Transcript
Page 1: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Section4.5IndeterminateFormsandL’Hôpital’s

Rule

Math1aIntroductiontoCalculus

March31, 2008

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ MidtermII:4/11inclass

..Image: Flickruser Orianonicolau

Page 2: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ MidtermII:4/11inclass

Page 3: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Outline

Lasttime

IndeterminateForms

L’Hôpital’sRuleApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

TheCauchyMeanValueTheorem(Bonus)

Nexttime

Page 4: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

StrategyforOptimizationProblems

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 5: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Outline

Lasttime

IndeterminateForms

L’Hôpital’sRuleApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

TheCauchyMeanValueTheorem(Bonus)

Nexttime

Page 6: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

◮ Limitofasumisthesumofthelimits

◮ Limitofadifferenceisthedifferenceofthelimits◮ Limitofaproductistheproductofthelimits◮ Limitofaquotientisthequotientofthelimits... whoops!

Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 7: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

◮ Limitofasumisthesumofthelimits◮ Limitofadifferenceisthedifferenceofthelimits

◮ Limitofaproductistheproductofthelimits◮ Limitofaquotientisthequotientofthelimits... whoops!

Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 8: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

◮ Limitofasumisthesumofthelimits◮ Limitofadifferenceisthedifferenceofthelimits◮ Limitofaproductistheproductofthelimits

◮ Limitofaquotientisthequotientofthelimits... whoops!Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 9: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

◮ Limitofasumisthesumofthelimits◮ Limitofadifferenceisthedifferenceofthelimits◮ Limitofaproductistheproductofthelimits◮ Limitofaquotientisthequotientofthelimits... whoops!

Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 10: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Weknowdividingbyzeroisbad. Mostofthetime, ifyouhaveanumeratorwhichapproachesafinitenumberandadenominatorwhichapproacheszero, thequotientapproachessomekindofinfinity. Anexceptionwouldbesomethinglike

limx→∞

11x sin x

= limx→∞

x sec x.

whichdoesn’texist.

Evenworseisthesituationwherethenumeratoranddenominatorbothgotozero.

Page 11: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Weknowdividingbyzeroisbad. Mostofthetime, ifyouhaveanumeratorwhichapproachesafinitenumberandadenominatorwhichapproacheszero, thequotientapproachessomekindofinfinity. Anexceptionwouldbesomethinglike

limx→∞

11x sin x

= limx→∞

x sec x.

whichdoesn’texist.Evenworseisthesituationwherethenumeratoranddenominatorbothgotozero.

Page 12: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 13: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 14: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 15: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 16: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 17: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 18: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 19: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 20: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 21: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

LanguageNoteItdependsonwhatthemeaningoftheword“is”is

◮ Becarefulwiththelanguagehere. Weare not sayingthat

thelimitineachcase“is”00, andthereforenonexistent

becausethisexpressionisundefined.

◮ Thelimit isoftheform00, whichmeanswecannotevaluate

itwithourlimitlaws.

Page 22: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

IndeterminateformsarelikeTugOfWar

Whichsidewinsdependsonwhichsideisstronger.

Page 23: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Outline

Lasttime

IndeterminateForms

L’Hôpital’sRuleApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

TheCauchyMeanValueTheorem(Bonus)

Nexttime

Page 24: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

QuestionIf f and g arelinesand f(a) = g(a) = 0, whatis

limx→a

f(x)g(x)

?

SolutionThefunctions f and g canbewrittenintheform

f(x) = m1(x− a)

g(x) = m2(x− a)

Sof(x)g(x)

=m1

m2=

f′(x)g′(x)

.

Butwhatifthefunctionsaren’tlinear? Ifonlytherewereawaytodealwithfunctionswhichwereonlyapproximatelylinear!

Page 25: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

QuestionIf f and g arelinesand f(a) = g(a) = 0, whatis

limx→a

f(x)g(x)

?

SolutionThefunctions f and g canbewrittenintheform

f(x) = m1(x− a)

g(x) = m2(x− a)

Sof(x)g(x)

=m1

m2=

f′(x)g′(x)

.

Butwhatifthefunctionsaren’tlinear? Ifonlytherewereawaytodealwithfunctionswhichwereonlyapproximatelylinear!

Page 26: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

QuestionIf f and g arelinesand f(a) = g(a) = 0, whatis

limx→a

f(x)g(x)

?

SolutionThefunctions f and g canbewrittenintheform

f(x) = m1(x− a)

g(x) = m2(x− a)

Sof(x)g(x)

=m1

m2=

f′(x)g′(x)

.

Butwhatifthefunctionsaren’tlinear? Ifonlytherewereawaytodealwithfunctionswhichwereonlyapproximatelylinear!

Page 27: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Theorem(L’Hopital’sRule)Suppose f and g aredifferentiablefunctionsand g′(x) ̸= 0 near a(exceptpossiblyat a). Supposethat

limx→a

f(x) = 0 and limx→a

g(x) = 0

or

limx→a

f(x) = ±∞ and limx→a

g(x) = ±∞

Then

limx→a

f(x)g(x)

= limx→a

f′(x)g′(x)

,

ifthelimitontheright-handsideisfinite, ∞, or −∞.

L’Hôpital’srulealsoappliesforlimitsoftheform∞∞

.

Page 28: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Theorem(L’Hopital’sRule)Suppose f and g aredifferentiablefunctionsand g′(x) ̸= 0 near a(exceptpossiblyat a). Supposethat

limx→a

f(x) = 0 and limx→a

g(x) = 0

or

limx→a

f(x) = ±∞ and limx→a

g(x) = ±∞

Then

limx→a

f(x)g(x)

= limx→a

f′(x)g′(x)

,

ifthelimitontheright-handsideisfinite, ∞, or −∞.

L’Hôpital’srulealsoappliesforlimitsoftheform∞∞

.

Page 29: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

MeettheMathematician: L’Hôpital

◮ wantedtobeamilitaryman, butpooreyesightforcedhimintomath

◮ didsomemathonhisown(solvedthe“brachistocroneproblem”)

◮ paidastipendtoJohannBernoulli, whoprovedthistheoremandnameditafterhim! GuillaumeFrançoisAntoine,

MarquisdeL’Hôpital(1661–1704)

Page 30: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 31: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 32: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 33: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 34: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 35: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 36: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 37: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 38: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

SketchofProofofL’Hôpital’sRule

Let x beanumbercloseto a. Weknowthatf(x) − f(a)

x− a= f′(c),

forsome c ∈ (a, x); alsog(x) − g(a)

x− a= g′(d), forsome d ∈ (a, x).

Thismeansf(x)g(x)

=f′(c)g′(d)

.

ThemiracleoftheMVT isthatatweakingofitallowsustoassume c = d, sothat

f(x)g(x)

=f′(c)g′(c)

.

Thenumber c dependson x andsinceitisbetween a and x, wemusthave

limx→a

c(x) = a.

Page 39: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

BewareofRedHerrings

ExampleFind

limx→0

xcos x

SolutionThelimitofthedenominatoris 1, not 0, so L’Hôpital’sruledoesnotapply. Thelimitis 0.

Page 40: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

BewareofRedHerrings

ExampleFind

limx→0

xcos x

SolutionThelimitofthedenominatoris 1, not 0, so L’Hôpital’sruledoesnotapply. Thelimitis 0.

Page 41: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

TheoremLet r beanypositivenumber. Then

limx→∞

ex

xr= ∞.

Proof.If r isapositiveinteger, thenapplyL’Hôpital’srule r timestothefraction. Youget

limx→∞

ex

xrH= . . .

H= lim

x→∞

ex

r!= ∞.

If r isnotaninteger, let n = [[x]] and m = n + 1. Thenif x > 1,xn < xr < xm, so

ex

xn>

ex

xr>

ex

xm.

NowapplytheSqueezeTheorem.

Page 42: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

TheoremLet r beanypositivenumber. Then

limx→∞

ex

xr= ∞.

Proof.If r isapositiveinteger, thenapplyL’Hôpital’srule r timestothefraction. Youget

limx→∞

ex

xrH= . . .

H= lim

x→∞

ex

r!= ∞.

If r isnotaninteger, let n = [[x]] and m = n + 1. Thenif x > 1,xn < xr < xm, so

ex

xn>

ex

xr>

ex

xm.

NowapplytheSqueezeTheorem.

Page 43: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

TheoremLet r beanypositivenumber. Then

limx→∞

ex

xr= ∞.

Proof.If r isapositiveinteger, thenapplyL’Hôpital’srule r timestothefraction. Youget

limx→∞

ex

xrH= . . .

H= lim

x→∞

ex

r!= ∞.

If r isnotaninteger, let n = [[x]] and m = n + 1. Thenif x > 1,xn < xr < xm, so

ex

xn>

ex

xr>

ex

xm.

NowapplytheSqueezeTheorem.

Page 44: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminateproducts

ExampleFind

limx→0+

√x ln x

SolutionJury-rigtheexpressiontomakeanindeterminatequotient. ThenapplyL’Hôpital’sRule:

limx→0+

√x ln x = lim

x→0+

ln x1/

√x

H= lim

x→0+

x−1

−12x

−3/2

= limx→0+

−2√x = 0

Page 45: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminateproducts

ExampleFind

limx→0+

√x ln x

SolutionJury-rigtheexpressiontomakeanindeterminatequotient. ThenapplyL’Hôpital’sRule:

limx→0+

√x ln x = lim

x→0+

ln x1/

√x

H= lim

x→0+

x−1

−12x

−3/2

= limx→0+

−2√x = 0

Page 46: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)

Thislimitisoftheform ∞−∞, whichisindeterminate.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

H= lim

x→0+

4x cos(2x)4 cos(2x) − 4x sin(2x)

= 0

Page 47: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)Thislimitisoftheform ∞−∞, whichisindeterminate.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

H= lim

x→0+

4x cos(2x)4 cos(2x) − 4x sin(2x)

= 0

Page 48: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)Thislimitisoftheform ∞−∞, whichisindeterminate.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

H= lim

x→0+

4x cos(2x)4 cos(2x) − 4x sin(2x)

= 0

Page 49: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminatepowers

Example

limx→0+

(1− 2x)1/x

Takethelogarithm:

ln(limx→0

(1− 2x)1/x)

= limx→0

ln((1− 2x)1/x

)= lim

x→0

1xln(1− 2x)

Thislimitisoftheform00, sowecanuseL’Hôpital:

limx→0

1xln(1− 2x) H

= limx→0

−21−2x

1= −2

Thisisnottheanswer, it’sthelogoftheanswer! Sotheanswerwewantis e−2.

Page 50: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminatepowers

Example

limx→0+

(1− 2x)1/x

Takethelogarithm:

ln(limx→0

(1− 2x)1/x)

= limx→0

ln((1− 2x)1/x

)= lim

x→0

1xln(1− 2x)

Thislimitisoftheform00, sowecanuseL’Hôpital:

limx→0

1xln(1− 2x) H

= limx→0

−21−2x

1= −2

Thisisnottheanswer, it’sthelogoftheanswer! Sotheanswerwewantis e−2.

Page 51: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Example

limx→0

(3x)4x

Solution

ln limx→0+

(3x)4x = limx→0+

ln(3x)4x = limx→0+

4x ln(3x)

= limx→0+

ln(3x)1/4x

H= lim

x→0+

3/3x−1/4x2

= limx→0+

(−4x) = 0

Sotheansweris e0 = 1.

Page 52: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Example

limx→0

(3x)4x

Solution

ln limx→0+

(3x)4x = limx→0+

ln(3x)4x = limx→0+

4x ln(3x)

= limx→0+

ln(3x)1/4x

H= lim

x→0+

3/3x−1/4x2

= limx→0+

(−4x) = 0

Sotheansweris e0 = 1.

Page 53: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

SummaryForm Method

00 L’Hôpital’sruledirectly

∞∞ L’Hôpital’sruledirectly

0 · ∞ jiggletomake 00 or ∞

∞ .

∞−∞ factortomakeanindeterminateproduct

00 take ln tomakeanindeterminateproduct

∞0 ditto

1∞ ditto

Page 54: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Outline

Lasttime

IndeterminateForms

L’Hôpital’sRuleApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

TheCauchyMeanValueTheorem(Bonus)

Nexttime

Page 55: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

TheCauchyMeanValueTheorem(Bonus)

ApplytheMVT tothefunction

h(x) = (f(b) − f(a))g(x) − (g(b) − g(a))f(x).

Wehave h(a) = h(b). Sothereexistsa c in (a,b) suchthath′(c) = 0. Thus

(f(b) − f(a))g′(c) = (g(b) − g(a))f′(c)

ThisishowL’Hôpital’sRuleisproved.

Page 56: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Outline

Lasttime

IndeterminateForms

L’Hôpital’sRuleApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

TheCauchyMeanValueTheorem(Bonus)

Nexttime

Page 57: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

NexttimeApplicationstoBusinessandEconomics


Recommended