Transcript
Page 1: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Dr Margaret PiggottDr Margaret Piggott

[email protected]

[email protected]

Neurochemistry of the DementiasNeurochemistry of the Dementias

and transmitter-based therapiesand transmitter-based therapies

Page 2: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Examining neurotransmitter mechanisms is important because

• Different dementias have different neurochemical profiles with implications for treatment

• Neurochemical changes underlie symptoms

• Antipsychotic, anxiolytic, pro-cognitive and antidepressant drugs all

Modulate Transmitter Systems

Page 3: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

You will have varying familiarity with neuroscience

Apologies for fact-laden stuff

How much you know already?

Covering things that may be in MCQ

Page 4: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

NEUROCHEMISTRY OF THE DEMENTIASNEUROCHEMISTRY OF THE DEMENTIAStransmitter therapiestransmitter therapies

THE OXFORD TEXTBOOK OF OLD AGE PSYCHIATRY(Psychiatry in the Elderly 4th edition)

Chapter 6Neurochemical pathology of neurodegenerative disorders of old age Piggott MA and Court JA (2008) (in revision)

Parkinson’s Disease Dementia, edited by Professor Murat Emre Chapter 13 - Neurochemistry of Parkinson’s disease dementia

Piggott MA and Perry EK (2010)

Early-Onset Dementia, edited by Professor John R Hodges Chapter 9 – Neurochemical pathology in degenerative dementias

Elaine Perry, Rose Goodchild and Margaret Piggott (2001)

Page 5: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Neurotransmitter types

Amino acids glutamate, aspartate, D-serine, glycine, amino butyric acid (GABA),

Biogenic amines dopamine, serotonin, norepinephrine, epinephrine, histamine

Others acetylcholine, adenosine, anandamide, nitric oxide

Peptides over 50 peptide neurotransmitters, somatostatin, substance P, endorphin

Neurotransmitters activate one or more types of receptors. The effect on the postsynaptic cell depends on the properties of those receptors

Page 6: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Cholinergic cell nuclei

• The nucleus basalis of Meynert projects to neocortex

• Cholinergic cells in the medial septum/diagonal band project to hippocampus and entorhinal cortex

• Cholinergic interneurons intrinsic to the striatum

• Brainstem pedunculopontine (PPN) neurons project to thalamus

Cholinergic systemCholinergic system

Cholinergic nuclei numbers - http://www.acnp.org/g4/gn401000012/ch012.html

Page 7: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Cholinergic terminal

Synthesising enzyme choline acetyltransferase (ChAT)

Acetylcholine released from synaptic vesicles in response to depolarisation

Acetylcholine interacts with receptors (muscarinic and nicotinic) on the pre and postsynaptic membrane

Acetylcholine in the synaptic cleft is removed by degrading enzyme acetylcholinesterase (AChE)

Page 8: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Muscarinic receptorsMuscarinic receptors

Five subtypes M1 - M5All metabotropic (G-protein coupled receptors)

M1 postsynaptic –cortex, hippocampus, striatum,low in thalamus, none in cerebellum

M2 - cortex, hippocampus, thalamus, striatum, cerebellum and brainstem,

M4 - mainly in striatum, also in cortex

M3 & M5 – substantia nigra, thalamus and hippocampus

M1, M3, M5 stimulate, M2 & M4 inhibit- overlapping distribution

M1 M1

M1M2

M4/M2 M2

Autoradiographs from frozen post mortem tissue

Page 9: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

a4ß2 ß a3

a5

a7

42 a3ß2ß4a5 7

2 ACh Binding Sites

2 ACh Binding Sites

5 ACh Binding Sites

Neuronal Nicotinic Receptors (nAChR)Ligand-gated ion channels (ionotropic)

11 different subunits 2- 9, and ß2-ß4• (Ca2+, Na+) • rapid signalling• local changes

presynaptic activation of nicotinic receptors leads to transmitter release from several different neuronal types – heteroreceptor

(Metabotropic receptors slower, longer lasting changes)

Page 10: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Neuronal nicotinic receptor (42)

distribution

striatum

temporal cortex

occipital cortex

cerebellum

thalamus

midbrain

Page 11: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

DOPAMINERGIC SYSTEM

Thalamus

nigrostriatal mesolimbic

mesocortical dopamine pathways

Page 12: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Dopamine receptors (all GPCR)Dopamine receptors (all GPCR)

D2, D3, D4 inhibitory, D1 & D5 stimulatory

D2 and D1 in striatum > thalamus > cortex

D3 is limbic, in nucleus accumbens, ventral pallidum, limbic thalamus (not cortex)

D4 - despite high affinity for clozapine, & links to ADHD, receptor protein has very low density in human

- many polymorphisms, and 48bp repeat (2x 4x or 7x) in third intracytoplasmic loop

- D4 variants not linked to disease (except ADHD, 7x repeats) - D4 variants not associated with clinical response -defective gene ~2% population → low sensitivity to dopamine and clozapine

D5 low density – cholinergic neurons, sub-thalamic nucleus antipsychotic drug potencies correlate with their ability to block D2

Page 13: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Major transmittersMajor transmitters – glutamate (excitatory) and GABA (inhibitory)

• Glutamate and GABA (-amino butyric acid) form basis of neurotransmission

• GABA neurons are interneurons in cortex, can be interneurons or projection neurons in subcortical areas (e.g. striatal projection neurons)

• Glutamate neurons are projection neurons – corticocortical, thalamocortical, cortical-subcortical (corticofugal)

Page 14: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Na+/ Ca2+

2+

PCPMg2+

AspGlu

H+

NMDAGlu

Na+

Glu

AMPA

(Ca 2+ )

Ca2+

IP3

DAG

PIP2

PI-PLC G

Group I

Glu

ATP

cAMPAC

G

Group II Glu

Mg2+

Glutamate receptorsGlutamate receptors

NMDA receptors Mg2+ block – long term potentiation (LTP), learning and memory

Multiple glutamate receptor subtypes, subunits and splice variants

Mg2+

Page 15: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

• Glutamate has role in cognition at normal concentrations (LTP)

• Reduced glutamate affects learning and memory

• Excess glutamate leads to excitotoxic cell death (Ca++)

• Alzheimer’s disease - both too much and too little glutamate at different

times

• Glutamatergic pyramidal neurones in entorhinal cortex and hippocampus are particularly vulnerable to tangle formation and cell loss

Glutamate neurotransmissionGlutamate neurotransmission

Page 16: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

GABA receptorsGABA receptors

GABAA chloride ion channel, post-synaptic

Different combinations of subunits have different pharmacology and cellular and regional distributions

diverse pharmacological properties of GABAA drugs

GABAB metabotropic G-protein coupled receptor (GPCR)

Many drug development programmes target GABA and glutamate

Benzodiazepines positively modulate GABAA and increase chloride conductance

Negative GABA modulators could enhance cognition

Modafinil –decreased GABA transmission and increased glutamate

Page 17: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

SEROTONERGIC SYSTEM (5-HT)SEROTONERGIC SYSTEM (5-HT)

Page 18: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

SEROTONIN ReceptorsSEROTONIN Receptors

7 classes of serotonin receptors, 5HT1 - 7

All GPCR (except 5HT3 - ligand-gated ion channel)

5HT4 - presynaptic, stimulate release of transmitters

This array of receptor subtypes provides huge signalling possibilities

• alternate splicing increases the number of proteins

• oligomerisation increases the number of complexes

• multiple G-proteins allow crosstalk between receptor families

Page 19: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

NORADRENERGIC SYSTEMNORADRENERGIC SYSTEM

multiple - and -adrenergic receptors all metabotropic GPCR

Page 20: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

.HISTAMINE SYSTEMHISTAMINE SYSTEM4 Histamine Receptor types

all GPCR

Page 21: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Any more neurotransmitters?Adenosine, Cannabinoid

Neuropeptide Transmitters (Substance P, Orexin, Neurotensin, Somatostatin, Substance Y, Opioids etc)

human genome shows more than 300 potential GPCR

About half remain ‘orphan receptors’, endogenous ligands unknown

Receptor heteromers and oligomers

A2A, D2, mGluR5 and M1 receptors form ‘raft’ of receptors

GPCR e.g. histamine H3, can have constitutive spontaneous activity where G-protein coupled in absence of agonist

Page 22: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

If it causes a response, it's an If it causes a response, it's an agonistagonist

If it causes a response that is relatively smaller than If it causes a response that is relatively smaller than the response to another agonist, it's a the response to another agonist, it's a partial agonistpartial agonist

If it inhibits the response caused by an agonist, it's an If it inhibits the response caused by an agonist, it's an antagonistantagonist

If there is some baseline level of activity in the If there is some baseline level of activity in the absence of agonist and the drug inhibits that, it's an absence of agonist and the drug inhibits that, it's an inverse agonistinverse agonist

Agonist or Antagonist?

Page 23: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

AD, DLB

Alzheimer’s Global cognitive impairmentMemory impairment plus

impaired language (aphasia) impaired movement (apraxia) impaired recognition (agnosia) or disturbed executive functioning

Gradual declineNo disturbance of consciousness

Additional featuresanxiety, wandering, anxiety, wandering,

depression, psychosisdepression, psychosis

DLB Progressive cognitive declineplus two out of three Core Features• Cognitive fluctuation of with variation in attention and alertness• Recurrent visual hallucinations• Spontaneous features of parkinsonism

REM sleep behaviour disorder, neuroleptic sensitivity, low DaTSCAN, falls and syncope, transient loss of consciousness, severe autonomic dysfunction, hallucinations in other modalities, delusions, depression

Page 24: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Dementia with Lewy bodies and Dementia with Lewy bodies and Parkinson’s disease dementiaParkinson’s disease dementia

• spectrum

• very similar clinically

• pathologically probably indistinguishable

• movement disorder before dementia by >one year PDD

• movement disorder within one year of dementia, or later, or not at all DLB

• 20% of DLB no EPS, while PDD begins with levodopa responsive Parkinsonism

• Some dopaminergic and cholinergic receptor differences (compensatory changes in PD esp. D2 up-regulation in PD)

Page 25: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Post-mortem % loss

ChAT activity 35-50 Choline uptake 60 AChE activity 40-60 Nicotinic binding 30-70

Cortical cholinergic markers in AD

In vivo imaging – loss of AChE, vesicular ACh transporter, M1 and nicotinic receptor

Biopsy – 3.5 yrs disease, ACh markers reduced up to 50%

Muscarinic M1 receptor reduced efficiency of coupling to G-protein as disease progresses, reduced receptor density late in disease

Page 26: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Cholinergic Changes in DLBpost-mortem neurochemistry

More extensive cholinergic loss than AD (cortex and brainstem rather than hippocampus)In vivo PET – loss of cortical acetylcholinesterase (AChE) in

DLB exceeds AD

Cortical ChAT loss greater than in AD

Striatal ChAT loss

Retained cortical M1 receptors and G-protein coupling

Reduced striatal M1 receptors

Cortical 42 nicotinic receptors reduced as in AD, but much more reduced in striatum

Page 27: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Clinical consequences of cholinergic lossesClinical consequences of cholinergic losses

Memory – hippocampus

Learning – hippocampus, cortex

Attention – cortex, thalamus

Consciousness, sleep, and dreaming -

brainstem, thalamus, cortex

Movement, balance and motor regulation –

striatum, brainstem, thalamus

Visual function – cortex, thalamus

Cholinergic transmission target frontal cortex

Basal Ganglia intrinsic

cholinergic neurons

Cholinergic transmission target - Thalamus, MD nucleus

Basal forebrain cholinergic nuclei - nbM Brain stem cholinergic

nuclei - PPN and LDTg

Page 28: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Cholinergic loss correlates with Cognitive DeclineReduced choline acetyltransferase (ChAT) in temporal and frontal cortex correlates with cognitive impairment

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9Dementia rating

p<0.001

control value

AC

h s

ynth

esis

(d

pm

/mg

pro

t/m

in)

in AD

and in DLB and PDD

Page 29: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Prevalence of recurrent complex VH in different disorders relates to the extent of cortical ChAT loss

20 30 40 50 60

PD

ADPDD

0

10

20

30

40

50

60

70

80

90

100

0 10

PSP

DLB

Controls

VaD

Rate of hallucinations

Lev

el o

f ch

olin

ergi

c ac

tivi

ty

Inferior temporal cortex

Visual Hallucinations

picture of hallucinationby artist with PD

Page 30: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

ChAT activity in temporal cortex

DLB with and without visual hallucinations

In DLB, more reduced ChAT is associated with visual hallucinations

+VH -VH

Ch

AT

nm

ol/h

r/m

g p

rote

in

0

1

2

3

4

12 5

p=0.02 Presence of VH is good predictor of response to ChEI

Page 31: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Hallucinations related to nicotinic receptors in DLB

Imaging –

• reduced 5IA85480 binding to 42 nicotinic receptors in DLB in striatum and frontal, temporal and cingulate cortex

• Increased 42 in occipital cortex associated with hallucinations

Page 32: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Fluctuations related to nicotinic receptors in DLBFluctuations related to nicotinic receptors in DLB

+FC -FC

0

1

2

3

4

3H

ep

iba

tid

ine

fm

ol/

mg

16 6

Temporal cortex

• Temporal cortex nicotinic receptor 42 reduced in DLB/PDD

• Greater reduction in cortex and thalamus in cases without fluctuations

Fluctuations impair ADL and are over seconds, minutes, hours, and days

In an environment of reduced cholinergic activity, a higher density of nicotinic receptors could amplify small transmitter changes leading to variations in consciousness and attention

Page 33: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Dopamine concentration and dopamine transporters are reduced in DLB, almost to the same extent as in

Parkinson’s disease

Dopamine in DLBDopamine in DLB

Control Alzheimer DLB no EPS DLB + EPS

Autoradiographs of dopamine transporter

Page 34: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

posterior caudate

0.0

0.2

0.4

0.6

0.8

1.0

12

5I

PE

2I

bin

din

g f

mo

l/m

g

posterior putamen

0.0

0.2

0.4

0.6

0.8

1.0

Control

PD no dementia

PDD

DLB+EPS

DLB no EPS

AD

Dopamine transporters in PD, PDD, DLB±EPS, and AD

Significant loss even in DLB with no EPS – support for FP-CIT SPECT (DaTSCAN) in AD/DLB discrimination

Page 35: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Striatal D2 receptors in PD, DLB and AD

Control PD DLB

controls PD DLB AD

controls PD DLB AD 0

10

20

30

40

50

14

8

17

26

[3H

] ra

clo

pri

de

fm

ol/m

g

0

10

20

30

40

50

12

8

15

27

caudate putamen

Page 36: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

nsb

20/21

2036

36

20

21

22Ent cx

36

20

21

22

Ent cx

36

20

21

22Ent cx

36

20

21

22

Ent cx

36

20

21

22

Cortical D2 receptors reduced in DLB and PDD

40% reduction in DLB (30% in PDD) in D2 receptors in temporal cortex; no change in AD

normal

DLB/PDD

Page 37: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Temporal cortex D2 decline with MMSE

DLB and PDD, Ba 20 N=20, r=0.58, p=0.008

Consistent with

• Neuroleptics impair cognition

• D2 PET in hippocampus correlates with memory

0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

DLBPDD

MMSE

125I

ep

idep

rid

e b

ind

ing

fm

ol/m

g

Page 38: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Thalamic D2 receptors elevated in PD (~50%) compared to controls and other disease groups

centromedian

0

1

2

3

4

5

6

7

10 3 9 9 5

laterodorsal nucleus

0

1

2

3

4

5

12 5 12 10 6

MD

0

1

2

3

4

5

6

7

12 5 9 10 5

parafascicular

0

2

4

6

8

7 3 8 8 4

reticular nucleus

0.0

0.5

1.0

1.5

2.0

12 6 11 11 5

ventral area centromedian

0

2

4

6

8

7 3 8 8 4

paraventricular nucleus

0

2

4

6

8

10

12

11 6 8 9 4

ventroposterior

0

2

4

6

8

7 5 6 7 3

control

PD no dementia

DLB - EPS

PDD

DLB + EPS

Page 39: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

reticular nucleus

0.0

0.5

1.0

1.5

12 5

centromedian

with DOC without DOC

0

1

2

3

4

5

6

10 6125

I ep

idep

rid

e f

mo

l/m

g

parafascicular

0

2

4

6

8

9 6

mediodorsal

0

1

2

3

4

10 5

with DOC

without DOC

Raised D2 in DLB/PDD with fluctuations in cortex and in thalamic nuclei with a role in maintenance of consciousness

reticular

MD

CM/pf

D2 cingulate cortex

0.00

0.25

0.50

0.75

1.00

6 5

Page 40: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

D2 receptors are on GABA interneurons i.e. inhibiting inhibitory neurons - a higher density of D2 receptors will amplify small transmitter changes

Dopamine mechanisms

• Elevated D2 receptors in PD - compensates for low dopamine

• Reduced D2 receptors in DLB and PDD may correlate with poor levodopa response and neuroleptic sensitivity

D2 receptors decline as PD progresses faster in cortex than striatum and thalamus

Page 41: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Cortical pyramidal neurone loss leads to reduced glutamate activity and cognitive impairment in AD

Glutamate markers in AD – inconsistent reports

Reduced NMDA binding and NMDAR1 mRNA expression in AD

Page 42: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

With reduced NMDA receptors in AD, odd that NMDA antagonist memantine effective

- it blocks NMDA receptor better than Mg2+

But reduced membrane potential(due to pathology, reduced energy metabolism) leads to release voltage dependent Mg2+ block of NMDA → and excessive, neurotoxic entry of Ca2+

So Memantine efficacy in moderate-severe AD with heavier pathology• acting as uncompetitive, low-affinity, open-channel blocker• limiting excessive glutamate• reducing signal to noise

Memantine is also a D2 agonist, 5HT3 antagonist

Page 43: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

• neurone loss & tangles in raphe, reduced 5HT

• relatively retained 5-HT function linked to more psychosis (AD and DLB)

• 5-HT2A receptors more reduced with severe dementia

• 5HT receptor polymorphisms linked to

Aggression, Psychosis, Depression, Anxiety

Serotonergic abnormalities

Noradrenergic Abnormalities

• Extensive neuron loss locus coeruleus, reductions in noradrenaline, increased turnover in surviving neurons linked to upregulation of the noradrenaline transporter

• In PD noradrenaline loss linked to → PDD

• Noradrenaline changes may be related to

Aggression, Psychosis, Depression

Page 44: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Fronto-Temporal Dementia

Younger onset (45 – 60 years)

Pathology most apparent in the II and deep cortical layers, coinciding with location of D2 and 5HT1 receptors

Neurotransmitter lossesSerotonin – concentration and transporters reduced, 5HT1A and 5HT2A receptors reduced

Compulsive behaviours, sweet and carbohydrate consumption

Dopamine – concentration and transporters reduced, D2 receptors elevated in striatum

Rigidity, flat facies, depression

Norepinephrine and some neuropeptide transmitters – slight reduction

Anxiety, suspiciousness, restlessness

Acetylcholine – little or no reduction greater imbalance DA/ACh in striatum may exacerbate EPS

GABA, glutamate - unchanged

Page 45: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Cholinesterase inhibitors delusions, hallucinations, agitation, aggression, anxiety, apathy, as well as cognition (implying cholinergic mechanisms)

Galantamine (Reminyl, or Razadyne) AChEI and nicotinic receptor allosteric modulator Donepezil (Aricept) AChEIRivastigmine (Exelon) AChEI and BuCHEI

Cholinergic Therapy - Residual receptor availability

Page 46: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Why might DLB Patients respondto Cholinergic Treatment?

• Cortical muscarinic receptors up-regulated

• M1 receptors remain coupled to G-proteins (unlike AD)

• ACh very reduced

• Less neuron loss or cortical atrophy

• Little or no tangle burden

• Symptoms fluctuate potential for higher function to be restored

• Low M1 receptors in striatum avoids worsening parkinsonism

• AChEI only inhibit 30% AChE activity

0 10 20 30 40 50 600

50

100

150

Striatal D2

M1

DLB

PDD PD

ADControl

Page 47: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Smoking (and coffee drinking) inversely associated with PD, not

with AD (most studies)

Neuronal survival Alzheimer pathologyCognitive impairment

Cholinergic and dopaminergic influence and consequences

See table of anticholinergic medications – many regularly used by the elderly.

Implications – Anticholinergic Medication Use and Cognitive Impairment in the Older Population: The MRC Cognitive Function in Ageing Study. Fox et al JAGS 2011

Page 48: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Normal elderly (female) smokers and non-smokersNormal elderly (female) smokers and non-smokers

Nicotine use (tobacco) associated with lower plaque densities in normal elderly

Page 49: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

• Muscarinic M1 Agonists reduce A levels in CSF in AD• In triple-Tg-AD mouse, M1 agonist AF267B rescued cognitive deficits

and reduced A and tau pathology

(dicyclomine M1 antagonist)

• Cholinesterase inhibitors may reduce amyloid

CHOLINERGIC TRANSMISSIONReduces Alzheimer-type pathology

Reviews

Fisher A., Neurotherapeutics: 5 2008, 433-442

Caccamo A., Current Alzheimer Research. 6 2009:112-7

Page 50: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Alzheimer pathology increased in PD in relation to antimuscarinic drugs

acute <2y, chronic 2-18y Anticholinergics: benztropine, orphenadrine, trihexyphenidyl, oxybutyninGroups matched for age and PD duration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

21 15 18 21 15 18

SENILE PLAQUES

p=0.005compared to no drug

NEUROFIBRILLARY TANGLES

P=0.02 compared to no drug

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0NO DRUG

ACUTE

CHRONIC

NO DRUG ACUTE CHRONIC

Page 51: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

NEUROLEPTIC MEDICATION IS ASSOCIATED WITHINCREASED TANGLE DENSITY IN DLB/PDD

DLB/PDD matched for age, duration of PD, duration of dementia, MMSE, prevalence of delusions and visual hallucinations

anterior cingulate cortex frontal cortex

- NL(23)

+ NL(17)

- NL(23)

+ NL(17)

*p=0.04

Tan

gle

den

sity

Page 52: Dr Margaret Piggott margaret.piggott@ncl.ac.uk margaret.piggott@ntw.nhs.uk

Cognitive and Neuropsychiatric Symptoms in dementiaCognitive and Neuropsychiatric Symptoms in dementia

Can Cholinergic and Dopaminergic Mechanisms Explain All?Can Cholinergic and Dopaminergic Mechanisms Explain All?

Not quite – glutamate, serotonin and noradrenaline also important

other influences need elucidation


Recommended