182
r 6 1 . . RANGE SAFETY DATA REPORT #+-k5 June 17, 1965 ' RANGE SAFETY DATA FOR SATURN SA-10 BY G. W. Solmon and E. L. Leonard c m GPO PRICE $ CFSTI PRICE(S) S 'Y66 1 32794 UCCEsSlON NUMBER) CTHRUJ z Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 (CATEGORY) i R TUX Microfiche (MF) l l 5 OR AD NUMBER) ff 653 July 65 RANGE SAFETY SECTION E'LIGHT MECHANICS BRANCH FLIGHT EVALUATION AND OPERATIONS STUDIES DIVISION AERO-ASTRODYNAMICS LABORATORY i National Aeronautics and Space Administration i. e c - Form 454 (Revised September 1961) https://ntrs.nasa.gov/search.jsp?R=19660023504 2020-05-20T19:18:21+00:00Z

Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

r 6

1 .

.

RANGE SAFETY DATA REPORT #+-k5 June 17, 1965 '

RANGE SAFETY DATA FOR SATURN SA-10

BY

G. W. Solmon and E. L. Leonard

c m

GPO PRICE $

CFSTI PRICE(S) S 'Y66 1 32794 UCCEsSlON NUMBER)

CTHRUJ z Hard copy (HC) aim E f

(CODE)

1 0 0 IPkQES) 2

(CATEGORY)

i R TUX

Microfiche (MF) l l 5 OR AD NUMBER)

ff 653 July 65

RANGE SAFETY SECTION E'LIGHT MECHANICS BRANCH

FLIGHT EVALUATION AND OPERATIONS STUDIES D I V I S I O N AERO-ASTRODYNAMICS LABORATORY

i

National Aeronaut i c s a n d S p a c e Administration i. e c - Form 454 (Revised September 1961)

https://ntrs.nasa.gov/search.jsp?R=19660023504 2020-05-20T19:18:21+00:00Z

Page 2: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

GEORGE C. MARSHALL SPACE FLIGHT CENTER

Range Safety Data Report #4-65

RANGE SAFETY DATA FOR SATURN SA-10

G. W. Solmon and E.

ABSTRACT 2 7 qY L. Leonard

d66 -3

The purpose of t h i s repor t i s t o present range s a f e t y da ta f o r t he Saturn SA-10 vehicle . standard t r a j e c t o r y t o be published by R-AERO-FM. It has a f i r i n g azimuth of 9 5 . 2 degrees e a s t of t r u e north and goes i n t o o r b i t a t an a l i t u d e of 289 nau t i ca l m i l e s . The standard and dispers ions have been provided on magnetic tape.

This study i s based on the

One of the primary object ives f o r t h e SA-10 vehic le i s t o place the Pegasus (Micrometeoroid) sa te l l i te i n t o a c i r c u l a r o r b i t . Other primary vehic le object ives are the fu r the r f l i g h t t e s t i n g of t he S-I and S-IV s t r u c t u r e , pro- pulsion, cont ro l systems, s.-I/S-IV separa t ion sequence, and closed loop guidance during S-IV f l i g h t . vehic le objec t ives are t o obtain Apollo b o i l e r p l a t e da t a , fu r the r tests of the Launch Escape System (LES), and general Apollo development.

Additional

The r e l i a b i l i t y analysis of t he S-IV-8 and S-IV-10 s tages w a s performed by Douglas Ai rc ra f t , and i s presented i n the Appendix.

Page 3: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

GEORGE C . MARSHALL SPACE FLIGHT CENTER

R a n g e Safety Data Report #4-65

June 17, 1965

RANGE SAFETY DATA FOR SATURN SA-10

by

G . W. Solmon and E. L. Leonard

RANGE SAFETY SECTION FLIGHT MECHANICS bm%H

FLIGHT EVALUATION AND OPERATIONS STUDIES D I V I S I O N AERO-ASTRODYNAMICS LABORATORY

Page 4: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

(U) TABLE OF CONTENTS

Page

2

G

I. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . 11. DESCRIPTION . e . . - - . 2

A. B. C. D. E. F. G. H. I. J. K.

Standard Trajectory Variations . . . . . . . . . . . 2 Effec ts of Range Safety F l igh t Termination . . . . . 3 Tracking Equipment . . . . . . . . . . . . . . . . . 4 Wind Disturbances . . . . . . . . . . . . . . . . . . 5 Vehicle Velocity Vector Turning Angle Inves t iga t ion . 5 Downrange Land Impact Probabi l i ty . . . . . . . . . . 6 Probabi l i ty of In jur ing a Person . . . . . . . . . . 7 Sequence of Events . . . . . . . . . . . . . . . . . . 10 Booster Impact 11 LES Impact 12 PAD Area Study . . . . . . . . . . . . . . . . . . . . 12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

APPENDIX........................... 13

VACUUM IME'ACT DATA . . . . . . . . . . . . . . . . . . . . . 43

I L L u S ~ I O N s . . . . . . . . . . . . . . . . . . . . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . 177

APPROVAL . . . . . . . . . . . . . . . . . . . . . . . . . 178

DISTRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . 179

h iii

Page 5: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

(U) LIST OF ILLUSTRATIONS

T i t l e Page . FiPure

. . . . . . . . . . . . . . . . . . . . 1 Wind P r o f i l e 50

2 Drag Coeff ic ien t fo r Complete 1st Stage Configuration 52

3 Drag Coeff ic ien t f o r S-I Stage . . . . . . . . . . . 53

5 Drag Coeff ic ient f o r 4-Engine Clus te r . . . . . . . . 55

4 Drag Coeff ic ient f o r S-IV Stage . . . . . . . . . . . 54

6 Drag Coeff ic ient f o r S ingle Engine . . . . . . . . . 56

7 Drag Coeff ic ien t f o r Instrument Unit . . . . . . . 8 Drag Coeff ic ient f o r Fragments . . . . . . . . . . 9 Drag Coeff ic ien t f o r LES . . . . . . . . . . . . .

10 Drag Coeff ic ien t fo r Command Module Without LES . . 11 Drag Coeff ic ien t f o r Camera Capsule . . . . . . . 1 2 Drag Coeff ic ien t fo r Fuel Tank . . . . . . . . . 13 Drag Coeff ic ient f o r Turbo Pump Assembly . . . . . 14 Drag Coeff ic ien t f o r Spherical Pieces of S-IV Stage

57

58

59

60

61

62

63

64 15 Drag Coeff ic ien t f o r S- IV Stage (Not Tumbling) . . . 65

16 Impact Trace Including Corridors . . . . . . . . . . 66

17 Booster Impact Dispersion . . . . . . . . . . . . . 67 18 LES Impact Dispersion . . . . . . . . . . . . . . . . 68

19-72 Change i n Tota l Velocity Vector Or ien ta t ion f o r (-f3 ). s t a r t i n g a t 16 sec and given every 4 sec through 1sY stage. every 20 s e c through 2nd s t a g e . . . . . . . . 69

73-126 Earth-Fixed Velocity fo r (.By). s t a r t i n g a t 16 sec and given every 4 sec through 1st s tage . every 20 sec through 2nd s t age . . . . . . . . . . . . . . . . . . 123

Page 6: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

.

kti (meters/sec)

F (newtons)

(U) DEFINITION OF SYMBOLS

Definition

Time of engine cutoff

Angle of attack

Magnitudes of the components of the missile's displacement in the earth-fixed X, Y, Z axis, respectively.

Magnitudes of the components of the missile's velocity in the earth-fixed X, Y, Z axis, respectively.

Thrust, including gain due to altitude

Angle measured between the local vertical and the velocity vector (theta)

Aiming azimuth of the missile measured clockwise from North

Pitch attitude angle as measured by missile hardware (chi)

Mass of vehicle

Dynamic Pressure

Density of the air, a function of altitude

Velocity of missile relative to the earth

Mach number

L-ngftiirlinal lnad factor

A1 t I t ude

Arc tan DZZe/

Arc tan DYYe/DXXe

c

V

Page 7: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

f .. .

GEORGE C. MARSHALL SPACE F'LIGHT CENTW

RANGE SAFFlly DATA FOR SATURN SA-10

The da ta presented i n t h i s report are f o r t h e Saturn SA-10 vehic le , wi th a f i r i n g azimuth of 95.2 degrees east of t r u e north.

This r epor t is based on a standard t r a j e c t o r y t o be published by R-AERO-FM, with o ther p e r t i n e n t information furnished by R-P&VE and Douglas A i r c r a f t Campany.

The da ta submitted cons is t s of boos te r and Launch Escape System impact areas, e f f e c t s of range s a f e t y terminat ion, land impact p r o b a b i l i t i e s , i n j u r y p r o b a b i l i t i e s , and turning rate e f f e c t s . Graphs of tu rn ing rates and ear th-f ixed ve loc i ty as a func t ion of t i m e , after malfunction is introduced, are given f o r t he S-I and S-N s tages .

Data cons i s t ing of standard, 2 3 Q dispers ions , and booster f r e e f l i g h t t r a j e c t o r i e s have been forwarded t o the C a p e on magnetic tape as requested by Range Safety.

The i t e r a t i v e guidance w a s used i n t h e second s tages f o r the standard and - + 3 u dispers ion t r a j e c t o r i e s .

Page 8: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

c

2

SECTION I. INTRODUCTION

The purpose of t h i s repor t i s t o present range s a f e t y da t a f o r Saturn SA-10 vehicle . f i n a l standard t r a j e c t o r y t o be published by R-AERO-FM.

The da ta presented he re in are based on t h e

The engines t o be used fo r t he f i r s t s t age i n Saturn SA-10 have a sea l eve l th rus t of 188,000 pounds (836,000 newtons) each. inner four engines have a f ixed cant angle of 3" t o the missile ax i s . The outer engines, which a r e f r e e t o swivel f o r con t ro l , a r e canted 6" t o t h e missile ax is . The second s t age has s i x R L - 1 O A 3 engines which have a vacuum t h r u s t of 15,000 pounds (66,700 newtons) each.

The

This report was based on the t r a j e c t o r y having an aiming azimuth of 95.2 degrees East-of-North with an i n s e r t i o n a l t i t u d e of 535 ki lometers .

SECTION 11. DESCRIPTION

A. Standard Tra jec tory Variat ions

The va r i a t ions of t he standard t r a j e c t o r y are l i s t e d below:

(1) 3 4 Maximum +2% F, +1% i , + E x Wind, -3,500 lbm i n 1st Stage F, +1% r R , - l , O O O lbm i n 2nd Stage 7 , -1% i, -E Wind, +3,500 lbm i n 1st Stag

-1% A, +lo08 lbm i n 2nd Stage ( 2 ) 3 ,.( Minimum

(3) 3 T La te ra l +Ez Wind, Motor #4 out a t 100 sec i n 1st Stage c No crossrange guidance i n 2nd Stage

(4 ) Extreme La te ra l &Ez Wind, Motor 114 out a t 0 s e c .

(5) Steepest 1+2% - F, +I% h, Headwind, -3,500 lbm]

(6) F l a t t e s t h o t o r 414 out a t 0 s e c , Ta i lw ing

, .-

In addi t ion t o impacts given every second on t h e Cape Tape, impacts w i l l b e given i n t abu la r form every 20 seconds u n t i l near o r b i t a l condi t ions, t h e r e a f t e r , a t 1 second i n t e r v a l s f o r t he s tandard, 3 ~ - maximum, and 3 6 minimum. i n the tab les : instantaneous cu tof f time, geodet ic l a t i t u d e , longi tude, remaining f l i g h t t ime, and range along the su r face of t he e a r t h from launch t o impact.

The following parameters w i l l be given

Tables a r e on pages 43-48.

.

I ..

Page 9: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

3

B. (U) Effects of Range Safety Flight Termination

I f the vehicle, for purposes of range safety, i s t o be destroyed i n ear ly f l i g h t phase, the most probable pieces, according t o P&VE and DAC, are considered t o be the follawi&:

Mass A!!&

(a) S-I Stage (1) 54,940 (b) S-IV Stage (1) 6,271 (c) 4-Engine C lus t e r (1) 2,818 (d) Single Engine (8) 880 (e) Instrument Canister (1) 228 ( f ) Fragment of S-I Barrel 227

(g) Fragment of S-I Tail 136

34

(2) - (1) 1,285 (j) Camuand Module Without 4,203

(k) Fragment of S-I Barrel 23

(1) 70" Diameter Tank 1,768 (m) Turbopump Assembly 181

*(n) Forwaxd Inters tage Skin 134

Sectitm (2)

Shroud (2)

Shield (2) (h) Fragment of S-I Heat

LES

Sections (1)

( 0 ) Forward Dame Skin 453 (p) Cylindrical Tank Skin 97 (q) Cammn Bulkhead 244 (r) A f t Interstage and Sk i r t

( 8 ) Upper Portion of Aft Dame (t) Lower Portion of A f t Dome

151

37 116

Skin

Area (sq. m)

33.47 (cs) 24.52 (cs) 4.26 (m) 1.12 (m) 1.03 (cs) 3.68. (PI

-68 (PI

-18 (PI

.34 (cs) 12.02 (cs)

040 (PI

5.06 (cs)

7.90 (PI

2.48 (cs)

17.19 (p) 48.77 (p)

19.97 (p) 17.19 (p)

3.25 (PI 15.79 (p)

Velocity Increment

(m/sec)

2.0 2.0 9.0 7.2 7.0

95.1

29.6

30.5

9.0 9.0

. 95 .0

30.0 9.0

141.0 66.0 95.0 80.0

125 .O

105.0 140.0

mag Curve t o be used

Figure # 3 4 5 6 7 8

8

8

9 10

8

12 13 8 8 8 8 8

8 8

NOTE: Figure i n parenthesis a f t e r (a) through (i) indicates number of

cs - cross sectibnal; m- mean; p - planiform pieces.

For the maximum and minimum distance pieces, the approximate drag can be calculated as D = CDqA. The CD curves are given i n Figures 3 - 13.

*Pieces (n) through (t) are representative pieces given by DAC for the s-I\' stzgz. (see !+pedi,x.)

Page 10: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

4

C. (U) Tracking Equipment

SA-10 has the following onboard antenna locations :

VHF Telemetry Antenna Sta. 909.929

S-I Stage 5.75' II+I 5.75' IIjIII 5.75" IVJIII 5.75O IV+I

VHF Telemetry Antenna Sta. 1483.084

IU Stage 5'10' II+III 5'10' IV I

Command Antenna Sta. 868.6 S-I Stage

5'30' I+IV , 5O30' IjII 5'30' IIIjII 5'30' III+IV

Command Aht enna IU Sta. 1471.889 28"07'30" I+IV

28 "07 ' 30'' IIIj'II

ODOP Receiving Antenna S ta . 1483.424 33O45' IjIV

ODOP Transmitting Antenna Sta. 1483.424

33"45' IV+I

Altimeter Antenna Sta. 1474.414

Fin I

MISTRAM Antenna Sta. 1467.934

11'15' IVjI 4'38'30'' IV jIII

Command Antenna System Sta. 1384.157

Fins I1 & IV (Transverse) Fins I & I11 (Longitudinal)

Telemetry Antenna System Sta. 1423.092

S-IV Stage Fins I & I11 (Transverse) Fins I1 & IV (Longitudinal)

Television Antenna Sta. 872.459

2'40' IV-I

Radar Antenna Sta. 1466.596

39"22'30'' IjIV

Azusa Antenna Sta. 1475.721

11'14' IeIV

Page 11: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

i. i

. 5

D. (U) Wind Disturbances

For t h i s ana lys i s , the winds considered a r e the 3 cs winds published by W. W. Vaughan, M-AERO-F-53-63, "Cape Canaveral, Flor ida, Wind P r o f i l e Envelopes f o r Selected F l ight Azimuth," March 28, 1963. (See Figure 1.)

E. (U) Vehicle Velocity Turning Angle Inves t iga t ion

The vehic le ve loc i ty vector turning da ta for t h e standard is presented i n Figures 19-72. These f igures give the r eo r i en ta t ion of the t o t a l ve loc i ty vector i n the l a t e r a l d i r ec t ion as a funct ion of t i m e once the malfunction (engine gimbal def lec t ion) i n yaw is introduced.

In the pas t , an inves t iga t ion w a s made of t he r eo r i en ta t ion of t h e ve loc i ty vector i n the v e r t i c a l plane (&, Ye). a t t h e time the malfunction (engine gimbal def lec t ion) was introduced i n pi tch. Under these conditions, t he re i s no s i g n i f i c a n t d i f fe rence i n . turning r a t e s i n the la te r ' a l d i r ec t ion and the p i t ch plane; thus , only l a t e r a l turning r a t e s a r e given. The l a t e r a l tu rn ing r a t e s a r e synnnetrical; hence, the vehic le was only yawed t o the r i g h t .

Gravity was removed

When yaw turning r a t e s a r e inves t iga ted , t he engine gimbal . def l ec t ion angle i n p i t ch (beta p) is set a t zero degrees def lec t ion . The yaw malfunction chosen i s held f ixed throughout any s p e c i f i c inves t iga t ion . t r a j e c t o r i e s given on tape by use of t he following time equivalent r e l a t i o n s .

These turning r a t e s can be t r ans l a t ed t o the 23 (J

Standard Trajectory, Maximum Trajectory , Minimum Trajectory, Time of Turning Time of Turning Time of Turning

Rate (sec) Rate (sec) Rate (sec)

30 80

130 190 4 1.0

29 76

126 190 410

32 83

133 190 410

The r e l a t i v e ve loc i ty of the turning r a t e cases is given as a funct ion of time in Figures 73-126.

Page 12: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

6

F. (U) Downrange Land Impact Probabi l i ty

S t a t i s t i c a l da ta i n regard t o impact r e s u l t i n g from malfunctions which occur during the l a t e phase of t h e second s t age i s presented. For these calculat ions, . it was assumed t h a t f i r s t s t age functioned properly and t h a t second s t age f a i l e d t o reach o r b i t a l condi t ions. It was assumed t h a t t h e p robab i l i t y of t he veh ic l e dropping s h o r t i s approximately .13 f o r the second s t age ; t h i s is based on da ta given i n Appendix 1 The instantaneous impact t i m e ( a t ) over land on the95.2" s tandard t r a j e c t o r y i s approximately 4.9 s e c .

by DAC f o r the S-IV s t age .

A 3 0 corr idor was determined f o r the overland f l i g h t (Figure 1 6 ) impacting the veh ic l e by taking the root sum square of t h e following:

a f t e r i t turned with a maximum rate u n t i l alpha yaw had reached 180"; impacting the 30 taking the most c r i t i c a l p iece , i n j e c t i n g a +E, wind and the v e l o c i t y increment i n t h e +Z d i r e c t i o n and impacting the piece.* a r e shown i n t h e t a b l e below.

l a t e r a l case; assuming t h a t t he veh ic l e had exploded,

These r e s u l t s

WIDTH OF RIGHT SIDE OF 3 u CORRIDOR I N N. M I . Turning Rates Wind + AVeloc i ty Motor #4 out 100 s e c Resul tant

(Vacuum) (Drag Considered) (Vacuum) For Right Right S i d e Right Side Right Side Side

20 55 10 59.4

Cross Range (n.mi.) Cross Range (n.mi.) Cross Range (n.mi.) (RCR)

*Piece ( 0 ) i n paragraph B.

The probabi l i ty of impacting on land can be ca l cu la t ed as follows:

-

PI - probabi l i ty of impacting on land

A t - dwell time

TB - t o t a l burn t i m e of second s t age

PF probabi l i ty of any f a i l u r e causing t h e 2nd s t a g e t o drop s h o r t

PI = 4.9 - x .13 = 1.3 x 10-3 480.1

Page 13: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

b

7

I C

'p

c

Impact probabi l i t ies f o r individual countries are as follows :

Land Area Dwell Time &pact Probabili ty

Angola 2.8 7.6 X 10-

Rhodesia and Nyasaland 1.5 4.1 X 10-

4

Bechuanland

Bzambique

.1

.3

2.6 X

8.1 X 10'

5.3 x 10'. Madqascar .2

G. Probabili ty of Injuring a Person

The probabili ty of injur ing a person downrange can be determined i n the following manner:

'IP - probabili ty of injuring person

- - population density of country (people per sq. m i . ) L

- lethal area (sq. I$.)

Based on Appendix by Douglas, the S-IV stage has approximately 3,000 sq. f t . of lethal area. contributed by the piepe fallins a t en t h e projected l e t h a l e f f e c t on a person.

This includes the addi t ional area ~f 1" t~ -:=r+-lsdl ~2

A sample calculation: Forward Inters tage Assembly: A = 185 f t z ;

Nuder of pieces = 8 A = 185 = 23.12 Pieces 3-

Assuming this piece t o be square, one s ide = 23.12 = 4.808 f t .

Page 14: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

8

Assume an average man i s 6 f t . t a l l and t h i s piece comes i n a t 15" t o the v e r t i c a l . 15" (6 f t . ) (4.808) = 7.7 ft2. by 8 pieces , w e g e t t he t o t a l l e t h a l a rea as 246.5 f t 2 f o r the forward i n t e r s t a g e assembly. Then, i n addi t ion , w e should assume t h a t t h e dense pieces could impact on hard sur faces , giving an estimated s p l a t t e r e f f e c t of an addi t iona l 2,000 sq. f t . Thus, t h e approximate t o t a l l e t h a l area of t h e S-IV-10 s t age i s conservat ively estimated t o be 5,000 sq. f t .

The l e t h a l area of t h i s piece i s increased by tan. Adding t h i s t o 23.12 f t 2 and multiplying

The probabi l i ty of i n ju r ing a person by overf lying land i s :

PIP = .0013 X 20 X 5 * O o o = 4.7 x 10-6 27,878,400

Probabi l i ty of i n ju r ing Person f o r ind iv idua l countr ies : (3 /devia t ion) (Sectors 1 and 2 , Figure 16)

L

Country

Ango la

Rhodesia & Nyasaland

Bechvanaland

Mozambique

Madagascar

Disregarding hardware

N LA

AL -

Pr ob ab i li t y (People per of In jur ing

sq. mi , . ) a Person P,

7. 6X10'4 25 3.4 x 10-6

2.61~10'~ 1 4.7 x 10-9

5 .3x10-~ 2 1 2.0 x

4 .1~10-4 12 8.8 X 10-7

5 . ~ 1 0 ' ~ 25 3.6 X 10-7

l imi t a t ions and t h e l ike l ihood of occurence, i t was desired t o determine t h e absolu te maximum lateral devia t ion t h a t could be obtained from a malfunction t h a t could occur a f t e r reaching t h e "gate" ( I I P reaches land) . yaw ( @ y ) t o t h e l e f t and a l s o have a v a r i a t i o n i n t h e p i t c h ( @ p ) plane. condi t ions, t h e following impacts a r e obtained.

The veh ic l e w a s assumed t o instantaneously

If we assume f u e l deple t ion with these maximum devia t ion

Page 15: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

9

t

r

Variations I m p a c e

C a s e - Geodetic Latitude

@P ec, Longitude

1 5 -70 -16.1 -34.4

2 5 -80 -6.7 -14.2

3 -5 -70 -16.3 -35 .o

4 -5 -80 -10.8 -22.3

5 - 15 - 70 -14.0 -30.0

These are sketched i n Figure16. probabi l i t i es , we have the following impact and injury probabi l i ty in sectors 3 and 4.

Then, i n addition t o the above

- N Probability of LA Injuring a Person PI - Country

Ango l a 1.9 x 25 8.5 x IO-'

South West Africa 9.1 x 24 2.9 x Union South Africa 3.3 x 24 1.4 x

Basu t o land 1.1 x 50 9.9 x 10-l0

Bechvanaland 7.0 x 1 1.3 X 10-l'

Mozamb i que 2.2 x lom7 17 6.7 X 10-l' - 10 Madagascar 1.3 x 25 5.8 X 10

Rhodesia & Nyasaland 1.0 x 12 2.2 x IO-'

The probabili ty of impacting outside of sectors 3 and 4 in Figure is Zero with the present propellant loading and range safe ty act ion

being taken before the T h i c l e reaches the "gate."

*Based on superimposed corridor from SA-8.

Page 16: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

10

H. Sequence of Events

Given below a r e the times t h a t the major events occur during t h e nominal case:

Nominal Sequence of Events

Time of Event (From L i f t o f f )

0.0

9 .o

14.2

137.7

138.0

141.7

143.52

149.52

150.22

150.32

152.02

162.32

168.0

595 .O

632.085

642.085

Remarks

L i f t o f f

I n i t i a t e Rol l and Pi tch Simultaneously

Terminate Rol l

S- I Stage Propel lant Level Sensors Enabled

T i l t Arrest

S-I Stage Level Sensor S igna l

Inboard Cutoff (S-I Stage)

Outboard Cutoff (S-I Stage)

Ullage Rocket Ignition(S-IV Stage)

Separat ion, Immediately Followed by Retro Ign i t ion (S-I Stage)

S-IV Mainstage I g n i t i o n

J e t t i s o n Ullage Rocket Casing and LES

I n i t i a t e Active Guidance

Signal from Sequencer t o Arm LOX Depletion Cutoff Capabi l i ty

S-IV Stage Main Engine Cutoff

End of Powered F l i g h t

Y

Page 17: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

t I

f

11

I. Booster Impact

Further cursory investigation by R-P&VE-V on the re-entry of the S-I boost s tage a f t e r separation confirms tha t the major pieces o f s i t w i l l remain i n t a c t as it re-enters the atmosphere. it i s possible for t h in metal pieces (panels, etc.) weighing less than 50 lbm t o break loose from the S-I stage upon re-entry. the following booster impact analysis has been performed.

However, they s t a t e

Based on t h i s ,

The booster and a representative piece as described ( th in metal piece) were impacted. .The applicable drag w a s used for the t r a j ac to r i e s and the appropriate winds w e r e applied. the impact dispersion points, which are as follows:

Figure 17 gives an e l l i p s e of -

Booster

Traiectory

Standard

Latitude

27.2019

Maximum 27.0480

Minimum 27.3036

3 u Lateral 26.9707

Standard

Maximum

Minimum

3 0 Lateral

50 lbm Barrel Section

27.2100

27.0742

27.3388

26.9380

Longitude

70.7510

69.9469

71.2720

71.2810

70.7923

20.0439

71.5496

71.4710

Page 18: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

12

J. LES Impact

An ana lys i s concerning LES impact has been performed and Figure 17 gives t h e e l l i p s e . w a s e j ec t ed 10.3 seconds a f t e r i g n i t i o n of t h e S-IV-10 s t a g e from t h e & 3 dispers ion t r a j e c t o r i e s given on magnetic tape. The impacts were as follows :

The e l l ipse w a s determined as follows. The LES

. Trajec tory Lat i tude Longitude

Standard 26.9446 69.3584

3 a Maximum 26.7964 68.6319

3 u Minimum 27.0937 70.0891

3 u L a t e r a l 26.7359 70.1045

K. Pad Area Study

For t h i s s tudy the e f f e c t s of Vehicle tu rn ing rates, v e l o c i t y increment due t o des t ruc t and a wind from 67.5" E of N w e r e combined t o give t h e maximum devia t ion toward t h e i n d u s t r i a l a rea . t h i s s tudy ind ica t e that , t o avoid any impact of m a x i m u m d i s t ance p ieces due t o des t ruc t , on c r i t i c a l a r eas , t h e wind p r o f i l e given i n Figure 1-A should not be exeeded. The p robab i l i t y of t h e 67.5" E of N wind, exceeding the p r o f i l e given i n Figure l - A i s l e s s than 10% based on R-AERO-Y's wind p r o f i l e f o r the month of August. '

The r e s u l t s of

Page 19: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

13

A P P E N D I X

.

c

Page 20: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

I 14

SECTION 4 - RANGE SAFETY FLIGHT TERMINATION SYSTEM

i

Page 21: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

u Sec t ion 4

Range S a f e t y F l i g h t Termination S y s t e m

4.

c

&

e

RANGE SAFETY FLIGHT TERMINATION SYSTEM -

4.1 .Descr ip t ion and Function

"he RSFT (range s a f e t y flight t e rmina t ion ) system ( f i g u r e s 4-1 and 4-21, ( e l e c t r i c a l and ordnance), is a dual system which provides a high degree of

r e l i a b i l i t y .

and causing fuel d i spe r s ion i n t h e event of e r r a t i c performance of t h e

veh ic l e .

Each system is capable of imposing a cond i t ion of . ze ro t h rus t ,

I n a d d i t i o n t o various antenna systems and w i r e bundles , t h e RSFT

system c o n s i s t s of t h e following major components:

a. Power s u p p l i e s

b.

C.

a. e. f.

g-

h.

i.

Command d e s t r u c t r e c e i v e r s

RSFT system c o n t r o l l e r

Power d i s t r i b u t i o n boxes

EBW e l e c t r o n i c f i r i n g u n i t s

Sa fe ty and arming device

E B W detonators

Explosive harness assemblies

Linear shaped charges

Refer t o Sec t ion 3, Explosive Ordnance and Assoc ia ted E l e c t r i c a l Systems,

f o r d e s c r i p t i o n and func t ion of t h e aforementioned items.

The or'dnance p o r t i o n of t h e system c o n s i s t s of E B W de tona to r s ,

explos ive harness assembl ies , and l i n e a r shaped charges. The de tona tors , through t h e s a f e t y and arming device, de tona te small charges i n t h e ends of

t h e explos ive harness assemblies. The harness assemblies propagate t h e

de tona t ion t o t h e l i n e a r shaped charges mounted on t h e side of t h e M 2 tank

and t h e bottom of t h e LOX tank .

+%nkc, Ellnving +.he Frope l l an t s t o d i spe r se . I n a d d i t i o n , an explos ive

Exploding t h e shaped charges rup tu res t h e

harness in t e r sonnec t ion i s provided between t h e d e s t r u c t systems of t h e S-I

and S-IV s t a g e s .

t h e exp los ive in t e rconnec t ion blocks.

The RSFT e l e c t r i c a l c i r c u i t r y is loca ted i n t h e forward s e c t i o n of t h e S-IV

stage and c o n s i s t s of t h e power supp l i e s , d e s t r u c t -system c o n t r o l l e r , power

d i s t r i b u t i o n box and t h e EBW e l e c t r o n i c f i r i n g u n i t s . A s e p a r a t e c i r c u i t

c o n t r o l l e d from t h e ground permi ts swi tch ing the s a f e t y and arming device

This i n t e rconnec t ion i s s i n g u l a r on the . S-I s t a g e s i d e of

Prijiii GEE p ~ ~ l t l ~ ~ tc z z ~ t h e r .

19 April 1967

91

Page 22: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

16 Sec t ion 4 Range Safety F l i g h t Termination System

Accidental de tona t ion of t h e l i n e a r shaped charges during p r e f l i g h t cnecIEouz

ope ra t ions on t h e launch pad i s prevented f o r most of t h e t i m e by t h e s a f e t y

and' arming device which maintains an out of l i n e condi t ion i n t h e explosive

t r a i n s .

i s r e l ega ted t o t h e launch pad and i s switched t o t h e arm condi t ion j u s t before l i f t o f f , b u t i s monitored both e l e c t r i c a l l y and v i s u a l l y on, a panel

i n t h e blockhouse. The f i r i n g units are charged only af ter launch i n t h e

event of a dec i s ion t o i n i t i a t e f l i g h t t e rmina t ion ,

However, t h e switching funct ion of t h e device which i s s i n g u l a r ,

4.2 Operation

4.2.1

The EBW e l e c t r o n i c f i r i n g u n i t s ( 2 ) w i l l not be charged on 'the ground.

"not ready" cond i t ion of t h e f i r i n g u n i t s w i l l be i n d i c a t e d on t h e S-IV,

stage d e s t r u c t panel ( f i g u r e 4-3). The s a f e t y and arming device w i l l be

cycled t o the armed p o s i t i o n approximately 3 minutes p r i o r t o l i f t o f f and

t h e condi t ions v e r i f i e d on t h e S-IV d e s t r u c t pane l .

F ina l Arming P r i o r t o Launch

A

4.2.2 Arming A f t e r Launch

If af ter l i f t o f f , t h e veh ic l e dev ia t e s from t h e p r e d i c t e d f l i g h t path t o t h e

e x t e n t t h a t a hazardous condi t ion e x i s t s , t h e RSFT system i n t h e S-IV s t a g e

d e l i v e r s t he r equ i r ed f l i g h t t e rmina t ion command by decoding frequency-

modulated s i g n a l s received from a ground t r a n s m i t t e r . These UHF s i g n a l s a r e

r ece ived by t h e S-IV s t a g e antenna system, provides omnidirect ional coverage

about t h e veh ic l e r ega rd le s s of i t s a t t i t u d e . Two comman'd d e s t r u c t r e c e i v e r s

are l o c a t e d i n t h e forward i n t e r s t a g e area of t h e S-IV s t a g e . Each r e c e i v e r

r e l a y s a s i g n a l t o t h e S-IV s t a g e d e s t r u c t system c o n t r o l l e r . The s i g n a l

from e i t h e r r e c e i v e r i s capable of a c t i v a t i n g t h e c o n t r o l l e r f o r t h e

detonat ion of t h e l i n e a r shaped charges.

4.2.3 Range S a f e t y F l i g h t Termination

Range safety f l i g h t t e rmina t ion i s i n i t i a t e d ' by t h e range s a f e t y oft'icei- i t '

a f te r l i f t o f f , t h e veh ic l e dev ia t e s from t h e p r e d i c t e d f l i g h t path to tlie

e x t e n t t h a t a hazardous cond i t ion e x i s t s . The fol lowing sequence i s

i n i t i a t e d by c l o s i n g t h e d e s t r u c t switch i n t h e launch c o n t r o l c e n t e r :

92

19 A p r i l 1965

Page 23: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

17 Sect ion 4

Range Safe ty F l i g h t Termination System I

a. me command t r a n s m i t t e r sends an FM, audio-coded s i g n a l t o t h e

veh ic l e .

b. The r ece iv ing antennas t r a n s f e r t h e s i g n a l t o t h e command d e s t r u c t

r ece ive r .

c . The cormnand d e s t r u c t r e c e i v e r demodulates and decodes t h e s i g n a l ;

t h e commands are f ed t o t h e command d e s t r u c t c o n t r o l l e r .

d. The command d e s t r u c t c o n t r o l l e r i n i t i a t e s engine c u t o f f through t h e

f l i g h t sequeri5er and subsequently t r i g g e r s t h e f i r i n g u n i t s .

e. The f i r i n g u n i t s a c t i v a t e t h e high vol tage de tona tors .

f . The de tona tors explosion is propagated by t h e explos ive harness

assemblies and t h e l i n e a r shaped charges.

shaped charges mounted on t h e ou t s ide of t h e LH2 and LOX tarks,

fup tu res t h e tanks pe rmi t t i ng f u e l d i spers ion .

Explosion o f t h e l i n e a r

t

19 Apr i l 1965

93

Page 24: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

18 Sect ion 4 Range Sa fe ty F l igh t Termination System

n

4

19 A p r i l 1965

Figure 4-1

~~ ~

Page 25: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

19 Section 4

Range Safety Flight Termination System

a zBm I

19 April 1965

Figure 4-2

Page 26: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

20 Sect ion 4 Range Sa fe ty F l igh t Termination System

<

I I

a@k

t

c J

19 April 1965

Page 27: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

21

c

EFFECTS OF W X ; E SAFETY FLIGHT TERMIPJAT1OF.I

Page 28: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

Sect ion ‘5 E f f e c t s of Range Safe ty F l i g h t Termination

22

5 . EFFECTS OF RANGE SAFETY FLIGHT TERMINATION (RSFT)

5 . 1 General

The S-IV s t a g e can be destroyed i n f l i g h t by t h e range s a f e t y f l i g h t

terminat ion (RSFT) system. I n order t o d iscuss t h e d e s t r u c t i v e e f f e c t of

t h e system on t h e s t a g e , t h e s t a g e t o t a l f l i g h t t i m e has been d iv ided i n t o

t h r e e f l i g h t phases (1) before S-11s-IV s e p a r a t i o n , ( 2 ) a f t e r S-I/S-IV

separa t ion with S-IV s t a g e propel lan t tanks n e a r l y f u l l , and

S-11s-IV separa t ion with S-IV s t a g e propel lan t tanks n e a r l y empty.

( 3 ) af ter

5 . 2 Ef fec ts of RSFT Before S tage , Separat ion

I n i t i a t i o n o f RSFT before s t a g e separa t ion w i l l r e s u l t i n one o f t h r e e

s i t u a t i o n s : (1) t h e s t a g e w i l l break up and i t s p r o p e l l a n t s w i l l detonate,

( 2 ) t h e s t a g e w i l l break up but i t s p r o p e l l a n t s w i l l not de tona te , and

( 3 ) t h e s t a g e w i l l not break up.

and t h e propel lan ts w i l l mix and detonate and t h a t breakup w i l l be caused

e i t h e r by aerodynamic l o a d s , tumbling i n e r t i a l l o a d s , o r by forces c r e a t e d

by t h e d e s t r u c t i o n of t h e S-I s t a g e .

s t a g e may break up and not detonate i s considered, as is t h e p o s s i b i l i t y t h a t

t h e s t a g e may not break up a t a l l .

DAC b e l i e v e s t h a t s t a g e breakup w i l l occur

However, t h e p o s s i b i l i t y t h a t t h e

5 . 2 . 1 Stage Breaks Up With Propel lan t Detonation

Breakup of t h e S-IV s t a g e with propel lan t de tona t ion can occur only as a

r e s u l t of S-I s t a g e d e s t r u c t i o n and p r o p e l l a n t explosion. I n t h i s c a s e ,

t h e debr i s f a l l i n g from t h e s t a g e w i l l c o n s i s t of t h e fol lowing p ieces :

( I t i s recommended t h a t f o r range s a f e t y purposes , it be assumed t h a t a l l

debr i s w i l l surv ive re-entry i n t o t h e atmosphere).

a. Skin p ieces (maximum s i z e 10 f t2) o r i g i n a t i n g from t h e s k i n s e c t i o n s

descr ibed i n f i g u r e 5-1 and t a b l e s 5-1 and 5-2.

b . Ind iv idua l RLlOA-3 rocket engines , i n c l u d i n g hydraul ic a c t u a t o r s .

c . Ullage rockets-loaded.

d. Ullage rockets-expended.

e . Helium h e a t e r .

f . Base hea t s h i e l d .

19 A p r i l 1965

Page 29: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

23

c

Section 5 Ef fec t s of Range Sa fe ty F l i g h t Termination

g -

h.

i.

J .

k.

1.

E l e c t r o n i c s rack and u n i t s (1 p i e c e ) l o c a t e d on t h e forward

i n t e r s t a g e assembly.

E lec t ron ic s u n i t s , such as t h e ins t rumenta t ion s i g n a l cond i t ion ing

equipment, l o c a t e d outs ide of t h e t h r u s t s t r u c t u r e .

Thrust s t r u c t u r e ( inc lud ing e l e c t r i c equipment and accesso r i e s

i n s i d e , and t h a t po r t ion of t h e a f t dome t h a t extends below t h e

t h r u s t s t r u c t u r e junc t ion ; exc luding engines , e x t e r n a l e l e c t r o n i c

packages, helium h e a t e r , and c o n t r o l helium sphere ) . Cold helium spheres .

LH2 tank makeup helium sphere.

Pneumatic c o n t r o l helium sphere

It should be emphasized t h a t t h e number of p i eces are es t ima tes only, based

p r imar i ly on d a t a obta ined from vehicles p rev ious ly destroyed i n f l i g h t .

More accu ra t e e s t ima tes can be obtained only by conducting f u l l - s c a l e tests.

5.2.2

If t h e s t a g e breakup does occur without a p r o p e l l a n t de tona t ion , breakup

Would be caused by aerodynamic and tumbling i n e r t i a l loads. The p r o p e l l a n t s

w i l l vaporize a t ambient p re s su re , and temperature and t h e following s k i n

p i eces and components w i l l f a l l as debr i s .

energy imparted t o it. )

Stage Breaks Up Without Propel lant Detonat ion

(This deb r i s w i l l not have had

a.

b.

C.

d.

,e.

Skin p i eces from t h e S-IV s t a g e .

Ind iv idua l RLlOA-3 rocket engines , i nc lud ing t h e i r hydraul ic

a c t u a t o r s (only is t n e engines ~ r - t . & i vff i=t C V ~ t h r ~ s + s+.mirt.iireI.

RLlOA-3 rocket engine, t h r u s t s t r u c t u r e , helium h e a t e r , and p o r t i o n

of af t dome extending below t h r u s t s t r u c t u r e junc t ion (only i f

engines do not break off at t h r u s t s t r u c t u r e ) .

Ullage rockets-loaded.

E lec t ron ic s rack and units (one p i e c e ) l o c a t e d on forward i n t e r s t a g e

assembly (only i f rack breaks o f f at t h e forward i n t e r s t a g e

assemlijr; .

19 A p r i l 1965

Page 30: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

I 24

f . Electronics un i t s , such as t h e instrumentation s igna l conditioning

equipment, located outside of the th rus t s t ruc ture (only i f t he

I units break o f f a t t he th rus t s t ruc ture) .

Section 5. Effects of Range Safety Flight Termination

g. Thrust s t ruc ture , including electronic equipment accessories mounted inside and a t t h a t portion of the aft dome extending below the

thrus t s t ruc ture junction; excluding engines, external electronics

packages, helium heater and control helium sphere (only i f t he

excluded uni t s break of f a t t he th rus t s t ruc tu re ) ,

h. Cold helium spheres.

i. LH2 tank pressure makeup sphere.

j. Pneumatic control helium sphere.

k. H e l i u m heater.

1. A l l s t ruc ture forward of DAC s t a t i o n 337.781, including useful load.

m. Base heat shield.

5.2.3

If the stage does not break up, the only pieces of debris t h a t may be released by the explosives w i l l be very small pieces of skin plus the s ide

tunnel cover.

Stage Does Not Break Up

5.3

It i s believed t h a t i n i t i a t i o n of RSFT when t h e propellant tanks of t he

S-IV stage are nearly f u l l , w i l l not cause stage breakup s ince the forces

created by the RSFT explosives are probably not strong enough t o def lec t t he

s tage and cause tumbling.

propellants w i l l probably not burst t he tanks,

propellants may not occur, the propellants w i l l vaporize at ambient pressure and temperature.

W i l l be very small pieces of skin and t h e s ide tunnel cover.

Effects of RSFT After Stage Separation With Propell'ant Tanks Nearly Fu l l

Furthermore, t h e hydrostatic pressures of t h e

Although burning of t he

The only pieces t h a t may be released by the explosives

5.4 Effects of RSFT After Stage Separation With Propellant Tanks Nearly

Empty It .la believed t h a t i n i t i a t i o n of RSFT when the propellant tanks are nearly

empty w i l l cause stage breakup because of forces created by the release of

19 April 1965

Page 31: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

Sect ion 5 Exfects of Siange Sa fe ty F l i g h t Termination

25

l a r g e volumes of compressed gases from t h e t anks . This stage breakup should

be less ex tens ive than s t a g e breakup before sepa ra t ion when t h e p r o p e l l a n t s

do not detonate . I t i s a n t i c i p a t e d t h a t t h e p i eces d i spe r sed a t t h i s t i m e

w i l l be as follows:

a. Skin p i eces from t h e S-IV s t a g e .

b. Ind iv idua l !?LlOA-3 rocket engines , i nc lud ing t h e i r hydrau l i c

a c t u a t o r s (only i f t h e engines break o f f at t h e t h r u s t s t r u c t u r e ) .

c. R L l O A - 3 rocket engines , t h r u s t s t r u c t u r e , helium h e a t e r , and

po r t ion of a f t dome extending below t h r u s t s t r u c t u r e j u n c t i o n

(only i f engines do not b r e a k o f f a t t h r u s t s t r u c t u r e ) .

d. Ullage rockets-loaded.

e. Ullage rockets-expended.

f . E lec t ron ic s rack and units (one p i e c e ) l oca t ed on t h e forward

i n t e r s t a g e assembly (only i f ‘the rack breaks o f f a t t h e forward

i n t e r s t a g e assembly).

g. E l e c t r o n i c u n i t s , such as t h e instrumentat ion s i g n a l cond i t ion ing

equipment l o c a t e d outs ide o f t h e t h r u s t s t r u c t u r e (only i f t h e wi ts

break off a t t h e t h r u s t s t r u c t u r e ) .

h. Thrust s t r u c t u r e , including e l e c t r o n i c equipment and accesso r i e s

mounted i n s i d e and a t t h a t po r t ion of t h e a f t dome extending below

t h e t h r u s t s t ruc tu r ; j unc t ion ; excluding engines , e x t e r n a l

e l e c t r o n i c s packages , helium h e a t e r and c o n t r o l helium sphere

(only i f t h e excluded u n i t s break o f f at t h e t h r u s t s t r u c t u r e ) .

i. Cold helium spheres .

j. LH2 t ank makeup helium b o t t l e .

k. Pneumatic c o n t r o l sphere. r 1. Helium h e a t e r .

m. A l l s t r u c t u r e forward of DAC s t a t i o n 337.781, inc lud ing useful load.

n. Base hea t s h i e l d .

19 Apr i l 1965

Page 32: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

26 Sect ion 5 E f f e c t s of Range Safety F l i g h t Termination.

5 . 5 Fragment Velocity Increments Before Stage Separat ion

4

A t h e o r e t i c a l method f o r determining t h e v e l o c i t y increments imparted t o t h e

S-IV s t a g e components or s t a g e fragments ( p i e c e s ) by i n i t i a t i o n of t h e f l i g h t

terminat ion system was developed. By assuming t h a t t h e v e l o c i t y increment

imparted t o a reference p i ece w a s known, a ' r e l a t i o n s h i p between t h e increment

of t h e reference p i ece t o t h e increment o f a l l o t h e r pieces w a s e s t a b l i s h e d

r ega rd le s s of t h e i r d e n s i t y , t h i c k n e s s , and curvature . The r e l a t i o n s h i p w a s

made with the following equat ion:

Q (1 1 A V = F ;At

where :

b V = t h e v e l o c i t y increment imparted t o a p i ece

F = t h e fo rces e x e r t e d on a p i ece due t o s t a g e explosion or breakup

g = g r a v i t a t i o n a l a c c e l e r a t i o n

W = p iece weight

A t = t h e time increment au r ing which t h e fo rces ( F ) a c t on a p i ece

A s s w i n g :

( 2 ) F = PA

where :

P = t h e p re s su re a c t i n g upon a p i ece due t o s t a g e breakup or prope l l an t detonat ion. ( P i s assumed constant f o r a l l p i e c e s . )

A = t h e e f f e c t i v e a r e a of a p i e c e ; i . e . , t h e p r o j e c t e d area of t h e p i ece

and t h a t :

( 3 ) W = A ' T p

where :

P = p iece densi ty

19 A p r i l 1965

~~

T = p iece th i ckness

A ' = p iece a c t u a l s u r f a c e area; i . e . , t h e p i e c e s i d e which i s o r i e n t e d toward t h e p re s su re source

Page 33: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

Section 5 . Effects of Range Safety Flight Termination

~-

27

Then, combining equations (11, (21, and (3)

(I It may be seen from equation (4) tha t t h e velocity increment ( V ) i s d i rec t ly

proportional t o t h e r a t i o of t he projected area of the piece t o i t s ac tua l

surface area ( A / A ' ) , a r a t i o tha t i s a function of t he piece shape.

be assumed t h a t pieces of the S-IV stage w i i l have three basic shapes:

spherical, and cylindrical . A the actual surface area (- may be determined as follows: A'

It may * f l a t ,

The r a t i o of t he piece shape projected area t o

a. f l a t piece

b.

A - = 1 A'

spherical piece

A r - h/2 A r ( f o r h s r ) - =

where :

r = radius of the spherical section

h = height of the spherical section

c. cy l indr ica l piece e' where :

e= cent ra l angle of t h e cy l indr ica l section (radians)

Effects of RSFT

The r a t i o of t h e velocity increments imparted t o two pieces is:

The various stage pieces are separated i n t o two categories f o r t h i s study.

These categories are:

cylindrical tank w a l l , e t c . , and

ullage rockets, e tc .

(1) s k i n pieces such as those originating from the (2 ) spec i f i c pieces s ~ c h 8.s hel ium spheres,

The stage skin i s divided i n t o several sections as

19 April 1965

Page 34: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

28 Section. 5

E f fec t s of Range Sa fe ty F l i g h t Termination

i n d i c a t e d i n f i g u r e 5-1. imparted t o any s k i n p i ece i s ' a funct ion of t h e area r a t i o ( A / A ' ) and t h e

density-thickness product ( T ) . Each s k i n s e c t i o n i s assumed t o have a

densi ty- thickness product ( T) which i s constant throughout t h e s e c t i o n .

Therefore, s k i n p i eces from any given s e c t i o n y i l l r ece ive v e l o c i t y

increments which are a func t ion only of t h e i r a r e a r a t i o .

any given s e c t i o n a r e assumed t o be approximately square.

t h i ckness products of t h e s p e c i f i c pieces were found by d i v i d i n g t h e t o t a l

p i ece weight by an assumed area f o r each p i e c e , where t h e assumed area i s

r ep resen ta t ive o f t h e p i ece p r o j e c t e d a r e a . Therefore a l l s p e c i f i c p i eces

have area r a t i o s ( A / A ' ) equa l t o one. The s k i n s e c t i o n s and t h e s p e c i f i c

p i eces considered, are l i s t e d i n t a b l e 5-2 along with t h e i r dens i ty -

t h i ckness products , assumed shapes , s k i n p i ece maximum s i z e ¶ s p e c i f i c p i ece

weight , and s p e c i f i c p i ece r e p r e s e n t a t i v e areas.

It has been shown t h a t t h e v e l o c i t y increment

Skin p i eces from

The densi ty-

Use o f t h e r e fe rence p i ece v e l o c i t y increment t o g e t h e r w i th equat ion ( 6 ) , t h e area r a t i o equat ions and t h e p i ece densi ty- thickness product d a t a of t a b l e 5-2, permits determinat ion of t h e est imated v e l o c i t y increments

imparted t o s k i n p i eces and t h e s p e c i f i c p i e c e s .

The assumptions t h a t a l l p i eces f e e l t h e same p r e s s u r e ( P ) , and t h e values

assumed f o r t h e densi ty- thickness product ( T ) of p i eces such as t h e engines

and u l l a g e rocke t s , are not t o t a l l y c o r r e c t . However, it i s c o m i d e r e d t h a t

use of these assumptions would r e s u l t i n determinat ion of p i e c e v e l o c i t y

increments t h a t are wi th in t h e accuracy of t h e r e fe rence p i e c e v e l o c i t y

increment determination.

5 .5 .1 Propel lant Tank Pieces With P rope l l an t Detonation

It has been assumed t h a t a 1.000 f t / s e c v e l o c i t y increment is imparted t o

a 1 sq f t piece of t h e LH2 t ank w a l l ( r e f e rence p i e c e ) .

v e l o c i t y increment, t h e t o t a l k i n e t i c energy of a l l t h e LH2 t ank w a l l

fragments i s approximately:

Assuming t h i s

2 - - - 1383 x 1.000 2 x 32

= 2.17 x lo7 f t / l b s

Page 35: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

Secqion 5 Effects of Range Safe ty F l igh t Termination

4

29

The energy r e l eased by 1 l b of oxygen r e a c t i n g with hydrogen is 3.9 x 106 f t f lb s . I f it is assumed t h a t L percent of t h i s energy i s t ransformed into.

k i n e t i c energy of t h e fragments, then t h e r e are 3.9 x 10

a v a i l a b l e p e r l b o f oxygen. Therefore , t o ob ta in 1,000 f t / s e c v e l o c i t y ,

4 f t / l b s o f energy

2.17 x 10 To 560 Ib o f oxygen must r e a c t r ap id ly with hydrogen o r . 3.9 x lo)!*

swzyzrizc, i f 0.7 percent of t h e t o t a l oxygen a v a i l a b l e de tona te s , and i f

t h e energy t r a n s f e r is 1 percent e f f i c i e n t (both percentage values are

i n t u i t i v e l y assumed t o be reasonable) , t h e tank s k i n fmgments w i l l r ece ive

a v e l o c i t y o f 1,000 f t / s e c . Therefore, it appears t h a t a v e l o c i t y as high

as 1,000 f t / s e c is reasonable .

The ve loc i ty increment of 1,000 f t / s e c imparted t o t h e re ference p iece

(1 s q ft piece of c y l i n d r i c a l tank w a l l ) , t oge the r with equat ion (G), t h e

a r e a r a t i o equat ions , and t h e p iece densi ty- thickness Froduct data of

t a b l e 5-2, were u t i l i z e d t o compute t h e est imated v e l o c i t y increments

imparted t o t h e sk in p ieces and t h e s p e c i f i c p i eces . The es t imated

ve loc i ty increments imparted t o t h e s p e c i f i c p i eces are presented i n

f i g u r e 5-2.

5.5 .2 Stage Pieces Without Propel lan t Detonation

Pieces d ispersed by t h e S-IV s t a g e breaking up without p rope l l an t detonat ion

w i l l have no apprec iab le ve loc i ty increments imparted t o them.

5.5.3 Stage P ieces Without Breakup

The f e w p ieces which w i l l be d ispersed by i n i t i a t i o n of RSFT without s t a g e

breakup, w i l l have no s i g n i f i c a n t ve loc i ty increments imparted t o them.

5.6 Fragment Veloci ty Increments Af te r Stage Separa t ion With Propel lan t

Tanks Nearlv F u l l

I n i t i a t i o n of t h e RSFT after s t a g e sepa ra t ion and with t h e s t a g e p rope l l an t

t anks nea r ly f u l l , w i l l not r e s u l t i n s t a g e breakup, and debr i s which w i l l

be d ispersed at t h i s t i m e w i l l have no s i g n i f i c a n t v e l o c i t y increments

imparted t o them.

19 A p r i l 1965

Page 36: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

30 Sect ion 5 E f f e c t s of Range Safe ty F l i g h t Termination

5 .7 Fragment Veloc i ty Increments Af t e r Stage Separat ion With Propel lan t

Tanks Nearly Empty

A t t i m e of d e s t r u c t , t h e shaped charge w i l l cu t a s l o t a long t h e LH2 tank

w a l l . The tank w a l l , now unsupported i n t h i s reg ion , w i l l s t a r t t o break

up and t h e p ieces w i l l be acce le ra t ed . This acce le ra t ion w i l l be accompa-

n i ed by vent ing of t h e gases .

of t h e p i eces , i t i s assumed t h a t t h e r e i s no gas leakage f o r t h e f i r s t

one-half i n . of t r a v e l and t h a t t h e gas p re s su re i s decreased ins tan taneous ly

t o zero a f t e r one-half i n . of t r a v e l .

For t h e purpose of e s t ima t ing t h e , re loci ty

I n i t i a l rad ius of LII2 tank ( r ) = 110 i n .

F ina l rad ius of LH2 tank ( r ) = 110.5 i n .

LH2 tank volume ( V ) = T r h

0

1 2

V 2 2 1 W r l h r - = = 1 = 1.009

2 '0 II ro h

The k i n e t i c energy t r ansmi t t ed t a t h e w a l l dur ing t h e f i r s t one-half i n . of

t r a v e l w i l l be:

1 K.E. = poVo I n V

V -

0

Effec t s of RSFT

= 40 X 1 4 4 X 4270 In 1.009

The approximate ve loc i ty o f t h e fragments , t h e r e f o r e , w i l l be:

w 2 Q

K.E. = 1/2 - v

v =JK' W

= J2 x 2.2 x 1 0 5 x 32 1380

19 Apri l 1965

Page 37: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

P

A

Section 5 Effects of. Range Safety Flight Termination

31

The velocity increment of 100 f t / s e c imparted t o t h e reference piece

(1 sq ft piece of cylindrical tank wall) , together with equation (61, the

area r a t i o equations and t h e piece density-thickness product data of

t ab le 5-2, were u t i l i zed t o compute t h e estimated velocity increment

imparted t o skin pieces and the specific pieces.

5.8 General Comments

The velocity increment of a given skin section, as shown i n figure 5-2

varies a maximum of 10 percent w i t h an increase.of piece surface area from

1 f t2 t o 100 ft2,

type of breakup before stage separation are considerably smaller (10 sq ft)

than those f o r the pressure vessel explosive type of breakup af ter separa-

t ion . It may also be seen from figure 5-2 t h a t the velocity increment

variation between constant density-thickness product skin pieces i s

negligible f o r a propellant detonation type of breakup. It i s concluded t h a t the velocity increment imparted t o any skin piece is a strong function

of t he density-thickness product of t he piece and i s nearly independent of piece surface area.

The skin pieces anticipated f o r the propellant detonation

5.9

In order t o obtain engine ign i t ion , the engine p re s t a r t and start valves

must be open, an i g n i t i a source must be available, and adequate propellant

pump i n l e t conditions m u s t be achieved.

(which is common t o both stages) t o the command destruct receivers causes an " A l l Engine Cutoff Command" t o be generated i n the S-IV stage.

c=.---?c! c lec+r ics l ly d i sRbles a l l enRine p res t a r t , star t , and ign i t ion

c i r cu i t s .

Poss ib i l i ty of Engine Ignition i n the Event of Destruct Action

The RF arm and cutoff command

This

Therefore, S-IV engine ign i t ion w i l l not occur i f destruct action is taken

during the S-I boost phase, unless both the S-I and S-IV command destruct

receivers subsystems fail. The l a t t e r poss ib i l i t y is extremely remote.

Page 38: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

32

SKIN IECTION

I

I1

IIIa

I I I b

I I I C

I V

V

V I

Section 5 Effects of Range Safety Fl ight Terminatfon

TABLE 5-1 SKIN DESCRIPTIONS

LOCAT I O N

Forward I n t erst age Assembly

Forward Dome

Cylindrical Tank

Commm Bulkhead

Center Portion of A f t Dome

A f t Interstage Assembly and A f t Sk i r t Assembly

Lower Portion of A f t Dome

Upper Portion of A f t Dome

CONSTRUCTION ~

1-in. aluminum honeycomb

1/4-in. aluminum p la t e , par t i a l l y waffled and reduced ( 3/4-in. insula- t i o n ins iae tank) .

1/2-in. aluminum p la t e I

waffled ( 3/4-in. insula- t i o n inside tank) .

1-in. aluminum and f iberglass honFy comb.

1/4-in. aluminum p la t e , p a r t i a l l y reduced . 1.6-in. aluminum honeycomb.

0.086-in. aluminum pla te .

1/4-in. aluminum p la t e , waffled (3/4-in. insula- t i o n inside tank).

NOTE: .Refer t o f igure 5-1 f o r locat ion of skin sections.

.

Table 5-1 19 April 1965

Page 39: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

Sect ion 5 E f f e c t s of Range Sa fe ty F l i g h t

u v

Termin a t i on

n 0 N

- N I n e a U 4

k

e m

1

n m e

i 4 k

9

m

- W 1 9

0 n

c 0 e m

U I n

0 0 m

n

I

I

W 0

a 0 4 Y 0 9

C 4

9 k 0 c 0 4

Y

i d

z W r4 I D e

4 k W

0 *,

L * e P

Table 5-2 19 April 1965

Page 40: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

34 Sect ion 5 E f f e c t s of Range Safety F l i g h t 'Termination.

I I .

4

0 t-

-

0 rl

1 I

I

I .

t- 9 N

ln

t- m

N

o .p

*n

M P drl a - * E O ln

0 rl

Y e, k

.a0 cy I U

+ a .-I

h - E d rl 0 X a k m

i m a a x a o c m a

a h

mv) -

0 0

t- cy

1 + k

0

P W N I <

'0.

?.I k

m N I <

N I + + w w

0 0 . . t - o t - N r ( I @

+ I i

-9 A p r i l 1965 Table 5-2

Page 41: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

Section 5 Effects of Range Sa fe ty Flight Termination

U *

W m f

> 2 0 Y

1

/

I

19 April 1965 Figure 5-1

Page 42: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

36 sec t ion j

Ef fec t s of Range Sa fe ty F l i g h t Termination

Figure 5-2 10 Apr i l

. . (33S/&J) aA ' N O I S O 7 d X 3 "I3SS3A

38nSS38d ALd9V3 OL 3fla J,N3PI?I?I3NI A . L I 3 0 1 3 A 1 I I I I 1 I

I 1 1

0 0 0 0 0 0 bl 0 0 0 0 0 0 9 0

0 30 rl A I4

0 c10 CD T N

Page 43: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

38

.

PROBAB I L I T Y PRECI C T I O I S

Page 44: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

, 1 I 1

6. PROBABILITY PREDICTIDXS

39 Sect ion 6

P r o b a b i l i t y P r e d i c t ions

I n cons ider ing t h e p o s s i b l e abor t s i t u a t i o n s dur ing S-IV s t a g e f l i g h t , it i s

necessary t o p r e d i c t t h e p r o b a b i l i t y of var ious events which are r e l a t e d t o

s t a g e loss and t h e opera t ion of t he range safety f l i g h t te rmina t ion system i n

t h e S-IV s t a g e . The p r o b a b i l i t y pred ic t ions of t h e s e events are included i n

t a b l e s v-1, 6-2, and 6-3 and are based upoq t h e ground rules a n d t h e informa-

t i o n contained i n t h e DSV-l+ R e l i a b i l i t y Mathematical Model, DAC drawing

110. '1859,175, change l e t t e r C , and t h e Mathematical Model Supplement, DAC

drawing No. 1A6$113. It s-hould be noted t h a t t h e ground r u l e s assume t h a t

t h e S-IV s t a g e has one-engine-out and one-flight-control-subsystem-out

c a p a b i l i t y which i s concurrent ly appl icable f o r t h e same engine, bu t no t for

difl 'ei-ent engines.

o u t pr-obabil i t y p r e d i c t i o n . The aforementioned documents r e f l e c t a genera l

S-IV stap:e r a t h e r t h a n a s p e c i f i c conf igura t ion ; as o f t h i s repor t d a t a ,

t h e s p e c i f i c r e l i a b i l i t y pred ic t ions fo r t h e S-IV s t a g e a r e not a v a i l a b l e .

For comparison, t a b l e 6-1 a l s o inc ludes t h e no-engine-

0.1 Vehicle Loss and Mission Loss--Definition

';Lo types of' o v e r a l l loss a r e considered i n t h e R e l i a b i l i t y Mathematical

ilodel--Failure Effec t Analysis ; namely, v e h i c l e loss ani! mission l o s s . For

t h e purpose of t h i s r e p o r t , vehicle loss i s def ined as t h e r e s u l t of s t a g e

loss a t t r i b u t e d t o s t a g e breakup or explosion. Mission loss i s defin'ed as

t h e r e s u l t o f a s t a g e l o s s a t t r i b u t e d t o t h e loss of engine t h r u s t or

excessive d e v i a t i o n from t h e intended f l i g h t path. The l a t t e r d e f i n i t i o n

differs frorr. t h e mathematical model d e f i n i t i o n s i n c e it is, assumed h e r e t h a t

HSFT a c t i o n w i l l be accomplished before t h e s t a g e breaks up.

6.2 Discussion of Resul ts

Table 6-1 inc ludes t h e pred ic t ions f o r t h e complete S-IV stage system.

( 2 ) i n d i c a t e s t h a t s t a g e loss may occur 3.7 times ou t of 100 missions.

( 3 ) i n d i c a t e s t h a t v e h i c l e loss p r o b a b i l i t y i s not a f f e c t e d by t h e change

i n engine-out s t a t u s .

I t e m ( 5 ) shows the percentage of s t a g e loss t h a t may r e s u l t i n v e h i c l e loss

(explosion o r breakup) before RSFT ac t ion .

i n a i c a t e s t n a i i oui, u f 22 a t a g e 1csses i s e v e h i c l e loss type. Due t o t h e

Item

Item

Vehicle loss may occur 6 times ou t of' 100 missions.

For example, 4.6 percent

19 April 1965

Page 45: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

40. Sect ion 6 F'robabi l i t y P red ic t ions

extremely s h o r t f a i l u r e r e a c t i o n t ime ( r e f e r t o Mathematical Model f o r

s p e c i f i c FRT's), i n many cases RSFT a c t i o n may r.ot be p o s s i b l e be fo re the.

veh ic l e breaks up.

Table 6-2 i s t h e counterpar t of t a b l e 6-1, excluding t h e airf rame and t h e

t h r u s t generation subsystems (ELli)A-3 Rocket Engines ) . appear i n t a b l e 6-2 cons ide r a l l t h e f a i l u r e , e f f e c t s ta tements included i n

t h e Mathematical Model. Because of p o s s i b l e unknowns i n t h e a c t u a l loads

nnc! cnvironmental condi t ions t o which t h e S-IV s t a g e airframe w i l l be

exposed fo r t h e du ra t ion of i t s mission, a p e s s i m i s t i c po in t of view w a s

assumed. For pred ic t ion purposes, a l l of t h e air f rame u n r e l i a b i l i t y was

a s s o c i a t e d with v e h i c l e l o s s . Since s u f f i c i e n t t e s t d a t a were not a v a i l a b l e

t o demonstrate t h e c a p a b i l i t y of t h e t h r u s t generat ion subsystem t o su rv ive

t h e c r i t i c a l i g n i t i o n pe r iod ( e . g . , excessive t h r u s t overshoots , ad j acen t

engine i g n i t i n g gasses from an un ign i t ed engine, e t c . ) , it was necessary t o

determine t h e po r t ion of s i n g l e engine u n r e l i a b i l i t y which c o n t r i b u t e s t o

such ' f a i l u r e s . Assuming t h e worst p o s s i b l e c a s e , t h e p r e d i c t i o n has

i n d i c a t e d t h a t approximately 5 percent of s i n g l e engine f'ailures may

c o n t r i b u t e t o veh ic l e loss. For comparison purposes t h e p r e d i c t i o n s of t h e

two subsystems a r e included i n t a b l e 6-1 bu t not i n t a b l e 6-2.

I t e m (1) i n t a b l e 6-3 i s t h e p r o b a b i l i t y t h a t t h e S-IV RSFT system w i l l

ope ra t e properly when c a l l e d upon during S-I s t a g e powered f l i g h t .

i nc ludes the p r o b a b i l i t y t h a t d e s t r u c t i o n of t h e S-IV s t a g e w i l l be i n i t i a t e d

v i a shock propagation from t h e S-I s t a g e command d e s t r u c t subsystem or

i n i t i a t e d by t h e S-IV s t a g e should t h e S-I s t a g e command d e s t r u c t subsystem

be u n r e l i a b l e . Item ( 2 ) i n d i c a t e s t h e success p r o b a b i l i t y of t h e S-IV stage

RSFT of t h e referenced Mathematical Model. I tem ( 3 ) cons ide r s t h e ex tens ion

of t h e S-IV s t a g e RSFT t o inc lude a l l o t h e r S-IV s t a g e components r e q u i r e d

for t h e d e s t r u c t ope ra t ion . This i nc ludes such items as p a r t s of t h e S-IV

s t a g e sequencer , components of t h e e l e c t r i c a l power subsystem, e t c .

The p r e d i c t i o n s which

This

Page 46: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

41 Section 6

Probabi l i ty Predictions

No-Engine-Out Capability** ~

0.869

0.131

0.006

0.125

4.6%

TABLE 6-1 PREDICTION--ALL S-IV STAGE SUBSYSTEMS

L

(3) VEHICLE LOSS PROBABILITY

( 4 ) MISSION LOSS PROBABILITY

( 5 ) PERCENT STAGE LOSS EQUAL TO VMICLE LOSS

"Analysis assumes t h a t mission success can be achieved with one engine out. **Analysis assumes t h a t mission success cannot be achieved with one engine out.

TABLE 6-2 PREDICTION--EXCL'JDING AIRFRAME AND THRUST GENERATION SUBSYSTEMS

(1) NO STAGE LOSS PROBABILITY 0.9763

(3) VEHICLE LOSS PROBABILITY 0.0008

( 4 ) MISSION LOSS PROBABILITY 0.0229

( 5 ) PERCENT STAGE LOSS EQUAL 3.3%

(2 ) STAGE LOSS PROBABILITY 0.0237

TO VEHICLE LOSS

TABLE 6-3 PRRIITCTION--INHERENT RELIABILITY OF RSFT SYSTEM I N S-IV STAGE

( 3) AFTER S-I/S-IV SEPARATION (INCLUDING ALL OTHER S - N STAGE COMPONENTS

I

Tables 6-1 th ru 6-3 19 Apri l 1965

Page 47: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

43

T A B L E S

Page 48: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

44

Tco (set)

0 20 40 60 80 100 120. 140 160 180 200 220 240 260 280 3 00 320 340 360 380 400 420 440 46 0 480 500 5 20 540 560 580 600 612 6 13 6 14 6 15 6 16 617 6 18 6 19

TABLE A SA- 10 (Standard)

IMPACT DATA FOR PREMATURE CUTOFF Geodetic La ti tude

(deg 1

28.53 28.53 28.53 28.52 28.49 28.40 28.18 27.58 27.10 26.92 ‘26.72 26.50 26.27 26.01 25.73 25.41 25.06 24.65 24.21 23.71 23.14 22.49 21.74 20.88 19.87 18.67 17.20 15.32 12.81 9.08 2.43 -5.69 -6.70 -7.80 -8.98

-10.28 -11.70 -13.27 -15 .OO

Longitude (deg)

80.56 80.56 80.55 80.44 80.10 79.20 77.21 72.94 70.15 69.25 68.31 67.33 66.27 65.16 63.97 62.70 61.34 59.89 58.33 56.65 54.84 52.87 50.73 48.37 45.76 42.82 39.44 35.39 30.31 23.33 11.79 -1.95 -3.70 -5.62 -7.73

-10.09 -12.74 -15.75 -19.24

Remaining Flight Time

(=c>

0.0 23.42 54.32 90.60 133.34 192.21 272.25 393.91 450.98 455.78 463.38 470.81 478.30 485.87 493.51 501.33 509.46 518.01 527.05 536.69 547.12 558.64 571.61 586.44 603.88 625.15 652.20 688.69 741.31 825.71 990.51 1210.97 1239.86 1271.55 1306.54 1345.44 1389.05 1438.41 1494.98

Range (n. mi)

0.0 1.51 1.78 6.98 24.95 72.71

178.86 408.62 560.43 610.01 661.51 716.24 774.61 836.93 903.50 974.84 1051.57 1134.39 1223.94 1320.98 1426.61 1542.31 1669.85 1811.45 1970.46 2152.16 2364.94 2623.65 2955.89 3424.16 4219.63 5175.97 5296.64 5428.16 5572.46 5731.91 5909.59 6109.61 6337.50

Page 49: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

k

b. 620 621 622 623 6 24 6 25 6 26

Geodetic L a t i tude

(deg 1

-16.93 -19.08 -21.47 -24.09 -26.81 -28.92 ORBIT

-23.35 -28.30

-42.50 -53.71 -71.46

-34.47

Remain ing Flight Time

(set)

1560.75 1638.65 1733.28 1852.45 2011.63 2251.78

45

Range (n. mi)

6601.07 6911.78 7287.55 7759.25 8388.15 9338.41

.

Page 50: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

46

Tco (set)

0 20 40 60 80 100 120 14 0 160 180 200 220 240 260 280 300 320 34 0 360 380 400 420 440 46 0 480 5 00 5 20 540 560 580 594 595 596 597 598 599 6 00 601 602 6 03 604 6 05 6 06 6 07

TABLE B (SA-10 ( 3 u Maximum)

IMPACT DATA FOR PREMATURE CUTOFF Geodetic Remaining Latitude Longitude Flight Time

(deg) (deg) . (set)

28.53 28.53 28.53 28.52 28.48 28.38 28.13 27.42 26.96 26.76 26.53 26.29 26.02 25.73 25.41 25.05 24.66 24.21 23.71 23.14 22.50 21.77 20.93 19.94 18.77 17.35 15.55 13.14 9 . 6 1 3.42

-5.70 -6.72 -7.83 -9.04

-10.36 -11.81 -13.41 -15.18 -17.15 -19.35 -21.80 -24,47 -27.19 ORBIT

80.56 80.56 80.54 80.41 80.02 79.02 76.80 71.97 69 .41 68 .44 67 .41 66 .34 65.19 63.98 62.69 61.32 59.85 58.29 56 .62 54.82 52.87 50.76 48.45 45.89 43.02 39.73 35 .81 30.91 24.23 13.40 -2.03 -3 .81 -5.75 -7.90

-10.30 -13.01 -16.09 -19.68 -23 .91 -29.04 -35.46 -43.90 -55.84

0 25.14 57.35 95 .01

140.63 204.20 291.07 426.73 476.61 483.35 490.54 497.50 504.43 511.35 518.29 525.35 532.70 540.47 548.78 557.76 567 .71 579.05 592.24 607.98 627.38 652.37 686.30 735.59 814.73 966.94

1213.81 1243.16 1275.42 1311.09 1350.82 1395.43 1446.04 1504.15 1571.89 1652.39 1750.62 1875.17 2043.78

Range (n. mi)

0 1 .51 2.10 8 .49

29.01 82.36

200.87 461.35 600.88 654.47 710.95 770.90 834.78 902.85 975.40

1052.97 1136.23 1225.92 1322.76 1427.62 1541.86 1677.33 1806.33 1961.98 2139.13 2345.83 2595.88 29 15 .43 3362.38 4106.64 5180.37 5302.67 5436.22 5582.99 5745.46 5926.86 6131.47 6365.14 6636.13 6956.72 7346.34 . 7838.92 8504.80

Page 51: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

d r

47

TABLE C

' i

TCO

(set)

0 20 40 60 80 100 120 140 16 0 180 200 220 240 26 0 280 3 00 320 340 360 380 400 4 20 440 46 0 480 5 00

540 560 580 600 6 20 632 633 6 34 635 636 637 638

- 3 LV

SA-10 (3 CJ Minimum) IMPACT DATA FOR FWD4ATlJR.E CUTOFF

Geodetic Latitude (de€!)

28.53 28.53 28.53 28.52 28.50 28.42 28.23 27.73 27.25 27.08 26.90 26.70 26.50 26.28 26.03 25.76 25.45 25.11 24.73 24.29 23.80 23.24 22.59 21.86 21.01 20.00 12. f!c 17.33 15.46 12.94 9.21 2.51 -5.81 -6.86 -8.00 -9.24 -10.61 -12.11 -13.77

Longitude (deg 1

80.56 80.56 80.55 80.45 80.16 79.36 77.59 73.81 70.88 70.04 69.22 68.33 67.38 66.37 65.29 64.14 62.91 61.59 60.16 58 -63 56.98 55.19 53.24 51.11 48.76 46.15 43.21 39.80 35.74 30.64 23.63 11.99 -2.07 -3.90 -5.90 -8.13 -10.61 -13.43 -16.67

Remaining Flight Time

(set)

0 21.97 51.33 86.12 125.94 180.85 255.44 366.67 430.47 434.00 442.03 449.52 456.76 464.07 471.50 479.13 487.09 495.47 504.33 513.72 523.80 534.78 546.89 560 -42 575.82 593.87 615.78 643.52 680.54 733.57 818.33 984.38 1210.44 1240.58 1273.78 1310.60 1351.74 1398.13 14.0 i 99

Range (n. mi)

0 1.51 1.51 5.99 21.71 64.01 158.65 361.26 520.64 566.34 611.94 660.97 713.53 769.66 829.63 893.93 963.14 1037.89 1118.80 1206.51 1301.93 1406.27 1520.92 1647 .49 1788.34 1946.98 2128.79 2342.22 2601.74 2934.91 3404.82 4206 -34 5185.67 5311.24 5448.72 5600.23 5768.45 5957.00 6170.65

Page 52: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

48

Tco (see 1

639 640 64 1 64 2 643 644 645

Geodetic Latitude

(deg 1

-15.62 -17.68 -19.98 -22.54 -25.30 -27.95 ORBIT

Longitude (deg 1

-20.44 -24.94 -30.45 -37.47 -46.86 -60.57

Remaining Flight Time

(set>

15 12.06 1583.76 1669.80 1776.14 1913.11 2103.65

Range (n. mi)

6416.05 6702.71 7045.11 7466.59 8007 -90 8764.44

Page 53: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

ci c

I

1 %

I i

I L L U S T R A T I O N S

,

Page 54: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

50

5 00

100

32

28

24

20

16

12

8

4

0

Page 55: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land
Page 56: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

52

L

Page 57: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

53

4

Page 58: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

54

0 u .. c .- E u E

8

Page 59: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

55

C.

.

a W

3 z

LL 0

Page 60: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

56

Page 61: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

L

.

L

57

Page 62: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

58

+ * * 0 0 0

A

Page 63: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

59

s

I

Page 64: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

60

Page 65: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

61

A

Page 66: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

62

N E a t N a

4

-

/ I I

L

Page 67: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

.

63

,

Page 68: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

64

Page 69: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

a

c

Ir

.

65

Page 70: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

66

.

Page 71: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

67

N

aD N

a N

I- u). \D N N N

9

Page 72: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

68

0

03 N

03

W cu ? W hl

0

W N

.

Page 73: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

k

i

69

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N TKE LATERAI, DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 19

(-By of 11.5, 10, 7, 3, 1, .5) a t To = 16

Page 74: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

( -By of 11.5, 10, 7, 3, 1, .5) at To = 20 THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 20

Page 75: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION

(-p of 11.5, 10, 7 , 3, 1, .5 ) a t T o - = 24 Y

Page 76: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

/ CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION

(-p of 11.5 , 10, 7, 3 , 1, .5) a t To = 28 Y

000 000

11m rtc.

b

f I

Page 77: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

73 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 23 (-By of 11.5, 10, 7, 3, 1, .5 ) a t To = 32

m o d d l

Page 78: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

(-p.. of 11 .5 , 10, 7 , 3 , 1 , . 5 ) a t T i = 36 THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 24

Y u .

l l l c acc.

?

Page 79: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

75 CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN TRE LATERAZ, DIRECTION VERSUS TIME FOR MALFUNCTION M m 25

(-py of 11.*5, 10, 7, 3, 1, . 5 ) at To = 40

Page 80: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

76 CHANGE I N TOTAL V E L O C I T I VECTOR ORIENTATION I N

THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 26

/ (-Py of 11.5, 10, 7, 3, 1, .5) at To = 44

1

Page 81: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN THE LATERAL DIRECTION VERSUS TIME FOR

(-py of 11.5, 10, 7, 3, 1, .5) at To = 48

L

.

Page 82: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

78 CHANGE I N TOTAL VELOCITI VECTOR ORIENTATION I N

THE LATERAL DIRECTION VERSUS. TIME FOR MALFUNCTION FIGURE 28 (-By of 11.5, 10, 7, 3, 1, .5) at To = 52

c

Page 83: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

~

I

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION,IN THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION

(-p of 11.5, 10, 7, 3, I, .5) at T i = 56 Y

Page 84: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

80

C " G E IN TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 30

(+,, of 11.5, 10, 7, 3 , 1, .5) at To = 60

_ . . _ _ _ _ _ _ _ _ . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . Tim! a.

Page 85: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

81 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE LA- DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 31 (-py of 11.5, 10, 7 , 3, 1, . 5 ) a t To = 64

R I LT.

.

Page 86: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

a2 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

( - 1 3 ~ of 11.5, 10, 7, 3, 1, .5) at To = 68 THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 32

g' boQ

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l l l l l l l l l l I I I 1 1 1 1 1 1 1 1 1 1 I I I I I l 2 ! I I I I I 1 I I I I I I I I I I I I I I I I I I 1 1 I 1 1 1 1 I

I

c

Page 87: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

83 CHANGE IN TOTAL VEZOCITY VECTOR ORIEKTATION IN

(-By of 11.5, 10, 7, 3, 1, 3) a t To = 72 THE LATERAL DIRECTION VERSUS TIME FOR TIO ON FIGURE 33

sa m

Page 88: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 34

(-py of 11.5, 10, 7, 3, 1, .5) at To = 76

Page 89: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

I-

.

85 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE LATERAC DIRECTION VERSUS TIME FOR MALFUNCTION (-By of 11.5, 10, 7, 3, 1, -5) at To = 80

FIGURE

1 1 1 1 1 . 1 1 1 1 I 1 1 1 1 . 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 "- a rn Q M I¶ n 07 n n a0

ire LC.

Page 90: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

86 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 36 /

( - B y of 11.5, 10, 7, 3, 1, .5) at To = 84

.

Page 91: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

87 CHANGE I N TOT& VELOCI* VECTOR ORIENTATION I N

(-ey of 11.5, 10, 7, 3, 1, -5) at To = 88 THE W E R A I . DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 37

Page 92: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

(-py of 11.5, 10, 7, 3, 1, .5) at To = 92 THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 38

yo

Page 93: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

. 89

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

(-By of 11.5, 10, 7, 3 , 1, .5) a t To = 96 THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 39

404s m o m 0

?

4

I

I

Page 94: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 40

(-py of 11.5, 10, 7, 3, 1, .5) at To = 100

Page 95: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land
Page 96: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

.

Page 97: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

93 / 4

CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAT.. DIRECTION VERSUS. TIME FOR MALFUNCTION FIGURE

(-By of 11.5, 10, 7, 3 , 1, .5) at To = 112

e

Page 98: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

94

-I ”/ a‘ os;

CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIG

(-pY of 11.5, 10, 7 , 3 , 1, .5) at To = 116

t

Page 99: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

L

I *

CHANGE IN TOTAL VnOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIG

t t(

Page 100: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

96 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 46 (+,, of 11.5, 10, 7, 3, 1, .5) at To = 124

t

Page 101: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

. CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFVNCTION FIGURE

(-py of 11.5, 10, 7, 3, 1, .5) a t To = 128

Page 102: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

/ CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN

THE L A T E W DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 48 / (-py of 11.5, 10, 7 , 3 , 1, .5) at To = 132

wo

t

Page 103: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

. 99 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 49 (-py of 11.5, 10, 7, 3, 1, .5 ) a t To = 136 /-=-

Page 104: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

100 CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN THE L A T E W DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 50

(-pY of 6 , 4 , 2, 1) at To = 180 000 4042 000 /

P

,

Page 105: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

. 101

/ CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 51 /... (-pY of 6, 4, 2 , 1) a t To = 200

TI* IC.

Page 106: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

102 / CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 52 (-By of 6 , 4 , 2 , 1) a t To = 220

Page 107: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

,

104 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 54 ( - P y of 6, 4 , 2, 1) a t To = 260

.

Page 108: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

2.:

2.

1.

1.

1.

1.

I .

1.

1.

I .I

. < I

105 CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 55

(-$y of 6, 4 , 2, 1) at To = 280

4

t

Page 109: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

106 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

---------

TI= I C .

f

Page 110: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

c

107 CHANGE I N TOTBL VELOCITY VECTOR ORIENTATION I N TFE LATERAL DIRECTION VERSUS TIME FOR MALF'UNCTION FIGURE 57

(-% of 6, 4, 2, 1) a t To = 320

Page 111: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

108 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 58 (-Py of 6, 4 , 2 , 1) at To = 340

Page 112: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

109

FIGURE 59 CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION

(-py Of 6 , 4, 2, 1) a t To 360

Page 113: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 60

(-py of 6 , 4 , 2 , 1) at To = 380

c

.

Page 114: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

111 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE u m m DI'~ECTION VERSUS TIME FOR MALFUNCTION FIGW 61 (-By of 6, 4, 2, 1) at To = 400

6 n

Page 115: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 6 2 /

(-py of 6 , 4 , 2 , 1) a t To = 4 2 0 000 40/

Page 116: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

113 CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN

(-pY of 6, 4, 2, 1) at To = 440 THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 63

Page 117: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 64

(-Py of 6, 4 , 2 , 1) at To = 460 4042 000 ooo/

Page 118: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

I . I

I

T

2 .

2 .

2.

2.

2.

2.

2.

2.

2.

2 .

1 .

I .

1.

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MAZmRJCTION

(-By of 6 , 4, 2 , 1) a t To = 480

, T I T P C .

115

FIGURE 65

A O A t 000 000

. . . . . . r i 2 493 I

Page 119: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE IN TOTAL VELOCITY VECTOR ORIENTATION IN THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 66

( - p y of 6 , 4 , 2, 1) at To = 500 GGG /

Page 120: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

117 CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N

( -By of 6 , 4, 2, 1) at To = 520 THE LATERAL DIRECTION VERSUS TIHE FOR MACFUNCTION FIGURE 67

8542 ccc c 5 /

1.

2 .

2

2

2

2

2

2

2

2 .

2 .

t .

I

Page 121: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

118

CHANGE IN TOTAL VEOCITY VECTOR ORIENTATION IN THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 68

(+,, of 6, 4 , 2, 1) at To = 540

7

Page 122: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

119 C " G E I N TOTAL VELOCITY VECTOR ORIENTATION I N

THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 69 / (+,, of 6, 4, 2 , 1) at To = 560

GOO 4 0 4 t / ? d

*

Page 123: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION

(+,, of 6 , 4 , 2 , 1) at To = 580

11- I C .

FIGURE 70

.

Page 124: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

121

THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 71 CHANGE IN TOT& VELOCITY VECTOR ORIENTATION IN

(+,, of 6, 4, 2, 1) at To = 600 ,/

Page 125: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

CHANGE I N TOTAL VELOCITY VECTOR ORIENTATION I N THE LATERAL DIRECTION VERSUS TIME FOR MALFUNCTION FIGURE 72

(-f3 of 6 , 4 , 2 , 1) a t To = 620 Y

a r - - - - - - - e t 1 62 5 626 627 620 629 610

11- KC.

Page 126: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

123 EARTH-FIXED VELOCITY AS A FUNCTION OF TR4E FOR MALFUNCTION (-By of 11.5, 10, 7, 3, 1, .5) at To = 16 FIGURE 73

Page 127: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

124 EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION

(-By of 11.5, 10 , 7, 3, 1, .5) at To = 20 FIGURE 14

404t ow ow

8

Page 128: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

125 EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION

(-py of 11.5, 10, 7, 3, I, . 5 ) at To = 24 FIGURE 75

wou ow ooe 1 1 1 1 l 1 1 l 1 1 1 1 l 1 1 1 1 1 1 1 1 l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Page 129: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-py of 11.5;10, 7, 3, 1, .5) at To = 28 FIGURE 76

404C 000 000

LC.

Page 130: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

c 127 EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION

(-pi of 11.5, 10, 7, 3 , 1, .5) at To = 32 FIGURE 77

me

Page 131: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-py of 11.5, 10, 7, 3 , 1, .5) a t T = 36 FIGURE 78

0

Page 132: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VnOCITl &-A 01 FOR MALFUNCTION (-By of 11.5, 10, 7, 3, 1, .5) at To = 40 FIGURE 79

000 4 O l t 000

c

Page 133: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

130

300

tw

too

em,

em,

1110

1140,

1130

m,

44

,

,

,

,

,

c

EARTH-FIXED VELOCITY AS A FUNCTfON-OFTIME FOR MALFUNCTION (-pY of 11.5, 10, 7, 3, 1, .5) at To = 44 FIGURE 80

40411 000 000

I 1 I 1 I I I I I I 1 I 1 I I 11;1 I I 1 I I I I I I 4s 4s 47 - 40 49

s c .

Page 134: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

i I

13 1 EARTH-FIXED VELWIT~ AS A FUNCTION OF-TIME FOR MALFUNCTION

(-By of 11.5, 10, 7, 3, 1, .5) at To = 48 FIGURE 81

Page 135: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCITY AS A F ~ ~ I U I P e m m FOR MALFUNCTION (-By of 11.5, 10, 7, 3 , 1, .5) at To = 52 FIGURE 82

4042 000 000

a

c

Page 136: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

133 EARTH-FIXED vEL(scl%? -A -1dfi .dr TIME FOR MALFUNCTION (-py of 11.5, 10, 7, 3, 1, . 5 ) at To = 56 FIGURE 83

wo

c

Page 137: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

134 EARTH-FIXED VELOCITJ? AS A FUNCTION OF TIME FOR MALFUNCTION

(-py of 11.5, 10, 7, 3 , 1, .5) a t To = 60 FIGURE 84

104e 000 OQO

Page 138: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

135 EARTH-FIXED VEkOCITY As A FUNCTION OF TIME FOR MALFUNCTION

(-By of 11.5, 10, 7, 3 , 1, .5) at To = 64 FIGURE 85

4042 mesa

b

.

Page 139: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELudTTY AS A FUNCTION OF TIME FOR MALFUNCTION (-By of 11.5, 10, 7, 3 , 1, .5) a t To = 68 FIGURE 86

4041 000 000

Page 140: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCITY -x FTNm6h -6F TIME FOR MALFUNCTION 13 7 (-pY of 11.5, 10, 7, 3, 1, .5) at To = 72 FIGURE 87

4042 000 OPO

Page 141: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

138

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-By of 11.5, 10, 7, 3 , 1, .5) a t To = 76 FIGURE 88

lgL 000

.

Page 142: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VnOCm&? 2i .mm'm 'TIME FOR MALFUNCTION (-By of 11.5, 10, 7, 3, 1, . 5 ) at To = 80 FIGURE 89

139

L

Page 143: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

140

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION b.

(-py of 11.5, 10, 7, 3 , 1, .5) at To = 84 FIGURE 90

404L 000 000

Page 144: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCITY AS A FUNCTION O F TIME FOR MALFUNCTION (-By of 11.5, 10, 7, 3, 1, .5) at To = 88 FIGURE 91

~ o i t OW 006

14 1

Page 145: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

14 2

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION ( -By of 11.5, 10, 7, 3 , 1, .5) at To = 92

c

FIGURE 92 404t 000 000

t

c

Page 146: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EART”l3+IXED VE&OC%.fi -A% AFUNCTION OF TIME FOR MALmTNCTION (-py of 11.5, 10, 7, 3, 1, . 5 ) a t To = 96 FIGURE 93

143 mou onom

.

Page 147: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

144

EARTH-FIXED VELOC!lTk AS A FUNCTION OF TIME FOR MALFUNCTION (-By of 11.5, 10, 7, 3 , 1, . 5 ) at To = 100 FIGURE 94

4042 000 000

Page 148: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VETBCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-py of 11.5, 10, 7 , 3 , 1, -5) at To = 104 FIGURE 95

145 4042 000 000

Page 149: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOC-AS .A'!YJR~~UV"~4#IME FOR MALFUNCTION (-By of 11.5, 10, 7 , 3 , 1, .5) a t To = 108 FIGURE 96

m

Page 150: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

c

JURTH-FIXED VELOCITY AS A FUNTION OF'TIME FOR MALFUNCTION (-Py of 11.5, 10, 7 , 3, I, .5) at To = 112 FIGURE 97

Page 151: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCITY & A-FUNCTION-OF TThE FOR MALFUNCTION (-py of 11.5, 10, 7, 3 , 1, .5) at To = 116 FIGURE 98

404t 000 000

c

Page 152: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCITPAS A E%NCTION OF 9n%IE FOR MALFUNCTION (-py of 11.5, 10, 7, 3, 1, .5) at To = 120 FIGURE 99

149 IQU mow

Page 153: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VEGCEITYAS A FrrrJcT'ION-OF TIME FOR MALFUNCTION (-By of 11.5, 10, 7, 3, 1, .5) at To = 124 FIGURE 100

404t ow ooo

c

Page 154: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land
Page 155: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

- - - - ~ EARTH-FIXED VELOCITY AS A FUNCTION OF TIElE FOR MALFUNCTION

(-By of 11.5, 10, 7, 3, 1, .5) at T = 132 FIGURE 102 0

;;i? 000

Page 156: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

I *

W

EARTH-FIXED W I 7 L T U l " I O N OF TIME FOR MALFUNCTION (-pY of 11.5, 10, 7, 3, 1, .5) at To = 136 FIGURE 103

15 3 w41 m m

Page 157: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELocZ'Tl? 'a- A PUxCTION OF TIME FOR MALFUNCTION 154 (+,, of 6, 4 , 2, 1) at To = 180 FIGURZ 194

$2 000

l f l l c I C .

Page 158: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-pY of 6, 4 , 2, 1) at To = 200 FIGURE 105

155 d o i t 000 000

Page 159: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

15 6

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-py of 6, 4 , 2 , 1) at To = 220 FIGURE 106

4042 '

000 000

Page 160: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

~~ ~ ~~

EARTH-FIXED VELOCITY AS A ??UNCTION OF TIME FOR MALFUNCTION (-pY of 6, 4 , 2, 1) at To = 240

!SO I! 1

FIGURE 107

T l Y KC.

Page 161: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCIT!?a 'A' PUBTTTON OF T I B FOR MALFUNCTION (-py of 6, 4 , 2, 1) a t To = 260 FIGURE 108

Page 162: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

3021

3011

300(

tW1

I

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-pY of 6, 4, 2, 1) at To = 280 FIGURE 109

159 4041 000 000

c

Page 163: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

16 0

EARTH-FIXED VELOCITY A FUNCTION OF TIME FOR MALFUNCTION (-py of 6, 4 , 2, 1) at To = 300 FIGURE 1lU

;:j2 000

3

Page 164: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VnOCITY AS A FUNCTION OF TfME FOR MAJ.,FUNCTION (-py of 6 , 4 , 2, 1) at To = 320 FIGURE 111 L61

4042 000 000

c

Page 165: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

16 2

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-pY of 6, 4 , 2, 1) at To = 340 FIGURE 112 ’

4042 aoa aaa

X

Page 166: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

. EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION

(+,, of 6 , 4, 2, 1) at To = 360 . FIGURE 113 163

Page 167: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

164 EARTH-FIXED VELOCITY AS A FUNCTION dTTIME FOR MALFUNCTION

(-By of 6, 4, 2, 1) at To = 380 FIGURE 114 +

4

TI* I C .

J

Page 168: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

- - - - .- EARTH-FIXED VELOCITY AS A FVNCTION OF TIME FOR MALFUNCTION

(-By of 6 , 4 , 2, 1) at To = 400 FIGLW 115

404r 000 no0

165

11- I C .

Page 169: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VFLOCITY AS A.WNCTION OF TIME FOR MALFUNCTION (-Py of 6, 4 , 2 , 1) at To = 420 FIGURE 116

;Ez 000

166

T f r L S C .

Page 170: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

f

EARTli-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-pY of 6, 4 , 2, 1) at To = 440 FIGURE 117

16 7 4O4t 000 OII

Page 171: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

168

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-pY of 6, 4 , 2, 1) a t To = 460 FIGURE 118

Page 172: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

c

EARTH-FIXED ~ O C I T Y AS A FUNCTION OF TIME FOR MALFUNCTION (-py of 6, 4 , 2, 1) a t To = 480

Ul:; 49 1

Page 173: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

170

EARTH-FIXED VELOCITl AS A EVNCTION OF TIME FOR MALFUNCTION (+,, of 6, 4 , 2, 1) at To = 500 FIGURE 120

4042 ooo aoo

*

Page 174: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-pY of 6 , 4, 2, 1) at To = 520 FIGURE 121

17 1 4011 . 000 000

Page 175: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

172

I

ll*C K C .

*

EARTH-FIXED VELOCITY AS A FUNCTION OF-TIME FOR MALFUNCTION (-py of 6 , 4 , 2 , 1) at To = 540 FIGURE 122

i 552

L

Page 176: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

L

J EARTII-FIXED VELOCITY AS A FUNCTION OF TIME FOR WLJ?UNCTION (-p of 6, 4 , 2, 1) at To = 560 FIGURE 123

173 Y ( P A 2 GCO COG

i' ( 4 1 1 . . . . .... J l + , . 1 ,... t .... . . . . . s i 1 s72 G J

Page 177: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

174

V I

M L T E I I / I L C

EARTH-FIXED VELOCITY AS A FUNCTION OF TIME FOR MALFUNCTION (-f3 of 6 , 4 , 2 , 1) a t To = 580 FIGURE 124

b o 4 2 Y

ooa ooo

i t

t

L

Page 178: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCITY As A FUNCTION OF TIME FOR -ION (-By of 6, 4 , 2, 1) at To = 600 FIGURE 125

175 000 4042 000

2

TIW IC.

.

Page 179: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

EARTH-FIXED VELOCI"f&i A FUNCTION OF TIME FOR MALFUNCTION (-py of 6, 4 , 2 , 1) a t To = 620 FIGURE 126

4 0 4 2 GOG GOO

L

I

Page 180: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

177

REFERENCES

1. "Range Safety Aerodynamic Characteristics of Saturn I, Block I1 Vehicle Consisting of the SA-5, SA-6, and SA-7," M-AERO-AA, July 19, 1963.

2. "Cape Canaveral, Florida, Wind Profile Envelopes for Selected Flight Azimuths,'' Office Memorandum No. M-AERO-G-53-63, March 28, 1963, W. W. Vaughan.

3. SA-10 Predicted Trajectory to be published by R-AERO-FM.

Page 181: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

178

APPROVAL

RANGE SAFETY DATA FOR SATURN SA-10

G. W. Solmon and E. L. Leonard

The information i n t h i s repor t has been reviewed fo r s e c u r i t y c l a s s i f i c a t i o n . Defense or Atomic Energy Commission programs has been made by the MSFC Securi ty C l a s s i f i c a t i o n Off icer . This r epor t , i n i t s e n t i r e t y , has been determined t o be unc lass i f ied .

Review of any information concerning Department of

L. 0. STONE Chief, Flight Mechanics Branch

E. D. GEISSLER Director , Aero-Astrodynamics Laboratory

a

c

Page 182: Y66 32794 - NASA€¦ · 1 32794 UCCEsSlON NUMBER) z CTHRUJ Hard copy (HC) aim E f (CODE) 100 IPkQES) 2 ... 5 Vehicle Velocity Vector Turning Angle Investigation . 5 Downrange Land

179

DIS TRIBUTLON

t a

4

R-DIR, Mr. Weidner MSC-FM, Mr. D. J. Incerto I-I/IB-SIV, Mr. Gerguson MSC-STO, Mr. J. Funk MS-IPL ( 8 ) MSC-ASPO-SCE, M r . T. H. Skopinski ( 4 ) V, Dr. Gruene MSC-ASPO-SCE, Mr. Clay Hicks PF, Mr. Bishop ED, Dr. Bruns VG3, Mr. Chambers ET, Mr. Collins VE, Mr. Davidson L, M r . Gorman PE, Major Hock ED4, Mr. Jelen VG4, Mr. Jenke SF, Mr. Moore T, Dr. Knothe (3) VT, Mr. Moser P, Colonel Petrone GT, M r . Russo E, Mr. Sendler VG4, Mr. Whiteside VE, Mr. Williams GTO2 GAO2 R-P&VE-AAL, Mr. Stafford R-P&VE-VSA, M r . Beck CC-P, Mr. Wofford R-AERO-DIR, Dr. Geissler R-AERO-DIR, Mr. Jean R-AERO-P, Mr. McNair R-AERO-P, Mr. Teague (7) R-AERO-P, Mr. Thionnet (6) R-AERO-AD, Mr. Nash R-AERO-Y , Mr . Vaughan R-AERO-F, Dr. Speer R-AERO-Pm, rir. S i u ~ i R-AERO-FM, Mr. Leonard (8) R-AERO-FM, Mr. Solmn R-.AERO-FM, Mr. Crafts

MSC - MSC-PT6, Mr. R. E. McKann MSC-PS-3, Mr. C. H. Perrine, Jr. MSC-FM, Mr. J. P. Mayer