57
. . . . . . Section 4.5 Indeterminate Forms and L’Hôpital’s Rule Math 1a Introduction to Calculus March 31, 2008 Announcements Problem Sessions Sunday, Thursday, 7pm, SC 310 Office hours Tues, Weds, 2–4pm SC 323 Midterm II: 4/11 in class . . Image: Flickr user Oriano nicolau

Lesson 21: Indeterminate forms and L'Hôpital's Rule

Embed Size (px)

DESCRIPTION

L'Hôpital's Rule allows us to evaluate many limits of indeterminate forms

Citation preview

Page 1: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Section4.5IndeterminateFormsandL’Hôpital’s

Rule

Math1aIntroductiontoCalculus

March31, 2008

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ MidtermII:4/11inclass

..Image: Flickruser Orianonicolau

Page 2: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ MidtermII:4/11inclass

Page 3: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Outline

Lasttime

IndeterminateForms

L’Hôpital’sRuleApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

TheCauchyMeanValueTheorem(Bonus)

Nexttime

Page 4: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

StrategyforOptimizationProblems

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 5: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Outline

Lasttime

IndeterminateForms

L’Hôpital’sRuleApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

TheCauchyMeanValueTheorem(Bonus)

Nexttime

Page 6: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

◮ Limitofasumisthesumofthelimits

◮ Limitofadifferenceisthedifferenceofthelimits◮ Limitofaproductistheproductofthelimits◮ Limitofaquotientisthequotientofthelimits... whoops!

Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 7: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

◮ Limitofasumisthesumofthelimits◮ Limitofadifferenceisthedifferenceofthelimits

◮ Limitofaproductistheproductofthelimits◮ Limitofaquotientisthequotientofthelimits... whoops!

Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 8: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

◮ Limitofasumisthesumofthelimits◮ Limitofadifferenceisthedifferenceofthelimits◮ Limitofaproductistheproductofthelimits

◮ Limitofaquotientisthequotientofthelimits... whoops!Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 9: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

◮ Limitofasumisthesumofthelimits◮ Limitofadifferenceisthedifferenceofthelimits◮ Limitofaproductistheproductofthelimits◮ Limitofaquotientisthequotientofthelimits... whoops!

Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 10: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Weknowdividingbyzeroisbad. Mostofthetime, ifyouhaveanumeratorwhichapproachesafinitenumberandadenominatorwhichapproacheszero, thequotientapproachessomekindofinfinity. Anexceptionwouldbesomethinglike

limx→∞

11x sin x

= limx→∞

x sec x.

whichdoesn’texist.

Evenworseisthesituationwherethenumeratoranddenominatorbothgotozero.

Page 11: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Weknowdividingbyzeroisbad. Mostofthetime, ifyouhaveanumeratorwhichapproachesafinitenumberandadenominatorwhichapproacheszero, thequotientapproachessomekindofinfinity. Anexceptionwouldbesomethinglike

limx→∞

11x sin x

= limx→∞

x sec x.

whichdoesn’texist.Evenworseisthesituationwherethenumeratoranddenominatorbothgotozero.

Page 12: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 13: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 14: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 15: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 16: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 17: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 18: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 19: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 20: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Experiments

◮ limx→0+

sin2 xx

= 0

◮ limx→0

xsin2 x

doesnotexist

◮ limx→0

sin2 xsin x2

= 1

◮ limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 21: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

LanguageNoteItdependsonwhatthemeaningoftheword“is”is

◮ Becarefulwiththelanguagehere. Weare not sayingthat

thelimitineachcase“is”00, andthereforenonexistent

becausethisexpressionisundefined.

◮ Thelimit isoftheform00, whichmeanswecannotevaluate

itwithourlimitlaws.

Page 22: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

IndeterminateformsarelikeTugOfWar

Whichsidewinsdependsonwhichsideisstronger.

Page 23: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Outline

Lasttime

IndeterminateForms

L’Hôpital’sRuleApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

TheCauchyMeanValueTheorem(Bonus)

Nexttime

Page 24: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

QuestionIf f and g arelinesand f(a) = g(a) = 0, whatis

limx→a

f(x)g(x)

?

SolutionThefunctions f and g canbewrittenintheform

f(x) = m1(x− a)

g(x) = m2(x− a)

Sof(x)g(x)

=m1

m2=

f′(x)g′(x)

.

Butwhatifthefunctionsaren’tlinear? Ifonlytherewereawaytodealwithfunctionswhichwereonlyapproximatelylinear!

Page 25: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

QuestionIf f and g arelinesand f(a) = g(a) = 0, whatis

limx→a

f(x)g(x)

?

SolutionThefunctions f and g canbewrittenintheform

f(x) = m1(x− a)

g(x) = m2(x− a)

Sof(x)g(x)

=m1

m2=

f′(x)g′(x)

.

Butwhatifthefunctionsaren’tlinear? Ifonlytherewereawaytodealwithfunctionswhichwereonlyapproximatelylinear!

Page 26: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

QuestionIf f and g arelinesand f(a) = g(a) = 0, whatis

limx→a

f(x)g(x)

?

SolutionThefunctions f and g canbewrittenintheform

f(x) = m1(x− a)

g(x) = m2(x− a)

Sof(x)g(x)

=m1

m2=

f′(x)g′(x)

.

Butwhatifthefunctionsaren’tlinear? Ifonlytherewereawaytodealwithfunctionswhichwereonlyapproximatelylinear!

Page 27: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Theorem(L’Hopital’sRule)Suppose f and g aredifferentiablefunctionsand g′(x) ̸= 0 near a(exceptpossiblyat a). Supposethat

limx→a

f(x) = 0 and limx→a

g(x) = 0

or

limx→a

f(x) = ±∞ and limx→a

g(x) = ±∞

Then

limx→a

f(x)g(x)

= limx→a

f′(x)g′(x)

,

ifthelimitontheright-handsideisfinite, ∞, or −∞.

L’Hôpital’srulealsoappliesforlimitsoftheform∞∞

.

Page 28: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Theorem(L’Hopital’sRule)Suppose f and g aredifferentiablefunctionsand g′(x) ̸= 0 near a(exceptpossiblyat a). Supposethat

limx→a

f(x) = 0 and limx→a

g(x) = 0

or

limx→a

f(x) = ±∞ and limx→a

g(x) = ±∞

Then

limx→a

f(x)g(x)

= limx→a

f′(x)g′(x)

,

ifthelimitontheright-handsideisfinite, ∞, or −∞.

L’Hôpital’srulealsoappliesforlimitsoftheform∞∞

.

Page 29: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

MeettheMathematician: L’Hôpital

◮ wantedtobeamilitaryman, butpooreyesightforcedhimintomath

◮ didsomemathonhisown(solvedthe“brachistocroneproblem”)

◮ paidastipendtoJohannBernoulli, whoprovedthistheoremandnameditafterhim! GuillaumeFrançoisAntoine,

MarquisdeL’Hôpital(1661–1704)

Page 30: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 31: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 32: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 33: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 34: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 35: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 36: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 37: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Howdoesthisaffectourexamplesabove?

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x cos x1

= 0.

Example

limx→0

sin2 xsin x2

H= lim

x→0

✓2 sin x cos x(cos x2) (✓2x)

H= lim

x→0

cos2 x− sin2 xcos x2 − x2 sin(x2)

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 38: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

SketchofProofofL’Hôpital’sRule

Let x beanumbercloseto a. Weknowthatf(x) − f(a)

x− a= f′(c),

forsome c ∈ (a, x); alsog(x) − g(a)

x− a= g′(d), forsome d ∈ (a, x).

Thismeansf(x)g(x)

=f′(c)g′(d)

.

ThemiracleoftheMVT isthatatweakingofitallowsustoassume c = d, sothat

f(x)g(x)

=f′(c)g′(c)

.

Thenumber c dependson x andsinceitisbetween a and x, wemusthave

limx→a

c(x) = a.

Page 39: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

BewareofRedHerrings

ExampleFind

limx→0

xcos x

SolutionThelimitofthedenominatoris 1, not 0, so L’Hôpital’sruledoesnotapply. Thelimitis 0.

Page 40: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

BewareofRedHerrings

ExampleFind

limx→0

xcos x

SolutionThelimitofthedenominatoris 1, not 0, so L’Hôpital’sruledoesnotapply. Thelimitis 0.

Page 41: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

TheoremLet r beanypositivenumber. Then

limx→∞

ex

xr= ∞.

Proof.If r isapositiveinteger, thenapplyL’Hôpital’srule r timestothefraction. Youget

limx→∞

ex

xrH= . . .

H= lim

x→∞

ex

r!= ∞.

If r isnotaninteger, let n = [[x]] and m = n + 1. Thenif x > 1,xn < xr < xm, so

ex

xn>

ex

xr>

ex

xm.

NowapplytheSqueezeTheorem.

Page 42: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

TheoremLet r beanypositivenumber. Then

limx→∞

ex

xr= ∞.

Proof.If r isapositiveinteger, thenapplyL’Hôpital’srule r timestothefraction. Youget

limx→∞

ex

xrH= . . .

H= lim

x→∞

ex

r!= ∞.

If r isnotaninteger, let n = [[x]] and m = n + 1. Thenif x > 1,xn < xr < xm, so

ex

xn>

ex

xr>

ex

xm.

NowapplytheSqueezeTheorem.

Page 43: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

TheoremLet r beanypositivenumber. Then

limx→∞

ex

xr= ∞.

Proof.If r isapositiveinteger, thenapplyL’Hôpital’srule r timestothefraction. Youget

limx→∞

ex

xrH= . . .

H= lim

x→∞

ex

r!= ∞.

If r isnotaninteger, let n = [[x]] and m = n + 1. Thenif x > 1,xn < xr < xm, so

ex

xn>

ex

xr>

ex

xm.

NowapplytheSqueezeTheorem.

Page 44: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminateproducts

ExampleFind

limx→0+

√x ln x

SolutionJury-rigtheexpressiontomakeanindeterminatequotient. ThenapplyL’Hôpital’sRule:

limx→0+

√x ln x = lim

x→0+

ln x1/

√x

H= lim

x→0+

x−1

−12x

−3/2

= limx→0+

−2√x = 0

Page 45: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminateproducts

ExampleFind

limx→0+

√x ln x

SolutionJury-rigtheexpressiontomakeanindeterminatequotient. ThenapplyL’Hôpital’sRule:

limx→0+

√x ln x = lim

x→0+

ln x1/

√x

H= lim

x→0+

x−1

−12x

−3/2

= limx→0+

−2√x = 0

Page 46: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)

Thislimitisoftheform ∞−∞, whichisindeterminate.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

H= lim

x→0+

4x cos(2x)4 cos(2x) − 4x sin(2x)

= 0

Page 47: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)Thislimitisoftheform ∞−∞, whichisindeterminate.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

H= lim

x→0+

4x cos(2x)4 cos(2x) − 4x sin(2x)

= 0

Page 48: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)Thislimitisoftheform ∞−∞, whichisindeterminate.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

H= lim

x→0+

4x cos(2x)4 cos(2x) − 4x sin(2x)

= 0

Page 49: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminatepowers

Example

limx→0+

(1− 2x)1/x

Takethelogarithm:

ln(limx→0

(1− 2x)1/x)

= limx→0

ln((1− 2x)1/x

)= lim

x→0

1xln(1− 2x)

Thislimitisoftheform00, sowecanuseL’Hôpital:

limx→0

1xln(1− 2x) H

= limx→0

−21−2x

1= −2

Thisisnottheanswer, it’sthelogoftheanswer! Sotheanswerwewantis e−2.

Page 50: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Indeterminatepowers

Example

limx→0+

(1− 2x)1/x

Takethelogarithm:

ln(limx→0

(1− 2x)1/x)

= limx→0

ln((1− 2x)1/x

)= lim

x→0

1xln(1− 2x)

Thislimitisoftheform00, sowecanuseL’Hôpital:

limx→0

1xln(1− 2x) H

= limx→0

−21−2x

1= −2

Thisisnottheanswer, it’sthelogoftheanswer! Sotheanswerwewantis e−2.

Page 51: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Example

limx→0

(3x)4x

Solution

ln limx→0+

(3x)4x = limx→0+

ln(3x)4x = limx→0+

4x ln(3x)

= limx→0+

ln(3x)1/4x

H= lim

x→0+

3/3x−1/4x2

= limx→0+

(−4x) = 0

Sotheansweris e0 = 1.

Page 52: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Example

limx→0

(3x)4x

Solution

ln limx→0+

(3x)4x = limx→0+

ln(3x)4x = limx→0+

4x ln(3x)

= limx→0+

ln(3x)1/4x

H= lim

x→0+

3/3x−1/4x2

= limx→0+

(−4x) = 0

Sotheansweris e0 = 1.

Page 53: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

SummaryForm Method

00 L’Hôpital’sruledirectly

∞∞ L’Hôpital’sruledirectly

0 · ∞ jiggletomake 00 or ∞

∞ .

∞−∞ factortomakeanindeterminateproduct

00 take ln tomakeanindeterminateproduct

∞0 ditto

1∞ ditto

Page 54: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Outline

Lasttime

IndeterminateForms

L’Hôpital’sRuleApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

TheCauchyMeanValueTheorem(Bonus)

Nexttime

Page 55: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

TheCauchyMeanValueTheorem(Bonus)

ApplytheMVT tothefunction

h(x) = (f(b) − f(a))g(x) − (g(b) − g(a))f(x).

Wehave h(a) = h(b). Sothereexistsa c in (a,b) suchthath′(c) = 0. Thus

(f(b) − f(a))g′(c) = (g(b) − g(a))f′(c)

ThisishowL’Hôpital’sRuleisproved.

Page 56: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

Outline

Lasttime

IndeterminateForms

L’Hôpital’sRuleApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

TheCauchyMeanValueTheorem(Bonus)

Nexttime

Page 57: Lesson 21: Indeterminate forms and L'Hôpital's Rule

. . . . . .

NexttimeApplicationstoBusinessandEconomics