Transcript

1a 1b

Course Administration

Math Placement

Syllabus (show text)

WebAssign, class keys on syllabus

FDOC_self_enrollment.ppt

Your first homework assignment:

(1) self enroll in WebAssign

(2) Intro to WebAssign

(3) Math 171 week #1A

Due this Friday at 11:59pm for MW and TuTh

tutorials.

Due this Saturday at 11:59pm for WF tutorials.

First tutorial meeting this week is cancelled.

ยง1.1 Function Machines

sketch x [f] y = f(x), input, output

domain={possible inputs}

range={possible outputs}

x is the independent variable (represents an input

value)

y is the dependent variable (represents an output

value)

A function is a rule that assigns to each element in its

domain exactly one element in its range.

Example. ๐‘“ ๐‘ฅ = ๐‘ฅ2, โˆ’1 โ‰ค ๐‘ฅ โ‰ค 1. domain

= [โˆ’1,1]. range = [0,1]. โ– 

2a 2b

Interval Notation

๐‘ฅ โˆˆ [โˆ’1,1] means โˆ’1 โ‰ค ๐‘ฅ โ‰ค 1

๐‘ฅ โˆˆ (โˆ’1,1) means โˆ’1 < ๐‘ฅ < 1

๐‘ฅ โˆˆ (โˆ’โˆž,โˆž) means ๐‘ฅ is any real no.

Example. ๐‘” ๐‘ฅ = ๐‘ฅ2, domain = (โˆ’โˆž,โˆž).

range= [0, โˆž). โ– 

If the domain of a function is not given explicitly,

assume it is the largest set of numbers that makes

sense.

Example. ๐‘• ๐‘ฅ = ๐‘ฅ, domain not given.

Assume domain= [0, โˆž). range = [0,โˆž). โ– 

Graphs

Example. ๐‘ฆ = ๐‘ฅ2

sketch โ€ฆโˆ’ 1 โ€ฆ 0 โ€ฆ 1 โ€ฆ๐‘ฅ- (independent variable),

0 โ€ฆ๐‘ฆ- (dependent variable), curveโ– 

Example. ๐‘ฆ = ๐‘ฅ

sketch 0 โ€ฆ 4 โ€ฆ๐‘ฅ-, 0 โ€ฆ 2 โ€ฆ๐‘ฆ-, curveโ– 

3a 3b

Example. Graph the set of points that satisfy ๐‘ฆ2 = ๐‘ฅ.

Table x / 0, 1, 4; y/ 0, ยฑ1, ยฑ2

sketch 0 โ€ฆ 4 โ€ฆ๐‘ฅ-, โˆ’2 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฆ-, curve

Is this a function?

?? Why? โ– 

Vertical Line Test

A curve in the xy-plane is the graph of a function iff

no vertical line intersects the curve more than once.

Example. Draw the graph of ๐‘ฅ2 + ๐‘ฆ2 = 1.

axes, circle, vertical line intersecting circle twice

?? Is this the graph of a function?

?? Why?

4a 4b

Even and odd symmetry

If ๐‘“(๐‘ฅ) satisfies

๐‘“ โˆ’๐‘ฅ = ๐‘“(๐‘ฅ)

for every ๐‘ฅ in its domain, then ๐‘“ is called an even

function.

Example. ๐‘“ ๐‘ฅ = ๐‘ฅ2,

๐‘“ โˆ’๐‘ฅ = โˆ’๐‘ฅ 2 = โˆ’๐‘ฅ โˆ’๐‘ฅ = ๐‘ฅ2 = ๐‘“(๐‘ฅ).

?? If ๐‘“ is even, its graph is symmetric wrt which axis?

โ– 

If ๐‘”(๐‘ฅ) satisfies

๐‘” โˆ’๐‘ฅ = โˆ’๐‘”(๐‘ฅ)

for every ๐‘ฅ in its domain, then ๐‘” is an odd function.

Example. ๐‘” ๐‘ฅ = ๐‘ฅ3,

๐‘” โˆ’๐‘ฅ = โˆ’๐‘ฅ โˆ’๐‘ฅ โˆ’๐‘ฅ = โˆ’๐‘ฅ3 = โˆ’๐‘”(๐‘ฅ) .

Table x/ 0, -1, 1, -2, 2; y/ 0, -1, 1, -8, 8

sketch โˆ’2 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฅ-, โˆ’8 โ€ฆ 0 โ€ฆ 8 โ€ฆ๐‘ฆ-, curve

?? If ๐‘” is odd, its graph is symmetric wrt what? โ– 

Knowing even or odd symmetry helps us sketch

functions.

5a 5b

ยง1.2 Catalog Of Functions

Straight lines

slope intercept form

๐‘ฆ = ๐‘š๐‘ฅ + ๐‘

sketch โ€ฆ 0 โ€ฆ๐‘ฅ- axis, 0 โ€ฆ๐‘ฆ- axis, intercept ๐‘,

line,(๐‘ฅ, ๐‘ฆ),ฮ”๐‘ฅ, ฮ”๐‘ฆ

slope = ฮ”๐‘ฆ

ฮ”๐‘ฅ=

๐‘ฆโˆ’๐‘

๐‘ฅโˆ’0= ๐‘š

Example. ๐‘ฆ =1

2๐‘ฅ + 1

Table

sketch โˆ’2 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฅ-, 0 โ€ฆ 1 โ€ฆ 2 โ€ฆ๐‘ฆ-, intercept,

line

โ– 

point slope form

๐‘ฆ โˆ’ ๐‘ฆ1 = ๐‘š(๐‘ฅ โˆ’ ๐‘ฅ1)

sketch 0 โ€ฆ๐‘ฅ-, โ€ฆ๐‘ฆ-,(๐‘ฅ1, ๐‘ฆ1), line, (๐‘ฅ, ๐‘ฆ),๐‘ฅ โˆ’ ๐‘ฅ1 = ๐›ฅ๐‘ฅ,

๐‘ฆ โˆ’ ๐‘ฆ1 = ๐›ฅ๐‘ฆ

๐›ฅ๐‘ฆ

๐›ฅ๐‘ฅ= ๐‘š

6a 6b

Example. ๐‘ฆ โˆ’ 2 =1

2(๐‘ฅ โˆ’ 2)

convert to slope intercept form

solve for y

๐‘ฆ =

same as previous example โ– 

Power Functions

general form

๐‘ฆ = ๐‘ฅ๐›ผ where ๐›ผ is a constant

Example ๐‘ฆ = ๐‘ฅ straight line

?? slope ?? y-intercept

Example ๐‘ฆ = ๐‘ฅ2 parabola

Example ๐‘ฆ = ๐‘ฅ1

2 square root (๐‘ฅ1

2 = ๐‘ฅ)

Example ๐‘ฆ = ๐‘ฅโˆ’1 (๐‘ฅโˆ’1 = 1/๐‘ฅ)

sketch โˆ’2 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฅ-, โˆ’2 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฆ-

โ– 

7a 7b

Polynomial Functions

Example ๐‘ฆ = 1 โˆ’ ๐‘ฅ2

sketch โˆ’2 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฅ-, โˆ’2 โ€ฆ 0 โ€ฆ 1 โ€ฆ๐‘ฆ-, parabola

โ– 

A quadratic function is a polynomial of degree 2.

๐‘ฆ = ๐‘Ž2๐‘ฅ2 + ๐‘Ž1๐‘ฅ + ๐‘Ž0

๐‘Ž2, ๐‘Ž1 , ๐‘Ž0 are constants add

The degree of a polynomial is the highest power that

it contains.

A polynomial of degree ๐‘› has the form

๐‘ƒ ๐‘ฅ = ๐‘Ž๐‘›๐‘ฅ๐‘› + ๐‘Ž๐‘›โˆ’1๐‘ฅ

๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž2๐‘ฅ2 + ๐‘Ž1๐‘ฅ + ๐‘Ž0.

Piecewise defined functions

Example ๐‘“ ๐‘ฅ = ๐‘ฅ + 1, ๐‘ฅ โ‰  11, ๐‘ฅ = 1

sketch โˆ’1 โ€ฆ 2 โ€ฆ๐‘ฅ-, 0 โ€ฆ 3 โ€ฆ๐‘ฆ-, line with hole, dot

โ– 

Example Absolute Value Function ๐‘“ ๐‘ฅ = |๐‘ฅ|

gives distance from the origin on the real number line

sketch โˆ’2 โ€ฆ 0 โ€ฆ 2, bracket โˆ’2 and 0

distance between โˆ’2 and 0 is 2, โˆ’2 = 2

8a 8b

graph ๐‘ฆ = |๐‘ฅ|

sketch โˆ’2 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฅ-, 0 โ€ฆ 2 โ€ฆ๐‘ฆ-, graph

piecewise definition ๐‘ฅ = ๐‘ฅ, ๐‘ฅ > 0โˆ’๐‘ฅ, ๐‘ฅ < 0

โ– 

Rational Functions

A rational function is a ratio of two polynomials

๐‘“ ๐‘ฅ =๐‘ƒ(๐‘ฅ)

๐‘„(๐‘ฅ)

where ๐‘ƒ, ๐‘„ are polynomials.

Example (a case of special interest to us)

๐‘“ ๐‘ฅ =๐‘ฅ2โˆ’1

๐‘ฅโˆ’1

?? domain of f?

Important Algebraic Trick!

๐‘ฅ โˆ’ 1 ๐‘ฅ + 1 =

In general, ๐‘ฅ โˆ’ ๐‘Ž ๐‘ฅ + ๐‘Ž = ๐‘ฅ2 โˆ’ ๐‘Ž2. Then

๐‘“ ๐‘ฅ = ๐‘ฅ โˆ’ 1 (๐‘ฅ + 1)

๐‘ฅ โˆ’ 1=

๐‘ฅ + 1, if ๐‘ฅ โ‰  1 undefined, if ๐‘ฅ = 1

sketch โˆ’1 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฅ-, 0 โ€ฆ 2 โ€ฆ๐‘ฆ-, line with hole

โ– 

9a 9b

Sine and Cosine

sketch โ€“ ๐œ‹, โ€ฆ 0 โ€ฆ3๐œ‹

2โ€ฆ๐‘ฅ-, โˆ’1 โ€ฆ 0 โ€ฆ 1.., sin(๐‘ฅ),

cos(๐‘ฅ)

properties of sine

โˆ’1 โ‰ค sin ๐‘ฅ โ‰ค 1

sin 0 = 0, sin ๐œ‹ = 0, sin 2๐œ‹ = 0, generally

sin ๐‘›๐œ‹ = 0 for ๐‘› an integer

sin ๐œ‹

2 = 1, sin โˆ’

๐œ‹

2 = โˆ’1

sin ๐‘ฅ + 2๐œ‹ = sin(๐‘ฅ) periodicity with period 2๐œ‹

sin ๐‘ฅ + ๐œ‹ = โˆ’sin(๐‘ฅ) advance by half a period

?? sin โˆ’๐‘ฅ = โ‹ฏ, ?? symmetry?

properties of cosine

โˆ’1 โ‰ค cos ๐‘ฅ โ‰ค 1

cos ๐œ‹

2 = 0, cos

3๐œ‹

2 = 0, cos

5๐œ‹

2 = 0, generally

cos ๐‘› +1

2 ๐œ‹ = 0 for ๐‘› an integer

cos 0 = 1, cos ๐œ‹ = โˆ’1

cos ๐‘ฅ + 2๐œ‹ = cos(๐‘ฅ) periodicity with period 2๐œ‹

cos ๐‘ฅ + ๐œ‹ = โˆ’cos(๐‘ฅ) advance by half a period

?? cos โˆ’๐‘ฅ = โ‹ฏ, ?? symmetry?

10a 10b

Two Important Triangles

sketch 45-45-90 triangle, lengths of sides

Pythagorean theorem: 1

2+

1

2= 1

sin ๐œ‹

4 = cos

๐œ‹

4 =

1

2=

2

2โ‰ˆ 0.71

sketch 30-60-90 triangle, lengths of sides

Pythagorean theorem: 3

4+

1

4= 1

sin ๐œ‹

6 = cos

๐œ‹

3 =

1

2

sin ๐œ‹

3 = cos

๐œ‹

6 =

3

2โ‰ˆ 0.87

Tangent

tan ๐‘ฅ =sin ๐‘ฅ

cos ๐‘ฅ

tan โˆ’๐‘ฅ =

?? symmetry

11a 11b

graph tangent

sketch โ€“๐œ‹

2โ€ฆ 0 โ€ฆ

3๐œ‹

2โ€ฆ๐‘ฅ-, โ€ฆ 0 โ€ฆ๐‘ฆ-, vert. asymptotes,

curve

โˆ’๐œ‹

2,

๐œ‹

2,

3๐œ‹

2, โ€ฆ not in the domain of tan ?? why

tan ๐‘ฅ + ๐œ‹ =

period ๐œ‹

tan 0 = tan ๐œ‹ = โ‹ฏ = 0

tan ๐œ‹

4 =

sin ๐œ‹

4

cos ๐œ‹

4

= 1

similarly find tan ๐œ‹

6 =

1

3 and tan

๐œ‹

3 = 3

ยง1.3 The Limit of a Function

sketch โ€ฆ๐‘Žโ€ฆ . , โ€ฆ๐ฟโ€ฆ, curve ๐‘“, hole at ๐‘Ž

Informal definition of limit

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ = ๐ฟ

means that we can make ๐‘“(๐‘ฅ) as close as we wish to

๐ฟ by taking ๐‘ฅ sufficiently close to ๐‘Ž (but not equal to

๐‘Ž).

Alternate notation: ๐‘“ ๐‘ฅ โ†’ ๐ฟ as ๐‘ฅ โ†’ ๐‘Ž

12a 12b

Example. ๐‘“ ๐‘ฅ = ๐‘ฅ + 1

โ€ฆ 1 โ€ฆ , โ€ฆ 1 โ€ฆ 2 โ€ฆ, line ๐‘“

imagine a bug approaching ๐‘ฅ = 1 on either side

add arrows towards ๐‘ฅ = 1, arrows towards ๐‘ฆ = 2

lim๐‘ฅโ†’1 ๐‘“ ๐‘ฅ = 2

lim๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ)has nothing to do with ๐‘“(๐‘Ž)

Example ๐‘” ๐‘ฅ = ๐‘ฅ + 1, ๐‘ฅ โ‰  11, ๐‘ฅ = 1

sketch โ€ฆ 1 โ€ฆ๐‘ฅ-, โ€ฆ 1 โ€ฆ 2 โ€ฆ, line with hole, dot

add arrows towards ๐‘ฅ = 1, arrows towards ๐‘ฆ = 2

lim๐‘ฅโ†’1 ๐‘” ๐‘ฅ = 2 โ– 

13a 13b

Limit is a 2-sided concept

Example. Step function

๐ป ๐‘ฅ = 0, ๐‘ฅ < 01, ๐‘ฅ โ‰ฅ 0

โ€ฆ 0 โ€ฆ๐‘ฅ-, 0 โ€ฆ 1 โ€ฆ, ๐ป(๐‘ฅ)

lim๐‘ฅโ†’0 ๐ป(๐‘ฅ) DNE (does not exist)โ– 

One sided limits

Informal definition

lim๐‘ฅโ†’๐‘Žโˆ’ ๐‘“ ๐‘ฅ = ๐ฟ1 limit from left or left hand limit

means we can make ๐‘“(๐‘ฅ) as close as we wish to ๐ฟ1

by taking ๐‘ฅ sufficiently close to ๐‘Ž from the left.

lim๐‘ฅโ†’๐‘Ž+ ๐‘“ ๐‘ฅ = ๐ฟ2 limit from right or โ€ฆ

means we can make ๐‘“(๐‘ฅ) as close as we wish to ๐ฟ2

by taking ๐‘ฅ sufficiently close to ๐‘Ž from the right.

Example. (step function again)

?? lim๐‘ฅโ†’0+ ๐ป ๐‘ฅ =

?? lim๐‘ฅโ†’0โˆ’ ๐ป ๐‘ฅ =

โ– 

14a 14b

the (2-sided) limit

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ = ๐ฟ

if and only if

lim๐‘ฅโ†’๐‘Ž+ ๐‘“ ๐‘ฅ = ๐ฟ and lim๐‘ฅโ†’๐‘Žโˆ’ ๐‘“ ๐‘ฅ = ๐ฟ

?? Practice with limits

Precise definition of a limit

0 โ€ฆ๐‘Žโ€ฆ๐‘ฅ-, 0 โ€ฆ๐ฟโ€ฆ๐‘ฆ-, ๐‘“(๐‘ฅ), hole at ๐‘ฅ = ๐‘Ž, dot

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ = ๐ฟ means

For every ๐œ– > 0 there is a ๐›ฟ > 0 such that

if ๐‘Ž โˆ’ ๐›ฟ < ๐‘ฅ < ๐‘Ž + ๐›ฟ (๐‘ฅ โ‰  ๐‘Ž)

then ๐ฟ โˆ’ ๐œ– < ๐‘“ ๐‘ฅ < ๐ฟ + ๐œ–

add ๐‘Ž โˆ’ ๐›ฟ, ๐‘Ž + ๐›ฟ, ๐ฟ โˆ’ ๐œ–, ๐ฟ = ๐œ–, segments

ยง1.4 Calculating Limits

Two Special Limits

A. Let ๐‘ be a constant

lim๐‘ฅโ†’๐‘Ž ๐‘ = ๐‘

0 โ€ฆ๐‘Žโ€ฆ๐‘ฅ-, 0 โ€ฆ๐‘ฆ-, line ๐‘ฆ = ๐‘, arrows approaching

๐‘ฅ = ๐‘Ž

15a 15b

B. Consider ๐‘“ ๐‘ฅ = ๐‘ฅ

lim๐‘ฅโ†’๐‘Ž ๐‘ฅ = ๐‘Ž

0 โ€ฆ๐‘Žโ€ฆ๐‘ฅ-, 0 โ€ฆ๐‘Žโ€ฆ๐‘ฆ-, ๐‘“ ๐‘ฅ = ๐‘ฅ

add arrows approaching ๐‘ฅ = ๐‘Ž, add arrows

approaching ๐‘ฆ = ๐‘Ž

Five Limit Laws

Suppose that ๐‘ is a constant and

lim๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ), lim๐‘ฅโ†’๐‘Ž ๐‘”(๐‘ฅ) exist.

1. sum law (limit of sum is sum of limits)

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ + ๐‘” ๐‘ฅ = lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ + lim๐‘ฅโ†’๐‘Ž ๐‘”(๐‘ฅ)

2. difference law

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ = lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ โˆ’ lim๐‘ฅโ†’๐‘Ž ๐‘”(๐‘ฅ)

3. constant multiple law

lim๐‘ฅโ†’๐‘Ž ๐‘ ๐‘“ ๐‘ฅ = ๐‘ lim๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ)

4. product law

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ = lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ โ‹… lim๐‘ฅโ†’๐‘Ž ๐‘”(๐‘ฅ)

5. quotient law

lim๐‘ฅโ†’๐‘Ž๐‘“ ๐‘ฅ

๐‘” ๐‘ฅ =

lim ๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ)

lim ๐‘ฅโ†’๐‘Ž ๐‘”(๐‘ฅ) ,

so long as lim๐‘ฅโ†’๐‘Ž ๐‘” ๐‘ฅ โ‰  0

16a 16b

Example

lim๐‘ฅโ†’1 3๐‘ฅ + 5 sum law

= lim๐‘ฅโ†’1

3๐‘ฅ + lim๐‘ฅโ†’1 5

constant multiple law

= 3 lim๐‘ฅโ†’1 ๐‘ฅ + lim๐‘ฅโ†’1 5

special limits

= 3 โ‹… 1 + 5 = 8 โ– 

Example

lim๐‘ฅโ†’2๐‘ฅ2

๐‘ฅ+1 quotient law

=lim ๐‘ฅโ†’2 ๐‘ฅ2

lim ๐‘ฅโ†’2(๐‘ฅ+1)

product and sum laws

= lim ๐‘ฅโ†’2 ๐‘ฅโ‹…lim ๐‘ฅโ†’2 ๐‘ฅ

lim ๐‘ฅโ†’2 ๐‘ฅ+lim ๐‘ฅโ†’2 1

special limits

=2โ‹…2

2+1 =

4

3 โ– 

Repeated Application of the Product Law

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ โ‹… ๐‘” ๐‘ฅ โ‹… ๐‘• ๐‘ฅ = lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ โ‹… ๐‘˜(๐‘ฅ)

where ๐‘” โ‹… ๐‘• = ๐‘˜

product law

= lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ โ‹… lim๐‘ฅโ†’๐‘Ž ๐‘˜(๐‘ฅ)

product law

= lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ โ‹… lim๐‘ฅโ†’๐‘Ž ๐‘” ๐‘ฅ โ‹… lim๐‘ฅโ†’๐‘Ž ๐‘•(๐‘ฅ)

Power Law

Suppose ๐‘“ ๐‘ฅ = ๐‘” ๐‘ฅ = ๐‘•(๐‘ฅ) then from above

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ 3 = lim๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ) 3

Apply the same reasoning to a product of ๐‘› factors of

๐‘“(๐‘ฅ) to get the Power Law:

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ ๐‘› = lim๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ) ๐‘›

where ๐‘› is any positive integer

17a 17b

Example. Cubic Polynomial.

lim๐‘ฅโ†’2 ๐‘ฅ3 โˆ’ 4๐‘ฅ difference law

= lim๐‘ฅโ†’2

๐‘ฅ3 โˆ’ lim๐‘ฅโ†’2

4๐‘ฅ

power, constant multiple laws

= lim๐‘ฅโ†’2 ๐‘ฅ 3 = 4 lim๐‘ฅโ†’2 ๐‘ฅ

special limits

= 23 โˆ’ 4 โ‹… 2 = 0 โ– 

Recall polynomials of degree ๐‘›. Their general form is

๐‘ƒ ๐‘ฅ = ๐‘๐‘›๐‘ฅ๐‘› + ๐‘๐‘›โˆ’1๐‘ฅ

๐‘›โˆ’1 + โ‹ฏ + ๐‘1๐‘ฅ + ๐‘0

where ๐‘๐‘› , ๐‘๐‘›โˆ’1, โ€ฆ , ๐‘1, ๐‘0 are constants.

By reasoning similar to the cubic polynomial example

lim๐‘ฅโ†’๐‘Ž ๐‘ƒ ๐‘ฅ sum law, const. multiple law

= ๐‘๐‘› lim๐‘ฅโ†’๐‘Ž ๐‘ฅ๐‘› + โ‹ฏ + ๐‘1 lim๐‘ฅโ†’๐‘Ž ๐‘ฅ + lim๐‘ฅโ†’๐‘Ž ๐‘0

power law, special limit

= ๐‘๐‘›๐‘Ž๐‘› + โ‹ฏ๐‘1๐‘Ž + ๐‘0

= ๐‘ƒ(๐‘Ž)

we have discovered the following

Direct Substitution Property for polynomials

If ๐‘ƒ(๐‘ฅ) is any polynomial and ๐‘Ž is a real number then

lim๐‘ฅโ†’๐‘Ž ๐‘ƒ ๐‘ฅ = ๐‘ƒ(๐‘Ž).

This is much easier to apply than the limit laws!

Recall that a rational function is a ratio of two

polynomials.

๐‘“ ๐‘ฅ =๐‘ƒ ๐‘ฅ

๐‘„ ๐‘ฅ , where ๐‘ƒ and ๐‘„ are polynomials

Let ๐‘“(๐‘ฅ) be any rational function

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ =lim ๐‘ฅโ†’๐‘Ž ๐‘ƒ(๐‘ฅ)

lim ๐‘ฅโ†’๐‘Ž ๐‘„(๐‘ฅ) quotient law

=๐‘ƒ(๐‘Ž)

๐‘„(๐‘Ž) direct subst. for polys

so long as ๐‘„ ๐‘Ž โ‰  0.

we now have a โ€ฆ

18a 18b

Direct Substitution Property for rational functions

If ๐‘“(๐‘ฅ) is a rational function and ๐‘Ž is a number in the

domain of ๐‘“

lim๐‘ฅโ†’๐‘Ž

๐‘“ ๐‘ฅ = ๐‘“(๐‘Ž)

Example.

lim๐‘ฅโ†’1

๐‘ฅ4 + ๐‘ฅ2 โˆ’ 6

๐‘ฅ4 โˆ’ 2๐‘ฅ + 3=

14 + 12 โˆ’ 6

14 + 2 โ‹… 1 + 3=

โˆ’4

6=

โˆ’2

3

by Direct Substitution for rational functions! โ– 

Root Law For Limits

Let ๐‘› be a positive integer

lim๐‘ฅโ†’๐‘Ž

๐‘“(๐‘ฅ)๐‘›

= lim๐‘ฅโ†’๐‘Ž

๐‘“(๐‘ฅ)๐‘› ,

If ๐‘› is even then require lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ > 0.

Example. lim๐‘ฅโ†’โˆ’2 ๐‘ข4 + 3๐‘ข + 6 root law

= lim๐‘ฅโ†’โˆ’2

(๐‘ข4 + 3๐‘ข + 6)

direct subst. for polys.

= 16 โˆ’ 6 + 6 = 4 โ– 

Indeterminate Forms

Example. Let lim๐‘กโ†’2๐‘ก2+๐‘กโˆ’6

๐‘ก2โˆ’4= ๐ฟ

We call this an indeterminate form of type 0

0 since

direct substitution of ๐‘ก = 2 into the rational function

gives that quotient, which is not defined. We cannot

use the quotient law!

Factor the numerator and denominator:

๐‘ก2+๐‘กโˆ’6

๐‘ก2โˆ’4=

๐‘ก+3 (๐‘กโˆ’2)

๐‘ก+2 (๐‘กโˆ’2) if ๐‘ก โ‰  2

=๐‘ก+3

๐‘กโˆ’2

19a 19b

Recall that lim๐‘กโ†’2 ๐‘“(๐‘ก) does not depend on ๐‘“(2)!

Then

๐ฟ = lim๐‘กโ†’2๐‘ก+3

๐‘กโˆ’3=

5

4. โ– 

Rationalization and Cancellation

Example. Consider the following indeterminate form

lim๐‘ฅโ†’โˆ’1 ๐‘ฅ+2โˆ’1

๐‘ฅ+1= ๐ฟ type

0

0.

Rationalize the quotient and simplify as follows:

๐‘ฅ+2โˆ’1

๐‘ฅ+1=

๐‘ฅ+2โˆ’1

๐‘ฅ+1 ๐‘ฅ+2+1

๐‘ฅ+2+1=

(๐‘ฅ+1)

๐‘ฅ+1 ( ๐‘ฅ+2+1)

if ๐‘ฅ โ‰  โˆ’1

=1

๐‘ฅ+2+1

but lim๐‘ฅโ†’โˆ’1 ๐‘“(๐‘ฅ) does not depend on ๐‘“(โˆ’1)! Then

๐ฟ = lim๐‘ฅโ†’โˆ’11

๐‘ฅ+2+1=

1

2. โ– 

Limits Involving Absolute Values

Recall that a limit exists iff the corresponding left and

right hand limits are equal.

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ = ๐ฟ

โ‡” (both lim๐‘ฅโ†’๐‘Ž+

๐‘“ ๐‘ฅ = ๐ฟ and lim๐‘ฅโ†’๐‘Žโˆ’

๐‘“ ๐‘ฅ = ๐ฟ)

Recall the piecewise definition of absolute value

๐‘ง = ๐‘ง, ๐‘ง > 0โˆ’๐‘ง, ๐‘ง < 0

.

Use this when evaluating limits involving absolute

values.

Example. Let ๐ฟ = lim๐‘ฅโ†’

3

2

2 ๐‘ฅ2โˆ’3๐‘ฅ

|2๐‘ฅโˆ’3|

2๐‘ฅ โˆ’ 3 = 2๐‘ฅ โˆ’ 3, ๐‘ฅ > 3/23 โˆ’ 2๐‘ฅ, ๐‘ฅ < 3/2

Find ๐ฟ1 = lim๐‘ฅโ†’

3

2+

2 ๐‘ฅ2โˆ’3๐‘ฅ

2๐‘ฅโˆ’3= lim

๐‘ฅโ†’3

2+

๐‘ฅ(2๐‘ฅโˆ’3)

2๐‘ฅโˆ’3

= lim๐‘ฅโ†’

3

2+๐‘ฅ =

3

2

20a 20b

and ๐ฟ2 = lim๐‘ฅโ†’

3

2โˆ’

2 ๐‘ฅ2โˆ’3๐‘ฅ

3โˆ’2๐‘ฅ= lim

๐‘ฅโ†’3

2โˆ’

๐‘ฅ(2๐‘ฅโˆ’3)

3โˆ’2๐‘ฅ=

= lim๐‘ฅโ†’

3

2โˆ’โˆ’๐‘ฅ = โˆ’

3

2

๐ฟ does not exist because ๐ฟ1 โ‰  ๐ฟ2.โ– 

Limits of Trig Functions

โˆ’๐œ‹

2โ€ฆ 0 โ€ฆ

๐œ‹

2โ€ฆ๐‘ฅ-, sin(๐‘ฅ)

lim๐‘ฅโ†’0 sin ๐‘ฅ = 0

add ๐‘ฅ, slope agrees with sin(๐‘ฅ) at the origin

(1)

This limit is a type 0/0 indeterminate form. However,

the ratio sin ๐‘ฅ

๐‘ฅโ†’ 1 as ๐‘ฅ โ†’ 0. The text proves this

using a geometric argument and the squeeze

theorem.

Example. Find L = lim๐‘กโ†’0sin (2๐‘ก)

๐‘ก (*)

๐ฟ = lim๐‘กโ†’0sin (2๐‘ก)

2๐‘กโ‹… 2

const. multiple law

= 2 โ‹… lim๐‘กโ†’0sin (2๐‘ก)

2๐‘ก

Let ๐‘ข = 2๐‘ก. Notice that ๐‘ข โ†’ 0 as ๐‘ก โ†’ 0. Thus

๐ฟ = 2 โ‹… lim๐‘ขโ†’0sin (๐‘ข)

๐‘ข by equation (1)

= 2

lim๐‘ฅโ†’0sin (๐‘ฅ)

๐‘ฅ= 1

21a 21b

WARNING By a trig identity

sin 2๐‘ก = 2 sin ๐‘ก cos(๐‘ก).

Thus, simplifying Equation (*) by writing โ€œsin 2๐‘ก =

2 sin(๐‘ก)โ€ shows incorrect reasoning, even though it

leads to the correct answer. This would likely lead to

a loss of points on an exam. For full credit multiply

and divide by 2 as shown. โ– 

โˆ’๐œ‹

2โ€ฆ 0 โ€ฆ

๐œ‹

2โ€ฆ๐‘ฅ-, cos(๐‘ฅ)

By the graph it is clear that

lim๐‘ฅโ†’0 cos ๐‘ฅ = 1 (2)

Corollary. lim๐œƒโ†’0cos ๐œƒ โˆ’1

๐œƒ= 0

Proof.

lim๐œƒโ†’0cos ๐œƒ โˆ’1

๐œƒ multiply by 1

= lim๐œƒโ†’0cos ๐œƒ โˆ’1

๐œƒ

cos ๐œƒ +1

cos ๐œƒ +1

simplify numerator

= lim๐œƒโ†’0cos 2 ๐œƒ โˆ’1

๐œƒ(cos ๐œƒ +1)

sin2 ๐œƒ + cos2(๐œƒ) = 1

= lim๐œƒโ†’0โˆ’ sin 2(๐œƒ)

๐œƒ(cos ๐œƒ +1)

algebra

= lim๐œƒโ†’0sin (๐œƒ)

๐œƒ

โˆ’ sin ๐œƒ

cos ๐œƒ +1

product law for limits

= lim๐œƒโ†’0sin (๐œƒ)

๐œƒโ‹… lim๐œƒโ†’0

โˆ’ sin ๐œƒ

cos ๐œƒ +1

using (1), (2) and the quotient law

= 0 โ– 

22a 22b

One further example.

?? Find L = lim๐‘ฅโ†’0tan (2๐‘ฅ)

๐‘ฅ.

โ– 

ยง1.5 Continuity

Informal definition A function is continuous is it can

be drawn without removing pencil from the paper.

โ€ฆ๐‘โ€ฆ๐‘Žโ€ฆ๐‘โ€ฆ๐‘ฅ-. ,โ€ฆ๐‘ฆ-, ๐‘“ continuous on ๐‘, ๐‘ ,

๐‘” with hole at ๐‘Ž

๐‘“ is continuous on (๐‘, ๐‘)

๐‘” is discontinuous at ๐‘Ž.

common abbreviations: cts = continuous and dcts =

discontinuous.

23a 23b

Formal definition. A function ๐‘“ is continuous at a

number ๐‘Ž if

lim๐‘ฅโ†’๐‘Ž

๐‘“ ๐‘ฅ = ๐‘“(๐‘Ž)

if not, ๐‘“ is discontinuous at ๐‘Ž.

Three conditions required for continuity:

(1) ๐‘“(๐‘Ž) exists

(2) lim๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ) exists

(3) lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ = ๐‘“(๐‘Ž)

Three types of discontinuity

A. Infinite discontinuity

Example. ๐‘“ ๐‘ฅ = 1/๐‘ฅ2 sketch

๐‘“ is discontinuous at ๐‘ฅ = 0. (1) and (2) are violated.

B. Jump discontinuity

Example. ๐‘” ๐‘ฅ = 1, ๐‘ฅ โ‰ฅ 00, ๐‘ฅ < 0

sketch

๐‘” is discontinuous at ๐‘ฅ = 0. (2) is violated.

C. Removable discontinuity

Example. ๐‘• ๐‘ฅ = ๐‘ฅ + 1, ๐‘ฅ โ‰  10, ๐‘ฅ = 1

sketch

๐‘• is discontinuous at ๐‘ฅ = 1. (3) is violated.

24a 24b

Continuity on an open interval

If ๐‘“ is continuous at each point of an open interval ๐ผ,

we say ๐‘“ is continuous on ๐ผ.

Fact. Every polynomial is continuous at every real

number

Proof. Let ๐‘ƒ be a polynomial. For any real no. ๐‘Ž, by

the direct substitution property for polynomials

lim๐‘ฅโ†’๐‘Ž

๐‘ƒ ๐‘ฅ = ๐‘ƒ(๐‘Ž)

This is also the definition of continuity for a function

๐‘ƒ at a point! Thus ๐‘ƒ is continuous on (โˆ’โˆž, โˆž). โ– 

Fact. Every rational function is continuous at every

point of its domain.

Proof. Let ๐‘“ be a rational function and let

๐‘Ž โˆˆ domain of ๐‘“. By the direct substitution property

for rational functions

lim๐‘ฅโ†’๐‘Ž

๐‘“ ๐‘ฅ = ๐‘“(๐‘Ž)

This is the definition of continuity for a function ๐‘“ at

point ๐‘Ž. โ– 

Example. ๐‘“ ๐‘ฅ =๐‘ฅ2โˆ’1

๐‘ฅโˆ’1 is continuous on (โˆ’โˆž, 1) and

(1,โˆž). โ– 

Fact. sin(๐‘ฅ) and cos(๐‘ฅ) are continuous at every

real no. ๐‘ฅ.

โˆ’๐œ‹โ€ฆโˆ’๐œ‹

2โ€ฆ 0 โ€ฆ

๐œ‹

2โ€ฆ๐œ‹โ€ฆ๐‘ฅ-, โ€ฆโˆ’ 1 โ€ฆ 0 โ€ฆ 1 โ€ฆ๐‘ฆ-,

curve of ๐‘ฆ = sin(๐‘ฅ), curve of ๐‘ฆ = cos(๐‘ฅ)

No formal proof, but notice that these curves can be

drawn without lifting pencil from paper.โ– 

25a 25b

Fact. ๐‘ฆ = tan(๐‘ฅ) is continuous at every ๐‘ฅ except

values ๐‘ฅ =๐œ‹

2+ ๐‘›๐œ‹, where ๐‘› is an integer.

Proof.

lim๐‘ฅโ†’๐‘Ž tan ๐‘ฅ = lim๐‘ฅโ†’๐‘Žsin ๐‘ฅ

cos ๐‘ฅ quotient law

=lim ๐‘ฅโ†’๐‘Ž sin ๐‘ฅ

lim ๐‘ฅโ†’๐‘Ž cos ๐‘ฅ cty of sin & cos

= tan(๐‘Ž)

unless cos ๐‘Ž = 0.

But from graph above, cos ๐‘Ž = 0 except at

๐‘ฅ =๐œ‹

2+ ๐‘›๐œ‹, where ๐‘› is an integer. โ– 

Theorem (Arithmetic combinations of continuous

functions)

If ๐‘“ and ๐‘” are continuous at no. ๐‘Ž and ๐‘ is a constant,

then the following combinations are continuous at ๐‘Ž.

1. ๐‘“ + ๐‘” sum

2. ๐‘“ โˆ’ ๐‘” difference

3. ๐‘๐‘“ constant multiple

4. ๐‘“๐‘” product

5. ๐‘“/๐‘” provided ๐‘” ๐‘Ž โ‰  0 quotient

Proof. Each part follows from the corresponding limit

law. For example, consider (4)

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ โ‹… ๐‘” ๐‘ฅ product law for limits

= lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ โ‹… lim๐‘ฅโ†’๐‘Ž ๐‘”(๐‘ฅ)

continuity of ๐‘“ and ๐‘”

= ๐‘“ ๐‘Ž โ‹… ๐‘”(๐‘Ž)

This is the definition of continuity of ๐‘“ ๐‘ฅ โ‹… ๐‘”(๐‘ฅ) โ– 

26a 26b

Continuity from the left and from the right

A function ๐‘“ is continuous from the right at no. ๐‘Ž if

lim๐‘ฅโ†’๐‘Ž+

๐‘“ ๐‘ฅ = ๐‘“(๐‘Ž)

and ๐‘“ is continuous from the left and no. ๐‘Ž if

lim๐‘ฅโ†’๐‘Žโˆ’

๐‘“ ๐‘ฅ = ๐‘“(๐‘Ž)

Example. Step Function

๐‘” ๐‘ฅ = 1, ๐‘ฅ โ‰ฅ 00, ๐‘ฅ < 0

โ€ฆ 0 โ€ฆ๐‘ฅ-, 0 โ€ฆ 1 โ€ฆ๐‘ฆ-, ๐‘”(๐‘ฅ)

๐‘”(๐‘ฅ) is continuous from the right at ๐‘ฅ = 0 and

continuous at every other ๐‘ฅ. โ– 

Example. Greatest integer function

๐‘ฅ is the largest integer less than or equal to ๐‘ฅ

โˆ’1 โ€ฆ 0 โ€ฆ 1 โ€ฆ๐‘ฅ-, โˆ’1 โ€ฆ 2 โ€ฆ๐‘ฆ-, ๐‘ฆ = ๐‘ฅ

๐‘ฆ = ๐‘ฅ is continuous from the right at every integer.

Continuity on an interval (including endpoints)

A function ๐‘“ is continuous on an interval if it is

continuous at every no. on the interval. Continuity

at an endpoint means continuity from the right or

from the left.

27a 27b

Example. ๐‘“ ๐‘ฅ = ๐‘ฅ is continuous on [0, โˆž).

Why? For any ๐‘Ž > 0, by the limit laws for roots

lim๐‘ฅโ†’๐‘Ž

๐‘ฅ = lim๐‘ฅโ†’๐‘Ž

๐‘ฅ = ๐‘Ž

For ๐‘Ž = 0, lim๐‘ฅโ†’0+ ๐‘ฅ = 0 = ๐‘Ž

which is โ€œobviousโ€ from the graph

0 โ€ฆ๐‘ฅ-, 0 โ€ฆ๐‘ฆ-, ๐‘ฆ = ๐‘ฅ

โ– 

?? Practice with continuity transparency.

Continuity and Compositions

Composition: Function Machine Picture

๐‘ฅ โ†’ ๐‘” โ†’ ๐‘ข = ๐‘”(๐‘ฅ)

๐‘ข โ†’ ๐‘“ โ†’ ๐‘ฆ = ๐‘“(๐‘ข)

๐‘ฆ = ๐‘“ ๐‘ข = ๐‘“(๐‘”(๐‘ฅ)) ๐‘” is the โ€˜inner functionโ€™

๐‘“ is the โ€˜outer functionโ€™

Example. ๐น ๐‘ฅ = cos ๐‘ฅ

๐‘” ๐‘ฅ = ๐‘ฅ

๐‘“ ๐‘ข = cos(๐‘ข)โ– 

28a 28b

Theorem (Limits of Compositions)

If ๐‘“ is continuous at ๐‘ and

lim๐‘ฅโ†’๐‘Ž ๐‘” ๐‘ฅ = ๐‘

then

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘” ๐‘ฅ = ๐‘“(lim๐‘ฅโ†’๐‘Ž ๐‘”(๐‘ฅ)) = ๐‘“(๐‘)

Intuitively, if ๐‘ฅ is close to ๐‘Ž then ๐‘”(๐‘ฅ) is close to ๐‘.

Since ๐‘“ is continuous at ๐‘, if ๐‘”(๐‘ฅ) is close to ๐‘ then

๐‘“ ๐‘” ๐‘ฅ is close to ๐‘“(๐‘).

Example. Evaluate lim๐‘ฅโ†’๐œ‹2 cos ๐‘ฅ = ๐ฟ

From the root law, lim๐‘ฅโ†’๐œ‹2 ๐‘ฅ = ๐œ‹

๐‘“ ๐‘ข = cos(๐‘ข) is continuous at ๐‘ข = ๐œ‹

By the theorem

๐ฟ = cos(lim๐‘ฅโ†’๐œ‹2 ๐‘ฅ) = cos ๐œ‹ = โˆ’1 โ– 

Combine the theorem above with the condition that

๐‘ = ๐‘” ๐‘Ž , in other words the condition that ๐‘” is

continuous at ๐‘Ž, to get:

Theorem (Compositions of continuous functions)

If ๐‘” is continuous at a no. ๐‘Ž and ๐‘“ is continuous at

๐‘”(๐‘Ž), then ๐‘“ ๐‘” ๐‘ฅ is continuous at ๐‘Ž.

Proof. From the theorem above

lim๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘” ๐‘ฅ = ๐‘“ lim๐‘ฅโ†’๐‘Ž ๐‘” ๐‘ฅ

= ๐‘“ ๐‘” ๐‘Ž

This is the definition of continuity for ๐‘“ ๐‘” ๐‘ฅ . โ– 

In words, a continuous function of a continuous

function is continuous.

29a 29b

Example. Where is ๐น ๐‘ฅ = cos( ๐‘ฅ) continuous?

Note that ๐น ๐‘ฅ = ๐‘“ ๐‘” ๐‘ฅ where

๐‘” ๐‘ฅ = ๐‘ฅ is continuous for ๐‘ฅ > 0

๐‘“ ๐‘ข = cos(๐‘ข) is continuous for any real no. ๐‘ข

By the theorem, ๐น is continuous for ๐‘ฅ โ‰ฅ 0. โ– 

Intermediate Value Theorem

Let ๐‘“ be continuous on the closed interval [๐‘Ž, ๐‘] with

๐‘“ ๐‘Ž โ‰  ๐‘“(๐‘). If ๐‘ is any number between ๐‘“(๐‘Ž) and

๐‘“(๐‘), then there is a no. ๐‘ in (๐‘Ž, ๐‘) such that

๐‘“ ๐‘ = ๐‘.

Idea โ€ฆ๐‘Žโ€ฆ๐‘โ€ฆ๐‘ฅ-, 0 โ€ฆ๐‘“ ๐‘ โ€ฆ๐‘“ ๐‘Ž โ€ฆ๐‘ฆ-, ๐‘“, ๐‘, ๐‘

Proof. Not given, but the intermediate value

theorem is โ€œobviousโ€.

Example. Prove that there is an ๐‘ฅ that solves

sin ๐‘ฅ = 1 โˆ’ ๐‘ฅ

on the interval (0,๐œ‹

2).

Proof. Let ๐‘“ ๐‘ฅ = 1 โˆ’ ๐‘ฅ โˆ’ sin(๐‘ฅ)

then ๐‘“ 0 = 1 โˆ’ 0 โˆ’ sin 0 = 1 > 0

๐‘“ ๐œ‹

2 = 1 โˆ’

๐œ‹

2โˆ’ 1 = โˆ’

๐œ‹

2< 0

Since ๐‘ = 0 lies between ๐‘“ 0 > 0 and ๐‘“ ๐œ‹

2 < 0,

and ๐‘“ is an arithmetic combination of continuous

functions (and therefore continuous itself), it follows

from the Intermediate Value Theorem that there is a

๐‘ โˆˆ 0,๐œ‹

2 such that ๐‘“ ๐‘ = 0. โ– 

30a 30b

ยง1.6 Limits involving infinity

Infinite Limits

Example. ๐‘ฆ = ๐‘” ๐‘ฅ = 1/๐‘ฅ.

โˆ’2 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฅ-, โˆ’2 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฆ-, ๐‘”(๐‘ฅ)

We write lim๐‘ฅโ†’0+ ๐‘” ๐‘ฅ = โˆž

The symbol โˆž is a version of DNE. It means ๐‘”(๐‘ฅ)

becomes greater than any fixed value.

We write lim๐‘ฅโ†’0โˆ’ ๐‘” ๐‘ฅ = โˆ’โˆž

The symbol โˆ’โˆž means that ๐‘”(๐‘ฅ) becomes less than

any fixed value โ– 

Example. ๐‘• ๐‘ฅ = 1/ ๐‘ฅ โˆ’ 3 2

0 โ€ฆ 6 โ€ฆ๐‘ฅ-, 0 โ€ฆ 4 โ€ฆ๐‘ฆ-, ๐‘•(๐‘ฅ)

?? lim๐‘ฅโ†’3+ ๐‘• ๐‘ฅ =

?? lim๐‘ฅโ†’3โˆ’ ๐‘• ๐‘ฅ =

The one sided limit are โ€œequalโ€ (they DNE in the

same way)

Thus we write lim๐‘ฅโ†’3 ๐‘• ๐‘ฅ = โˆž.

31a 31b

The vertical line ๐‘ฅ = ๐‘Ž is a vertical asymptote of

๐‘ฆ = ๐‘“(๐‘ฅ) if

1) lim๐‘ฅโ†’๐‘Ž+ ๐‘“ ๐‘ฅ = +โˆž or โˆ’โˆž

and / or

2) lim๐‘ฅโ†’๐‘Žโˆ’ ๐‘“ ๐‘ฅ = +โˆž or โˆ’โˆž

๐‘ฅ = ๐‘Ž is a vertical asymptote. add ๐‘ฅ = 3

Example. ๐‘ฆ = log2(๐‘ฅ)

domain is โ„+ = { positive numbers}

Table x/ ยผ =2-2, ยฝ =2-1, 1=20, 2=21, 4=22 / y โ€ฆ

0 โ€ฆ 4 โ€ฆ๐‘ฅ-, โˆ’2 โ€ฆ 0 โ€ฆ 2 โ€ฆ๐‘ฆ-, dots, curve

The y-axis (or line ๐‘ฅ = 0) is a vertical asymptote. โ– 

32a 32b

Limits at Infinity

Example. ๐‘“ ๐‘ฅ = ๐‘ฅ2/(๐‘ฅ2 + 1)

Note that ๐‘“ has even symmetry, so we only need to

tabulate values of ๐‘ฅ โ‰ฅ 0.

Table: x/ 0, 1, 2, 3 / f(x) โ€ฆ

โˆ’3 โ€ฆ 0 โ€ฆ 3 โ€ฆ๐‘ฅ-, 0 โ€ฆ 1 โ€ฆ๐‘ฆ-, dots, curve

๐‘“(๐‘ฅ) approaches 1 as |๐‘ฅ| increases โ– 

Definitions

lim๐‘ฅโ†’โˆž ๐‘”(๐‘ฅ) = ๐ฟ

means that ๐‘”(๐‘ฅ) can be made as close as we wish to

๐ฟ by taking |๐‘ฅ| sufficiently large with ๐‘ฅ > 0.

lim๐‘ฅโ†’โˆ’โˆž ๐‘”(๐‘ฅ) = ๐ฟ

means that ๐‘”(๐‘ฅ) can be made as close as we wish to

๐ฟ by taking |๐‘ฅ| sufficiently large with ๐‘ฅ < 0.

In the previous example,

lim๐‘ฅโ†’โˆž ๐‘“ ๐‘ฅ = 1, and lim๐‘ฅโ†’โˆ’โˆž ๐‘“(๐‘ฅ) = 1

The line ๐‘ฆ = ๐ฟ is a horizontal asymptote of ๐‘ฆ = ๐‘“(๐‘ฅ)

if

lim๐‘ฅโ†’โˆž ๐‘“ ๐‘ฅ = ๐ฟ and/or lim๐‘ฅโ†’โˆ’โˆž ๐‘“ ๐‘ฅ = ๐ฟ

?? Transparency: Practice with asymptotes

33a 33b

Consider lim๐‘ฅโ†’โˆž 1/๐‘ฅ

For ๐‘ฅ > 10, 0 <1

๐‘ฅ<

1

10

For ๐‘ฅ > 100, 0 <1

๐‘ฅ<

1

100

We can make 1/๐‘ฅ as close as we wish to zero by

taking ๐‘ฅ sufficiently large. Conclude

lim๐‘ฅโ†’โˆž1

๐‘ฅ= 0

Consider lim๐‘ฅโ†’โˆ’โˆž 1/๐‘ฅ

For ๐‘ฅ < โˆ’10, โˆ’1

10<

1

๐‘ฅ< 0

For ๐‘ฅ < โˆ’100,โˆ’1

100<

1

๐‘ฅ< 0

We can make 1/๐‘ฅ as close as we wish to zero by

taking |๐‘ฅ| sufficiently large with ๐‘ฅ < 0. Conclude

lim๐‘ฅโ†’โˆ’โˆž1

๐‘ฅ= 0

Generalize

If ๐‘Ÿ is a positive real number

lim๐‘ฅโ†’โˆž1

๐‘ฅ๐‘Ÿ= 0 Equation (1)

we wonโ€™t prove this

Examples. lim๐‘ฅโ†’โˆž1

๐‘ฅ2= 0

lim๐‘ฅโ†’โˆž1

๐‘ฅ= lim๐‘ฅโ†’โˆž

1

๐‘ฅ12

= 0 โ– 

Infinite Limit Laws

These are obtained from the limit laws we have

already seen by replacing ๐‘Ž with ยฑโˆž.

Suppose that ๐‘ is a constant and

lim๐‘ฅโ†’ยฑโˆž ๐‘“(๐‘ฅ), lim๐‘ฅโ†’ยฑโˆž ๐‘”(๐‘ฅ)exist.

1. sum law (limit of sum is sum of limits)

lim๐‘ฅโ†’ยฑโˆž

๐‘“ ๐‘ฅ + ๐‘” ๐‘ฅ = lim๐‘ฅโ†’ยฑโˆž

๐‘“ ๐‘ฅ + lim๐‘ฅโ†’ยฑโˆž

๐‘”(๐‘ฅ)

34a 34b

2. difference law

lim๐‘ฅโ†’ยฑโˆž

๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ = lim๐‘ฅโ†’ยฑโˆž

๐‘“ ๐‘ฅ โˆ’ lim๐‘ฅโ†’ยฑโˆž

๐‘”(๐‘ฅ)

3. constant multiple law

lim๐‘ฅโ†’ยฑโˆž

๐‘ ๐‘“ ๐‘ฅ = ๐‘ lim๐‘ฅโ†’ยฑโˆž

๐‘“(๐‘ฅ)

4. product law

lim๐‘ฅโ†’ยฑโˆž

๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ = lim๐‘ฅโ†’ยฑโˆž

๐‘“ ๐‘ฅ โ‹… lim๐‘ฅโ†’ยฑโˆž

๐‘”(๐‘ฅ)

5. quotient law

lim๐‘ฅโ†’ยฑโˆž

๐‘“ ๐‘ฅ

๐‘” ๐‘ฅ =

lim๐‘ฅโ†’ยฑโˆž

๐‘“ ๐‘ฅ

lim๐‘ฅโ†’ยฑโˆž

๐‘” ๐‘ฅ

so long as lim๐‘ฅโ†’ยฑโˆž ๐‘” ๐‘ฅ โ‰  0

Example. Find lim๐‘ฅโ†’โˆž2๐‘ฅ+3

16๐‘ฅ2+5= ๐ฟ.

๐ฟ = lim๐‘ฅโ†’โˆž2๐‘ฅ+3

16๐‘ฅ2+5 multiply by 1

= lim๐‘ฅโ†’โˆž2๐‘ฅ+3

16๐‘ฅ2+5

1/๐‘ฅ

1/๐‘ฅ (note ๐‘ฅ โ‰  0)

multiply numerator and denominator by 1/๐‘ฅ

= lim๐‘ฅโ†’โˆž2+3/๐‘ฅ

16+5/๐‘ฅ2 quotient law

=lim ๐‘ฅโ†’โˆž ( 2+3/๐‘ฅ)

lim ๐‘ฅโ†’โˆž 16+5/๐‘ฅ2 (denominator is not zero)

=2+0

16+0 limit laws and equation 1

=1

2 โ– 

Example. Find lim๐‘ฅโ†’โˆ’5โˆ’๐‘ฅโˆ’3

๐‘ฅ+5

Cannot use quotient law because ๐‘ฅ + 5 โ†’ 0โˆ’ as

๐‘ฅ โ†’ โˆ’5โˆ’

Notice that as ๐‘ฅ โ†’ โˆ’5โˆ’ we have ๐‘ฅ โˆ’ 3 โ†’ โˆ’8โˆ’

Since both the numerator and denominator are

negative as ๐‘ฅ โ†’ โˆ’5โˆ’, the ratio must be positive.

Since the denominator is approaching 0 and the

numerator is not

lim๐‘ฅโ†’โˆ’5โˆ’๐‘ฅโˆ’3

๐‘ฅ+5= โˆž โ– 


Recommended