proof.

    From Lemma 2, we have the following result.

    Theorem 3. Suppose that (𝐻2) holds if 𝑑 = 𝑑

    0ΜΈ= 𝑑1, then,

    the system (5) undergoes a Pitchfork bifurcation at the positiveequilibrium.

    3. Hopf-Pitchfork Bifurcation

    In the following, we consider the case that (9) not only has azero root, but also has a pair of purely imaginary roots Β±π‘–πœ”(πœ” > 0), when 𝑑 = 𝑑

    0ΜΈ= 𝑑1holds.

    Substituting πœ† = π‘–πœ” (πœ” > 0) and 𝑑 = 𝑑0into (9) and

    separating the real and imaginary parts, one can get

    βˆ’πœ”3+ 𝑝1πœ” βˆ’ π‘ž1πœ” cos (πœ”πœ) + π‘ž

    0sin (πœ”πœ) = 0,

    βˆ’π‘2πœ”2+ 𝑝0βˆ’ π‘ž1πœ” sin (πœ”πœ) βˆ’ π‘ž

    0cos (πœ”πœ) = 0.

    (15)

    It is easy to see from (15) that

    πœ”6+ 𝐷2πœ”4+ 𝐷1πœ”2+ 𝐷0= 0, (16)

    where

    𝐷2= 𝑝2

    2βˆ’ 2𝑝1, 𝐷

    1= 𝑝2

    1βˆ’ 2𝑝0𝑝2βˆ’ π‘ž2

    1,

    𝐷0= 𝑝2

    0βˆ’ π‘ž2

    0.

    (17)

    Let 𝑧 = πœ”2. Then (16) can be written as

    β„Ž (𝑧) = 𝑧3+ 𝐷2𝑧2+ 𝐷1𝑧 + 𝐷

    0. (18)

    In terms of the coefficient in β„Ž(𝑧) define Ξ” by Ξ” = 𝐷22βˆ’ 3𝐷1.

    It is easy to know from the characters of cubic algebraicequation that β„Ž(𝑧) is a strictly monotonically increasingfunction ifΞ” ≀ 0. IfΞ” > 0 and π‘§βˆ— = (βˆšΞ”βˆ’π·

    2)/3 < 0 orΞ” > 0,

    π‘§βˆ—

    = (βˆšΞ” βˆ’ 𝐷2)/3 > 0 but β„Ž(π‘§βˆ—) > 0, then β„Ž(𝑧) has always

    no positive root. Therefore, under these conditions, (9) hasno purely imaginary roots for any 𝜏 > 0 and this also impliesthat the positive equilibrium 𝐸(π‘ƒβˆ—, π‘βˆ—,π‘Šβˆ—) of system (1) isabsolutely stable. Thus, we can obtain easily the followingresult on the stability of positive equilibrium 𝐸(π‘ƒβˆ—, π‘βˆ—,π‘Šβˆ—)of system (1).

    Theorem 4. Assume that (𝐻1) holds and Ξ” ≀ 0 or Ξ” > 0

    and π‘§βˆ— = (βˆšΞ” βˆ’ 𝐷2)/3 < 0 or Ξ” > 0, π‘§βˆ— > 0 and β„Ž(π‘§βˆ—) >

    0. Then the positive equilibrium 𝐸(π‘ƒβˆ—, π‘βˆ—,π‘Šβˆ—) of system (5)is absolutely stable; namely; 𝐸(π‘ƒβˆ—, π‘βˆ—,π‘Šβˆ—) is asymptoticallystable for any delay 𝜏 β‰₯ 0.

    In what follows, we assume that the coefficients in β„Ž(𝑧)satisfy the condition

    (𝐻3) Ξ” = 𝐷

    2

    2βˆ’ 3𝐷1> 0, π‘§βˆ— = (βˆšΞ” βˆ’ 𝐷

    2)/3 > 0, β„Ž(π‘§βˆ—) < 0.

    Then, according to Lemma 2.2 in [17], we know that (16) hasat least a positive root πœ”

    0; that is, the characteristic equation

    (9) has a pair of purely imaginary roots Β±π‘–πœ”0. Eliminating

    sin(πœ”πœ) in (15), we can get that the corresponding πœπ‘˜> 0 such

    that (9) has a pair of purely imaginary roots Β±π‘–πœ”0, πœπ‘˜> 0 are

    given by

    πœπ‘˜=

    1

    πœ”0

    arccos[βˆ’π‘ž1πœ”4

    0+ (𝑝1π‘ž1βˆ’ 𝑝2π‘ž0) πœ”2

    0+ 𝑝0π‘ž0

    π‘ž21πœ”20+ π‘ž20

    ]

    +2π‘˜πœ‹

    πœ”0

    , (π‘˜ = 0, 1, 2, . . .) .

    (19)

    Let πœ†(𝜏) = V(𝜏) + π‘–πœ”(𝜏) be the roots of (9) such that when𝜏 = πœπ‘˜satisfying V(𝜏

    π‘˜) = 0 and πœ”(𝜏

    π‘˜) = πœ”0. We can claim that

    sgn [𝑑 (Re πœ†)π‘‘πœ

    ]

    𝜏=πœπ‘˜

    = sgn {β„Ž (πœ”20)} . (20)

    In fact, differentiating two sides of (9) with respect to 𝜏, weget

    (π‘‘πœ†

    π‘‘πœ)

    βˆ’1

    = βˆ’(3πœ†2+ 2𝑝2πœ† + 𝑝1) βˆ’ π‘ž1π‘’βˆ’πœ†πœ

    + (π‘ž1πœ† + π‘ž0) πœπ‘’βˆ’πœ†πœ

    (π‘ž1πœ† + π‘ž0) πœ†π‘’βˆ’πœ†πœ

    = βˆ’(3πœ†2+ 2𝑝2πœ† + 𝑝1) π‘’πœ†πœ

    (π‘ž1πœ† + π‘ž0) πœ†

    +π‘ž1

    (π‘ž1πœ† + π‘ž0) πœ†

    βˆ’πœ

    πœ†.

    (21)

    Then

    sgn [𝑑 (Re πœ†)π‘‘πœ

    ]

    𝜏=πœπ‘˜

    = sgn[Re(π‘‘πœ†π‘‘πœ

    )

    βˆ’1

    ]

    πœ†=π‘–πœ”0

    = sgn[Re(βˆ’(3πœ†2+ 2𝑝2πœ† + 𝑝1) π‘’πœ†πœ

    (π‘ž1πœ† + π‘ž0) πœ†

    +π‘ž1

    (π‘ž1πœ† + π‘ž0) πœ†

    βˆ’πœ

    πœ†)]

    πœ†=π‘–πœ”0

    = sgn Re[βˆ’(𝑝1βˆ’ 3πœ”2

    0+ 2𝑝2πœ”0𝑖) [cos (πœ”

    0πœπ‘˜) + 𝑖 sin (πœ”

    0πœπ‘˜)]

    (π‘ž1πœ”0𝑖 + π‘ž0) πœ”0𝑖

    +π‘ž1

    (π‘ž1πœ”0𝑖 + π‘ž0) πœ”0𝑖]

  • 4 Abstract and Applied Analysis

    = sgn 1Ξ›

    {[(𝑝1βˆ’ 3πœ”2

    0) cos (πœ”

    0πœπ‘˜) βˆ’ 2𝑝

    2πœ”0sin (πœ”

    0πœπ‘˜)]

    Γ— (π‘ž1πœ”2

    0)

    βˆ’ [(𝑝1βˆ’ 3πœ”2

    0) sin (πœ”

    0πœπ‘˜) + 2𝑝

    2πœ”0cos (πœ”

    0πœπ‘˜)]

    Γ— π‘ž0πœ”0βˆ’ π‘ž2

    1πœ”2

    0}

    = sgn 1Ξ›

    {(3πœ”2

    0βˆ’ 𝑝1) πœ”0[π‘ž1πœ”0cos (πœ”

    0πœπ‘˜) βˆ’ π‘ž0sin (πœ”

    0πœπ‘˜)]

    βˆ’ 2𝑝2πœ”2

    0[π‘ž1πœ”0sin (πœ”

    0πœπ‘˜) + π‘ž0cos (πœ”

    0πœπ‘˜)] βˆ’ π‘ž

    2

    1πœ”2

    0}

    = sgn 1Ξ›

    [3πœ”6

    0+ 2 (𝑝

    2

    2βˆ’ 𝑝1) πœ”4

    0+ (𝑝2

    1βˆ’ 2𝑝0𝑝2βˆ’ π‘ž2

    1) πœ”2

    0]

    = sgnπœ”2

    0

    Ξ›[3πœ”4

    0+ 2𝐷2πœ”2

    0+ 𝐷1]

    = sgnπœ”2

    0

    Ξ›{β„Ž(πœ”2

    0)} = sgn {β„Ž (πœ”2

    0)} ,

    (22)

    where Ξ› = π‘ž21πœ”4

    0+ π‘ž2

    0πœ”2

    0. It follows from the hypothesis

    (𝐻3) that β„Ž(πœ”2

    0) ΜΈ= 0 and therefore the transversality condition

    holds.

    Lemma5. All the roots of (9), except a zero root, have negativereal parts when 𝑝

    1> π‘ž1; (i) of Lemma 2 and 𝜏 ∈ [0, 𝜏

    0) hold.

    Proof. Consider

    πœ†3+ 𝑝2πœ†2+ (𝑝1βˆ’ π‘ž1) πœ† + 𝑝

    0βˆ’ π‘ž0= πœ† (πœ†

    2+ 𝑝2πœ† + 𝑝1βˆ’ π‘ž1) .

    (23)

    It is easy to get that the roots of (23) are πœ†1= 0 and πœ†

    2,3=

    (βˆ’π‘2Β±βˆšπ‘22βˆ’ 4(𝑝1βˆ’ π‘ž1))/2. If𝑝

    1βˆ’π‘ž1> 0, all the roots of (23),

    except a zero root, have negative real parts. We complete theproof.

    Summarizing the previous discussions, we have the fol-lowing result.

    Theorem 6. Suppose that the conditions (𝐻1), (𝐻2), and (𝐻

    3)

    are satisfied.

    (i) If 𝑑 = 𝑑0

    ΜΈ= 𝑑1and 𝜏 ∈ [0, 𝜏

    0), then the system (1)

    undergoes a Pitchfork bifurcation at positive equilib-rium πΈβˆ—.

    (ii) If 𝑑 = 𝑑0

    ΜΈ= 𝑑1and 𝜏 = 𝜏

    0, then system (1) can undergo

    aHopf-Pitchfork bifurcation at the positive equilibriumπΈβˆ—.

    4. Conclusions

    In this section, we present some particular cases of system (1)as follows:

    𝑑𝑃

    𝑑𝑑= π‘Ÿ1𝑃(1 βˆ’

    𝑃

    𝐾) βˆ’ π‘Žπ‘ƒπ‘,

    𝑑𝑍

    𝑑𝑑= 𝑏𝑍𝑃 βˆ’ 𝑐𝑍 βˆ’ 𝑑

    𝑃 (𝑑 βˆ’ 𝜏)

    𝑒 + 𝑃 (𝑑 βˆ’ 𝜏)𝑍.

    (24)

    From [2], we know that the system (24) undergoes a Hopfbifurcation at the positive equilibrium. In this paper, weget the condition that (9) has a zero root and also get theconditions that (9) has double zero roots. Furthermore, weobtain the conditions that (9) has a single zero root and apair of purely imaginary roots. Under this condition, system(1) undergoes a Hopf-Pitchfork bifurcation at the positiveequilibrium. Especially, when 𝜏 = 0, system (24) reduces to

    𝑑𝑃

    𝑑𝑑= π‘Ÿ1𝑃(1 βˆ’

    𝑃

    𝐾) βˆ’ π‘Žπ‘ƒπ‘,

    𝑑𝑍

    𝑑𝑑= 𝑏𝑍𝑃 βˆ’ 𝑐𝑍 βˆ’ 𝑑

    𝑃 (𝑑)

    𝑒 + 𝑃 (𝑑)𝑍.

    (25)

    We can conclude that the positive equilibrium𝐸(π‘ƒβˆ—, π‘βˆ—,π‘Šβˆ—)is locally asymptotically stable in the absence of toxin delay.

    Acknowledgments

    The authors are grateful to the referees for their valuablecomments and suggestions on the paper. The research of theauthors was supported by the Fundamental Research Fund ofHenan University (2012YBZR032).

    References

    [1] S. Khare, O. P. Misra, C. Singh, and J. Dhar, β€œRole of delayon planktonic ecosystem in the presence of a toxic producingphytoplankton,” International Journal of Differential Equations,vol. 2011, Article ID 603183, 16 pages, 2011.

    [2] J. Chattopadhyay, R. R. Sarkar, and A. El Abdllaoui, β€œA delaydifferential equation model on harmful algal blooms in thepresence of toxic substances,” IMA Journal of MathematicsApplied in Medicine and Biology, vol. 19, no. 2, pp. 137–161, 2002.

    [3] R. R. Sarkar and J. Chattopadhayay, β€œOccurrence of planktonicblooms under environmental fluctuations and its possiblecontrol mechanismβ€”mathematical models and experimentalobservations,” Journal of Theoretical Biology, vol. 224, no. 4, pp.501–516, 2003.

    [4] S. Chakraborty, S. Roy, and J. Chattopadhyay, β€œNutrient-limitedtoxin production and the dynamics of two phytoplankton inculturemedia: amathematicalmodel,”EcologicalModelling, vol.213, no. 2, pp. 191–201, 2008.

    [5] K. Das and S. Ray, β€œEffect of delay on nutrient cycling inphytoplankton-zooplankton interactions in estuarine system,”Ecological Modelling, vol. 215, no. 1–3, pp. 69–76, 2008.

    [6] S. R.-J. Jang, J. Baglama, and J. Rick, β€œNutrient-phytoplankton-zooplankton models with a toxin,”Mathematical and ComputerModelling, vol. 43, no. 1-2, pp. 105–118, 2006.

    [7] B. Mukhopadhyay and R. Bhattacharyya, β€œModelling phyto-plankton allelopathy in a nutrient-plankton model with spatialheterogeneity,” Ecological Modelling, vol. 198, no. 1-2, pp. 163–173, 2006.

  • Abstract and Applied Analysis 5

    [8] S. Roy, β€œThe coevolution of two phytoplankton species on a sin-gle resource: allelopathy as a pseudo-mixotrophy,” TheoreticalPopulation Biology, vol. 75, no. 1, pp. 68–75, 2009.

    [9] T. Saha and M. Bandyopadhyay, β€œDynamical analysis of toxinproducing phytoplankton-zooplankton interactions,”NonlinearAnalysis: Real World Applications, vol. 10, no. 1, pp. 314–332,2009.

    [10] J. M. Cushing, Integrodifferential Equations and DelayModels inPopulation Dynamics, Springer, Berlin, Germany, 1977.

    [11] Y. Kuang, Delay Differential Equations with Applications inPopulation Dynamics, vol. 191, Academic Press, New York, NY,USA, 1993.

    [12] Y.-H. Fan and L.-L. Wang, β€œPeriodic solutions in a delayedpredator-prey model with nonmonotonic functional response,”Nonlinear Analysis: Real World Applications, vol. 10, no. 5, pp.3275–3284, 2009.

    [13] G.-P. Hu and W.-T. Li, β€œHopf bifurcation analysis for a delayedpredator-prey systemwith diffusion effects,”Nonlinear Analysis:Real World Applications, vol. 11, no. 2, pp. 819–826, 2010.

    [14] Z.-P. Ma, H.-F. Huo, and C.-Y. Liu, β€œStability and Hopf bifur-cation analysis on a predator-prey model with discrete anddistributed delays,”Nonlinear Analysis: RealWorld Applications,vol. 10, no. 2, pp. 1160–1172, 2009.

    [15] X.-P. Yan and W.-T. Li, β€œBifurcation and global periodic solu-tions in a delayed facultative mutualism system,” Physica D, vol.227, no. 1, pp. 51–69, 2007.

    [16] Z. Zhang and Z. Wang, β€œPeriodic solution for a two-speciesnonautonomous competition Lotka-Volterra patch system withtime delay,” Journal of Mathematical Analysis and Applications,vol. 265, no. 1, pp. 38–48, 2002.

    [17] Y. Song, M. Han, and J. Wei, β€œStability and Hopf bifurcationanalysis on a simplified BAM neural network with delays,”Physica D, vol. 200, no. 3-4, pp. 185–204, 2005.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of


Recommended