27
YMC Overview of Planned Observa4ons and Modeling: Possible Synergies with Strateole Gretchen Mullendore, Univ. of North Dakota slides provided by Courtney Schumacher Chidong Zhang

YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

YMC  Overview  of  Planned  Observa4ons  and  Modeling:  

Possible  Synergies  with  Strateole    Gretchen  Mullendore,  Univ.  of  North  Dakota  

 slides  provided  by    

Courtney  Schumacher  Chidong  Zhang  

Page 2: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Year of the Maritime Continent (YMC) An International Framework for Multi-Disciplinary Field Observations

MC is major mean convective center of the tropics (e.g., upward branch of strongest Walker cell, strong interannual variability [ENSO], and crossway of East Asian and Australian monsoons) and plays an important role in the global weather-climate continuum.

Page 3: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

•  Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting and simulating the MC atmosphere-ocean-land system and its related global variability

•  Strategy: Provide a framework that enables scientists from different countries to coordinate their efforts of field observations and modeling activities

•  Themes: atmospheric convection, the tropical tropopause layer (TTL), and the Indonesian throughflow (ITF) and upper-ocean mixing, and aerosol

Years of the Maritime Continent (YMC)���November 2017 – October 2019

Briefing to the US Inter-Agency Group (IAG) November 21, 2014

Page 4: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

1.  What is the role of convection in determining the humidity of the TTL in the main upward branch of the Brewer-Dobson circulation?

2.  How do convective interactions with the TTL vary diurnally and by MJO phase?

3.  What are the time scale and dynamics of exchange between the upper troposphere and lower stratosphere through the TTL?

4.  What is the role of various equatorial waves in the transport of water vapor into the stratosphere through the TTL?

5.  What is the main mechanism for TTL dehydration?

YMC Science Questions (TTL Theme)

Page 5: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Observing Platform, Facilities, Instruments by Countries

Ships (6): R/V Investigator (Australia), R/V Dayang-1 and Shiyan-3 (China), R/V Baruna Jaya and Geomarin III (Indonesia), R/V Mirai (Japan), OR-6? Taiwan, ? (US)

Gliders (UK, US) Moorings, Floats, Drifters, Airborne Dropsondes (US) Airplanes (3): FAAM BAE 146-301 (UK), C-130 and P-3 (US) Scanning Radars (10+): S-PolKa (US), C-band (Australia, Germany, Japan,

Singapore, US), X-band (Japan, Taiwan, US), K/X band (US), VHF array (Japan),

Soundings (All) Super-pressured balloon (France, US) Aeroclippers (France) Surface Tower (Taiwan) Extended surface met station (Germany, Indonesia, Japan, Taiwan, US) Lidars, Profilers (Germany, Italy, Japan, US) Rain gauges, Disdrometers (Germany, Indonesia, Japan, Taiwan, US) Surface aerosol (Germany, Indonesia, Malaysia, Singapore, Switzerland, US)

slide  courtesy  Chidong  Zhang  

Page 6: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Anticipated and Planned Request for Support from the US Agencies

DOE: AMF (12 months) - Convection NSF: S-PolKa, ISS, DOWs (2-3 months) – Convection, TTL C-130, airborne dropsondes (3 weeks) – Convection, Mixing moorings, drifters, floats, gliders (6 – 24 months) – Mixing ship-borne instruments (?) - Mixing ship(?) – Mixing, Convection ONR: moorings, drifters, floats, gliders (6 – 24 months) - Mixing ship-borne instruments (?) – Mixing ship(?) – Mixing, Convection NASA: P-3 (1 months) – Aerosol AeroNet, MPLNet (≥ 2 years, funded) – Aerosol NOAA: S-band profiler (12 months) – Convection rain gauges, disdrometers (24 months) – Convection

slide  courtesy  Chidong  Zhang  

Page 7: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Selected  U.S.  Involvement  Proposed  

•  ARM/DOE:  convec4on  and  aerosol  – sounding  system  for  whole  year  – cloud  radars  – PI:  Chidong  Zhang  

•  NCAR/NSF:  2  to  3-­‐month  deploy  between  10/2018  and  3/2019  –  rainy  season  and  most  ac4ve  MJO  – PI:  Courtney  Schumacher  

 3/19/15   7  

Page 8: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Seasonal  varia4on  of  cloud  frac4on  from  CloudSat  15oS-­‐12oN  90oE-­‐165oE  

courtesy  Chuntao  Liu  

1:30  13:30  LST  

Page 9: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

S-­‐Pol  

•  Dual-­‐polarimetric,  Doppler  S-­‐band  (10-­‐cm  wavelength)  •  Precipita4on,  3-­‐D  hydrometeor  ID  •  Scans  alterna4ng  for  large-­‐scale  view  of  convec4ve  

organiza4on  and  detailed  upper  level  view  of  cloud  microphysics  in  UTLS  

Page 10: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Integrated  Sounding  System  (ISS)  

•  Surface  met  and  ver4cal  profiles  of  wind,  T,  and  RH  •  High  4me  resolu4on  at  surface  and  for  BL  profiling  instruments  

•  3-­‐hr  launches  of  new  RS41  sondes  for  beaer  humidity  observa4ons  at  high  al4tudes  

Page 11: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Doppler  on  Wheels  (DOWs)  

•  Dual-­‐polarimetric,  Doppler  truck-­‐mounted  X-­‐band  (3-­‐cm  wavelength)  

•  Dual-­‐Doppler  3-­‐D  wind  retrieval  •  Request  for  DOW6  and/or  DOW7  depending  on  site  

condi4ons  and  other  radar  availability  

Page 12: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

B O

S-Pol: Stand alone or build a “super site” at AMF1 main site; convective intensity, organization, and microphysical properties ISS: Sounding array with AMF1 main site and Indonesian operational sites; environmental T, humidity, and winds DOWs: Dual-Doppler (possibly with ARM C-SAPR); storm kinematics Deployment: Approx. 2 months between October 2018-March 2019; site TBD (some options indicated above) but maximize diurnal and MJO variability

YMC-NCAR Ground deployment

Page 13: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Papua (10)

Sulut (5) Grtlo (1) Sulbar (2)

Sulteng (2)

Kalbar (10)

Babel (1) Riau (2)

Sumut (2) NAD (2)

NTT (7)

Sultra (3) Sulsel (7)

Kalsel (3)

Kalteng (7)

NTB (3) Bali (3) Jatim (18) DIY (3) Jateng

(21) Jabar (18)

Banten (8)

Lampung (12)

Sumsel (2)

Jambi (4)

Sumbar (1)

Kepri (1)

DKI (6)

Papua Barat (2) Malut (4)

Maluku (3)

Kaltim (3)

Automatic  Weather  Station  

Banda Ache

Padang

Medan

Bengkulu

Cilacap

Ranai

Biak

Manado

Palu

Makassar

Merauke

Ambon

Kupang

Cengkareng

Pangkal Pinang

Pontianak

Surabaya

Pangkalan Bun

Tarakan

Sorong

Routine  Radiosonde  Sounding  Netwok  

Indonesian Observing Network

Page 14: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

YMC  +  S2:  Benefits/Challenges  •  longer-­‐term  large-­‐area  quasi-­‐Lagrangian  point  and  “curtain”  measurements  (S2)  and  shorter-­‐term  limited-­‐area  Eulerian  volume  measurements  (DOE/NCAR  YMC)  

•  benefits:  – mul4scale  science  ques4ons,  so  valuable  to  sample  mul4ple  temporal  &  spa4al  scales  

–  partnered  soundings  allows  sampling  more  area  (S2)  and  sampling  beaer  temporally  (YMC)  

•  challenges:  –  co-­‐loca4on  of  observa4ons  –  details  of  TTL  water  vapor  

3/19/15   14  

Page 15: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Synergies  with  NSF/NCAR  YMC  

Co-­‐loca4on  of  observa4ons:    •  Conserva4ve  assump4on:  S2  will  not  observe  same  storm  as  YMC  

 Synergis4c  ac4vi4es  assuming  no  co-­‐loca4on:  1.  “Meet  in  the  Middle”  2.  “Uniqueness  of  Mari4me  Con4nent”  

3/19/15   15  

Page 16: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Synergy  #1:  “Meet  in  the  Middle”  Summary:  •  YMC  =  view  of  storms  from  ground  up  •  S2  =  detailed  view  of  storm  tops  This  is  somewhat  of  a  problem  if  it’s  not  the  same  storm,  but:  •  S2  has  high  probability  of  sampling  MC  storms  over  year-­‐long  study  •  YMC  team  will  know  storm  depths  well  (even  without  detailed  view  

of  tops)  •  sta4s4cal  matches  by  categorizing  storms  by  type  and  depth  

–  more  value  if  both  YMC  and  S2  doing  soundings  Benefits:  •  for  YMC:  details  of  TTL  mixing  and  stability  (temperature  profiles  

and  anvil  informa4on)  •  for  S2:  details  on  sources  (convec4on),  including  updram  dynamics,  

entrainment  regimes,  and  4me  evolu4on  (storm  life  cycle)  

3/19/15   16  

Page 17: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

lmd  profile  

!

"#w

"z

2357  UTC  

averaged  over  all  4mes  

LMD  detrainment  envelope  

Level  of  Maximum  Detrainment  (LMD):    radar  veloci4es  

Mullendore  et  al.  2013,  ACP  

Page 18: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

detrainment  envelope:    temporal  variability  (extratropics)  

3/19/15   18  

Al4tud

e  (km)  

0        5      10      15      20  

red  =  LMD  (irreversible)  blue  =  top  of  detrainment  envelope  dashed  line  =  LNB    circles  =  normalized  magnitude  of  detrainment    ou$low  from  deep  convec0on  variable  in  0me  •  direct  injec0on  •  wave  sources  •  changes  in  stability  

structure  Mullendore  et  al.  2013,  ACP  

Page 19: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

supercells  

non-­‐supercells  

LMD  =  LNB  

offset  from  LNB  provides  informa0on  on  entrainment  

mean  LNB  2.8  km  above  LMD  (non-­‐supercells)    TROPICAL  LMD  es0mated  from  anvil  only    LBA  case:  2.5-­‐4  km  Mullendore  et  al.  2009,  JGR    CloudSat:  3.1  km  Takahashi  and  Luo  2012,  GRL    Most  Representa4ve  LNB  Height  (km,  AGL)  

Mullendore  et  al.  2013,  ACP  

Page 20: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Synergy  #2:  “Uniqueness  of  YMC”  

•  how  does  the  MC  compare  to  elsewhere  in  tropics?  

•  YMC  proposed  because  of  MC  unique  proper4es,  but  how  different  are  MC  storms  really  from  the  rest  of  the  tropics  in  terms  of  TTL  modifica4on?  

•  balloons  give  a  more  detailed  view  of  how  the  MC  looks  different  in  terms  of  transport/depth  

•  major  benefit  to  MC  convec4ve/TTL  groups  

3/19/15   20  

Page 21: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Summary  

•  Two  ideas  for  specific  collabora4on  presented  – boaom-­‐up  and  top-­‐down  (“meet  in  the  middle”)  – broadening  view  to  outside  MC  (“uniqueness”)  

•  Many  other  ideas  possible!  – observa4ons  of  upstream  waves,  data  poor  regions  

– hydrosta4c  cooling  response,  tropopause  mixing  •  wish  list:  TTL  water  vapor,  in  situ  measurements  lower  in  TTL  

3/19/15   21  

Page 22: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

“Meet  in  the  Middle”  

3/19/15   22  

TWP-­‐ICE  18  km  

Page 23: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

extra  slides  

Page 24: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

3/19/15   24  

Mullendore  et  al.  2013,  ACP  

Page 25: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Early morning

YMC TTL Theme

Tropical Tropopause Layer (TTL)

Stratosphere Overshooting Waves

MJO Monsoon

Afternoon

MCS

Page 26: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

1.  Wave perturbations are main mechanisms for troposphere-stratosphere exchanges through the TTL. Isolated convection over land and organized convection over the ocean generate different types of wave perturbations with different effects on troposphere-stratosphere exchanges.

2.  Convective overshooting can be generated by both land and oceanic convection but with different vertical extents and strengths. It is also modulated by the large-scale conditions.

3.  The diurnal variation in the TTL is caused by a combined effect of the atmospheric tide and local diurnal cycle in convection.

– Observational need: Measurement of simultaneous wave perturbations, high altitude ozone, water vapor and temperature, and deep convective clouds.

YMC Hypotheses (TTL Theme)

Page 27: YMC$Overview$of$Planned$ …•Goal: Advance our understanding of the role of the Maritime Continent (MC) in the global weather-climate continuum; improve our ability of predicting

Summary of Needed Observing Instruments and Platform for YMC

•  Soundings (large-scale conditions, TTL air characteristics) •  Precipitation and cloud radars (cloud life cycle, convective penetration into

the TTL) •  Lidars, profilers, and other ground remote sensing instruments (cloud and

microphysics, aerosol, wave perturbations) •  Expanded surface met stations and tower (surface and boundary-layer

properties, surface energy budget, surface rain rates) •  Surface aerosol instruments (concentration and size distribution of aerosol,

especially CCN and IN) •  Ships (upper-ocean mixing, ocean surface fluxes, atmospheric convection and

its environment over the ocean) •  Moorings, floats, drifters, and gliders (upper-ocean properties and mixing,

air-sea interaction) •  Airplanes (cloud microphysics, convective environment, air-sea interaction)

slide  courtesy  Chidong  Zhang