69
Section 3.7 Indeterminate Forms and L’Hˆ opital’s Rule V63.0121.002.2010Su, Calculus I New York University June 7, 2010 Announcements I

Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Section 3.7Indeterminate Forms and L’Hopital’s

Rule

V63.0121.002.2010Su, Calculus I

New York University

June 7, 2010

Announcements

I

Page 2: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Announcements

I

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 2 / 26

Page 3: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Objectives

I Know when a limit is ofindeterminate form:

I indeterminate quotients:0/0, ∞/∞

I indeterminate products:0×∞

I indeterminate differences:∞−∞

I indeterminate powers: 00,∞0, and 1∞

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 3 / 26

Page 4: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Experiments with funny limits

I limx→0

sin2 x

x

= 0

I limx→0

x

sin2 x

does not exist

I limx→0

sin2 x

sin(x2)

= 1

I limx→0

sin 3x

sin x

= 3

All of these are of the form0

0, and since we can get different answers in

different cases, we say this form is indeterminate.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 4 / 26

Page 5: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Experiments with funny limits

I limx→0

sin2 x

x= 0

I limx→0

x

sin2 x

does not exist

I limx→0

sin2 x

sin(x2)

= 1

I limx→0

sin 3x

sin x

= 3

All of these are of the form0

0, and since we can get different answers in

different cases, we say this form is indeterminate.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 4 / 26

Page 6: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Experiments with funny limits

I limx→0

sin2 x

x= 0

I limx→0

x

sin2 x

does not exist

I limx→0

sin2 x

sin(x2)

= 1

I limx→0

sin 3x

sin x

= 3

All of these are of the form0

0, and since we can get different answers in

different cases, we say this form is indeterminate.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 4 / 26

Page 7: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Experiments with funny limits

I limx→0

sin2 x

x= 0

I limx→0

x

sin2 xdoes not exist

I limx→0

sin2 x

sin(x2)

= 1

I limx→0

sin 3x

sin x

= 3

All of these are of the form0

0, and since we can get different answers in

different cases, we say this form is indeterminate.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 4 / 26

Page 8: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Experiments with funny limits

I limx→0

sin2 x

x= 0

I limx→0

x

sin2 xdoes not exist

I limx→0

sin2 x

sin(x2)

= 1

I limx→0

sin 3x

sin x

= 3

All of these are of the form0

0, and since we can get different answers in

different cases, we say this form is indeterminate.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 4 / 26

Page 9: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Experiments with funny limits

I limx→0

sin2 x

x= 0

I limx→0

x

sin2 xdoes not exist

I limx→0

sin2 x

sin(x2)= 1

I limx→0

sin 3x

sin x

= 3

All of these are of the form0

0, and since we can get different answers in

different cases, we say this form is indeterminate.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 4 / 26

Page 10: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Experiments with funny limits

I limx→0

sin2 x

x= 0

I limx→0

x

sin2 xdoes not exist

I limx→0

sin2 x

sin(x2)= 1

I limx→0

sin 3x

sin x

= 3

All of these are of the form0

0, and since we can get different answers in

different cases, we say this form is indeterminate.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 4 / 26

Page 11: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Experiments with funny limits

I limx→0

sin2 x

x= 0

I limx→0

x

sin2 xdoes not exist

I limx→0

sin2 x

sin(x2)= 1

I limx→0

sin 3x

sin x= 3

All of these are of the form0

0, and since we can get different answers in

different cases, we say this form is indeterminate.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 4 / 26

Page 12: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Experiments with funny limits

I limx→0

sin2 x

x= 0

I limx→0

x

sin2 xdoes not exist

I limx→0

sin2 x

sin(x2)= 1

I limx→0

sin 3x

sin x= 3

All of these are of the form0

0, and since we can get different answers in

different cases, we say this form is indeterminate.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 4 / 26

Page 13: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Recall

Recall the limit laws from Chapter 2.

I Limit of a sum is the sum of the limits

I Limit of a difference is the difference of the limits

I Limit of a product is the product of the limits

I Limit of a quotient is the quotient of the limits ... whoops! This istrue as long as you don’t try to divide by zero.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 5 / 26

Page 14: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Recall

Recall the limit laws from Chapter 2.

I Limit of a sum is the sum of the limits

I Limit of a difference is the difference of the limits

I Limit of a product is the product of the limits

I Limit of a quotient is the quotient of the limits ... whoops! This istrue as long as you don’t try to divide by zero.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 5 / 26

Page 15: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Recall

Recall the limit laws from Chapter 2.

I Limit of a sum is the sum of the limits

I Limit of a difference is the difference of the limits

I Limit of a product is the product of the limits

I Limit of a quotient is the quotient of the limits ... whoops! This istrue as long as you don’t try to divide by zero.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 5 / 26

Page 16: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Recall

Recall the limit laws from Chapter 2.

I Limit of a sum is the sum of the limits

I Limit of a difference is the difference of the limits

I Limit of a product is the product of the limits

I Limit of a quotient is the quotient of the limits ... whoops! This istrue as long as you don’t try to divide by zero.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 5 / 26

Page 17: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

More about dividing limits

I We know dividing by zero is bad.

I Most of the time, if an expression’s numerator approaches a finitenumber and denominator approaches zero, the quotient approachessome kind of infinity. For example:

limx→0+

1

x= +∞ lim

x→0−

cos x

x3= −∞

I An exception would be something like

limx→∞

11x sin x

= limx→∞

x csc x .

which doesn’t exist.

I Even less predictable: numerator and denominator both go to zero.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 6 / 26

Page 18: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

More about dividing limits

I We know dividing by zero is bad.

I Most of the time, if an expression’s numerator approaches a finitenumber and denominator approaches zero, the quotient approachessome kind of infinity. For example:

limx→0+

1

x= +∞ lim

x→0−

cos x

x3= −∞

I An exception would be something like

limx→∞

11x sin x

= limx→∞

x csc x .

which doesn’t exist.

I Even less predictable: numerator and denominator both go to zero.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 6 / 26

Page 19: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

More about dividing limits

I We know dividing by zero is bad.

I Most of the time, if an expression’s numerator approaches a finitenumber and denominator approaches zero, the quotient approachessome kind of infinity. For example:

limx→0+

1

x= +∞ lim

x→0−

cos x

x3= −∞

I An exception would be something like

limx→∞

11x sin x

= limx→∞

x csc x .

which doesn’t exist.

I Even less predictable: numerator and denominator both go to zero.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 6 / 26

Page 20: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Language NoteIt depends on what the meaning of the word “is” is

I Be careful with the languagehere. We are not saying thatthe limit in each case “is”0

0, and therefore nonexistent

because this expression isundefined.

I The limit is of the form0

0,

which means we cannotevaluate it with our limitlaws.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 7 / 26

Page 21: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate forms are like Tug Of War

Which side wins depends on which side is stronger.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 8 / 26

Page 22: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Outline

L’Hopital’s Rule

Other Indeterminate LimitsIndeterminate ProductsIndeterminate DifferencesIndeterminate Powers

Summary

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 9 / 26

Page 23: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

The Linear Case

Question

If f and g are lines and f (a) = g(a) = 0, what is

limx→a

f (x)

g(x)?

Solution

The functions f and g can be written in the form

f (x) = m1(x − a)

g(x) = m2(x − a)

Sof (x)

g(x)=

m1

m2

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 10 / 26

Page 24: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

The Linear Case

Question

If f and g are lines and f (a) = g(a) = 0, what is

limx→a

f (x)

g(x)?

Solution

The functions f and g can be written in the form

f (x) = m1(x − a)

g(x) = m2(x − a)

Sof (x)

g(x)=

m1

m2

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 10 / 26

Page 25: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

The Linear Case, Illustrated

x

y

y = f (x)

y = g(x)

a

x

f (x)g(x)

f (x)

g(x)=

f (x)− f (a)

g(x)− g(a)=

(f (x)− f (a))/(x − a)

(g(x)− g(a))/(x − a)=

m1

m2

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 11 / 26

Page 26: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

What then?

I But what if the functions aren’t linear?

I Can we approximate a function near a point with a linear function?

I What would be the slope of that linear function? The derivative!

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 12 / 26

Page 27: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

What then?

I But what if the functions aren’t linear?

I Can we approximate a function near a point with a linear function?

I What would be the slope of that linear function? The derivative!

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 12 / 26

Page 28: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

What then?

I But what if the functions aren’t linear?

I Can we approximate a function near a point with a linear function?

I What would be the slope of that linear function?

The derivative!

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 12 / 26

Page 29: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

What then?

I But what if the functions aren’t linear?

I Can we approximate a function near a point with a linear function?

I What would be the slope of that linear function? The derivative!

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 12 / 26

Page 30: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Theorem of the Day

Theorem (L’Hopital’s Rule)

Suppose f and g are differentiable functions and g ′(x) 6= 0 near a (exceptpossibly at a). Suppose that

limx→a

f (x) = 0 and limx→a

g(x) = 0

or

limx→a

f (x) = ±∞ and limx→a

g(x) = ±∞

Then

limx→a

f (x)

g(x)= lim

x→a

f ′(x)

g ′(x),

if the limit on the right-hand side is finite, ∞, or −∞.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 13 / 26

Page 31: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Meet the Mathematician: L’Hopital

I wanted to be a militaryman, but poor eyesightforced him into math

I did some math on his own(solved the “brachistocroneproblem”)

I paid a stipend to JohannBernoulli, who proved thistheorem and named it afterhim! Guillaume Francois Antoine,

Marquis de L’Hopital(French, 1661–1704)

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 14 / 26

Page 32: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

x

H= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin x

H= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 33: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1

= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 34: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1

= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 35: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 36: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 37: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 38: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 39: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)

H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 40: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)

H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 41: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)

H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 42: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 43: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 44: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 45: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 46: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Revisiting the previous examples

Example

limx→0

sin2 x

xH= lim

x→0

2 sin x

sin x → 0

cos x

1= 0

Example

limx→0

sin2 x

numerator→ 0

sin x2

denominator→ 0

H= lim

x→0

�2 sin x cos x

numerator→ 0

(cos x2) (�2x

denominator→ 0

)H= lim

x→0

cos2 x − sin2 x

numerator→ 1

cos x2 − 2x2 sin(x2)

denominator→ 1

= 1

Example

limx→0

sin 3x

sin xH= lim

x→0

3 cos 3x

cos x= 3.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 15 / 26

Page 47: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Another Example

Example

Findlimx→0

x

cos x

Solution

The limit of the denominator is 1, not 0, so L’Hopital’s rule does notapply. The limit is 0.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 16 / 26

Page 48: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Beware of Red Herrings

Example

Findlimx→0

x

cos x

Solution

The limit of the denominator is 1, not 0, so L’Hopital’s rule does notapply. The limit is 0.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 16 / 26

Page 49: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Outline

L’Hopital’s Rule

Other Indeterminate LimitsIndeterminate ProductsIndeterminate DifferencesIndeterminate Powers

Summary

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 17 / 26

Page 50: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate products

Example

Findlim

x→0+

√x ln x

This limit is of the form 0 · (−∞).

Solution

Jury-rig the expression to make an indeterminate quotient. Then applyL’Hopital’s Rule:

limx→0+

√x ln x

= limx→0+

ln x1/√x

H= lim

x→0+

x−1

−12x−3/2

= limx→0+

−2√

x = 0

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 18 / 26

Page 51: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate products

Example

Findlim

x→0+

√x ln x

This limit is of the form 0 · (−∞).

Solution

Jury-rig the expression to make an indeterminate quotient. Then applyL’Hopital’s Rule:

limx→0+

√x ln x

= limx→0+

ln x1/√x

H= lim

x→0+

x−1

−12x−3/2

= limx→0+

−2√

x = 0

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 18 / 26

Page 52: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate products

Example

Findlim

x→0+

√x ln x

This limit is of the form 0 · (−∞).

Solution

Jury-rig the expression to make an indeterminate quotient. Then applyL’Hopital’s Rule:

limx→0+

√x ln x = lim

x→0+

ln x1/√x

H= lim

x→0+

x−1

−12x−3/2

= limx→0+

−2√

x = 0

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 18 / 26

Page 53: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate products

Example

Findlim

x→0+

√x ln x

This limit is of the form 0 · (−∞).

Solution

Jury-rig the expression to make an indeterminate quotient. Then applyL’Hopital’s Rule:

limx→0+

√x ln x = lim

x→0+

ln x1/√x

H= lim

x→0+

x−1

−12x−3/2

= limx→0+

−2√

x = 0

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 18 / 26

Page 54: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate products

Example

Findlim

x→0+

√x ln x

This limit is of the form 0 · (−∞).

Solution

Jury-rig the expression to make an indeterminate quotient. Then applyL’Hopital’s Rule:

limx→0+

√x ln x = lim

x→0+

ln x1/√x

H= lim

x→0+

x−1

−12x−3/2

= limx→0+

−2√

x

= 0

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 18 / 26

Page 55: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate products

Example

Findlim

x→0+

√x ln x

This limit is of the form 0 · (−∞).

Solution

Jury-rig the expression to make an indeterminate quotient. Then applyL’Hopital’s Rule:

limx→0+

√x ln x = lim

x→0+

ln x1/√x

H= lim

x→0+

x−1

−12x−3/2

= limx→0+

−2√

x = 0

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 18 / 26

Page 56: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate differences

Example

limx→0+

(1

x− cot 2x

)

This limit is of the form ∞−∞.

Solution

Again, rig it to make an indeterminate quotient.

limx→0+

sin(2x)− x cos(2x)

x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)

2x cos(2x) + sin(2x)

=∞

The limit is +∞ becuase the numerator tends to 1 while the denominatortends to zero but remains positive.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 19 / 26

Page 57: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate differences

Example

limx→0+

(1

x− cot 2x

)

This limit is of the form ∞−∞.

Solution

Again, rig it to make an indeterminate quotient.

limx→0+

sin(2x)− x cos(2x)

x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)

2x cos(2x) + sin(2x)

=∞

The limit is +∞ becuase the numerator tends to 1 while the denominatortends to zero but remains positive.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 19 / 26

Page 58: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate differences

Example

limx→0+

(1

x− cot 2x

)

This limit is of the form ∞−∞.

Solution

Again, rig it to make an indeterminate quotient.

limx→0+

sin(2x)− x cos(2x)

x sin(2x)H= lim

x→0+

cos(2x) + 2x sin(2x)

2x cos(2x) + sin(2x)

=∞

The limit is +∞ becuase the numerator tends to 1 while the denominatortends to zero but remains positive.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 19 / 26

Page 59: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate differences

Example

limx→0+

(1

x− cot 2x

)

This limit is of the form ∞−∞.

Solution

Again, rig it to make an indeterminate quotient.

limx→0+

sin(2x)− x cos(2x)

x sin(2x)H= lim

x→0+

cos(2x) + 2x sin(2x)

2x cos(2x) + sin(2x)

=∞

The limit is +∞ becuase the numerator tends to 1 while the denominatortends to zero but remains positive.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 19 / 26

Page 60: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate differences

Example

limx→0+

(1

x− cot 2x

)

This limit is of the form ∞−∞.

Solution

Again, rig it to make an indeterminate quotient.

limx→0+

sin(2x)− x cos(2x)

x sin(2x)H= lim

x→0+

cos(2x) + 2x sin(2x)

2x cos(2x) + sin(2x)

=∞

The limit is +∞ becuase the numerator tends to 1 while the denominatortends to zero but remains positive.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 19 / 26

Page 61: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Checking your work

limx→0

tan 2x

2x= 1, so for small x ,

tan 2x ≈ 2x . So cot 2x ≈ 1

2xand

1

x− cot 2x ≈ 1

x− 1

2x=

1

2x→∞

as x → 0+.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 20 / 26

Page 62: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate powers

Example

Find limx→0+

(1− 2x)1/x

Take the logarithm:

ln

(lim

x→0+(1− 2x)1/x

)= lim

x→0+ln(

(1− 2x)1/x)

= limx→0+

ln(1− 2x)

x

This limit is of the form0

0, so we can use L’Hopital:

limx→0+

ln(1− 2x)

xH= lim

x→0+

−21−2x

1= −2

This is not the answer, it’s the log of the answer! So the answer we wantis e−2.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 21 / 26

Page 63: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate powers

Example

Find limx→0+

(1− 2x)1/x

Take the logarithm:

ln

(lim

x→0+(1− 2x)1/x

)= lim

x→0+ln(

(1− 2x)1/x)

= limx→0+

ln(1− 2x)

x

This limit is of the form0

0, so we can use L’Hopital:

limx→0+

ln(1− 2x)

xH= lim

x→0+

−21−2x

1= −2

This is not the answer, it’s the log of the answer! So the answer we wantis e−2.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 21 / 26

Page 64: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate powers

Example

Find limx→0+

(1− 2x)1/x

Take the logarithm:

ln

(lim

x→0+(1− 2x)1/x

)= lim

x→0+ln(

(1− 2x)1/x)

= limx→0+

ln(1− 2x)

x

This limit is of the form0

0, so we can use L’Hopital:

limx→0+

ln(1− 2x)

xH= lim

x→0+

−21−2x

1= −2

This is not the answer, it’s the log of the answer! So the answer we wantis e−2.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 21 / 26

Page 65: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Indeterminate powers

Example

Find limx→0+

(1− 2x)1/x

Take the logarithm:

ln

(lim

x→0+(1− 2x)1/x

)= lim

x→0+ln(

(1− 2x)1/x)

= limx→0+

ln(1− 2x)

x

This limit is of the form0

0, so we can use L’Hopital:

limx→0+

ln(1− 2x)

xH= lim

x→0+

−21−2x

1= −2

This is not the answer, it’s the log of the answer! So the answer we wantis e−2.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 21 / 26

Page 66: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Another indeterminate power limit

Example

limx→0

(3x)4x

Solution

ln limx→0+

(3x)4x = limx→0+

ln(3x)4x = limx→0+

4x ln(3x)

= limx→0+

ln(3x)1/4x

H= lim

x→0+

3/3x−1/4x2

= limx→0+

(−4x) = 0

So the answer is e0 = 1.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 22 / 26

Page 67: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Another indeterminate power limit

Example

limx→0

(3x)4x

Solution

ln limx→0+

(3x)4x = limx→0+

ln(3x)4x = limx→0+

4x ln(3x)

= limx→0+

ln(3x)1/4x

H= lim

x→0+

3/3x−1/4x2

= limx→0+

(−4x) = 0

So the answer is e0 = 1.

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 22 / 26

Page 68: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Summary

Form Method

00 L’Hopital’s rule directly

∞∞ L’Hopital’s rule directly

0 · ∞ jiggle to make 00 or ∞∞ .

∞−∞ factor to make an indeterminate product

00 take ln to make an indeterminate product

∞0 ditto

1∞ ditto

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 23 / 26

Page 69: Lesson 17: Indeterminate Forms and L'Hôpital's Rule

Final Thoughts

I L’Hopital’s Rule only works on indeterminate quotients

I Luckily, most indeterminate limits can be transformed intoindeterminate quotients

I L’Hopital’s Rule gives wrong answers for non-indeterminate limits!

V63.0121.002.2010Su, Calculus I (NYU) L’Hopital’s Rule June 7, 2010 24 / 26