33
Division of Economics and Business Working Paper Series Why Have Greenhouse Emissions in RGGI States Declined? An Econometric Attribution to Economic, Energy Market and Policy Factors Brian C. Murray Peter T. Maniloff Evan M. Murray Working Paper 2014-04 http://econbus.mines.edu/working-papers/wp201404.pdf Colorado School of Mines Division of Economics and Business 1500 Illinois Street Golden, CO 80401 April 2014 c 2014 by the listed authors. All rights reserved.

Why Have Greenhouse Emissions in RGGI States Declined? An

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Division of Economics and BusinessWorking Paper Series

Why Have Greenhouse Emissions in RGGI StatesDeclined? An Econometric Attribution to Economic,

Energy Market and Policy Factors

Brian C. MurrayPeter T. ManiloffEvan M. Murray

Working Paper 2014-04http://econbus.mines.edu/working-papers/wp201404.pdf

Colorado School of MinesDivision of Economics and Business

1500 Illinois StreetGolden, CO 80401

April 2014

c© 2014 by the listed authors. All rights reserved.

Colorado School of MinesDivision of Economics and BusinessWorking Paper No. 2014-04April 2014

Title:Why Have Greenhouse Emissions in RGGI States Declined? An Econometric Attribution toEconomic, Energy Market and Policy Factors∗

Author(s):Brian C. MurrayDuke University

Peter T. ManiloffDivision of Economics and BusinessColorado School of MinesGolden, CO [email protected]

Evan M. MurrayDuke University

ABSTRACT

The Regional Greenhouse Gas Initiative (RGGI) is a consortium of northeastern states that have agreed

to limit carbon dioxide emissions from electricity generation through a regional emissions trading program.

Since the initiative came into effect in 2009, emissions have dropped precipitously, while the price of emissions

allowances has fallen from approximately $4 per ton to the program floor price of just under $2.00. We ask

why the emission reductions have come so fast and inexpensively, finding that it is due to a combination

of factors, including the emissions trading program itself, complementary environmental programs, lower

natural gas prices, and possibly some regional spillover effects. We find that the effect of the recession was

small compared with other factors. Lower natural gas prices had a substantial impact on regional emissions.

Econometric challenges makes it difficult to assign how much of the RGGI reduction is due to the price

and how much is due to an overall “regime effect” guiding long-term planning decisions. We also present

results consistent with but not dispositive of RGGI emissions reductions being due to policy leakage. But

taken together, and compared to emission reduction outcomes in the rest of the U.S., it appears the RGGI

program has induced a substantial reduction in the emissions, all else equal.

∗The authors acknowledge comments on earlier drafts from Harrison Fell (Colorado School of Mine and RFF), Joe Aldy

(Harvard), Billy Pizer (Duke) and attendees at the 2013 AERE summer conference in Banff, Alberta. We also thank Karen

Palmer (RFF) for data used in a preliminary analysis of this work.

2    

1. Introduction    

The  Regional  Greenhouse  Gas  Initiative  (RGGI)  is  a  consortium  of  northeastern  U.S.  states  which  have  agreed  to  limit  the  greenhouse  gas  (GHG)  emissions  of  carbon  dioxide  (CO2)  from  electric  power  generation  via  a  regional  emissions  trading  (“cap-­‐and-­‐trade”)  program.1    Since  RGGI  came  into  effect  in  mid-­‐2008,  total  emissions  from  the  region’s  power  sector  have  plummeted  substantially.  Figure  1  depicts  an  index  from  1990  to  2010  showing  change  in  income,  population,  electricity  generation  and  electricity  emissions  in  RGGI  states  between  1990  and  2010.2  The  figure  outlines  the  percent  change  of  a  certain  factor  indexed  to  its  value  in  1990.  

 The  most  stark  observation  from  these  data  is  the  sharp  decline  in  electricity  emissions  in  the  later  years.  In  2005,  the  emissions  were  about  equal  to  those  of  1990,  but  by  2009,  those  emissions  had  fallen  by  around  30%.    What  is  particularly  interesting  about  that  time  period  is  that  states  started  announcing  their  intentions  to  join  RGGI  in  the  middle  of  the  decade,  but  the  program  did  not  commence  until  2009,  a  point  we  will  return  to  below.    

 Meanwhile,  electricity  generation  stayed  about  the  same  after  2005,  and  had  risen  significantly  since  1990.  This  widening  gap  between  emissions  and  generation  suggests  a  decarbonization  of  power  generation  as  it  transitions  from  coal  and  oil  which  emit  much  larger  amounts  per  BTU  of  energy  produced  to  lower  or  zero  emitting  fuel  sources,  such  as  natural  gas,  nuclear  power  and  renewables,  respectively.  The  shapes  of  the  electricity  generation  and  emissions  functions  are  similar,  usually  increasing  and  decreasing  in  the  same  years  as  one  another.  They  also  share  similar  patterns  of  variation  -­‐  as  generation  increases,  emissions  increase  similarly.    Current  emissions  are  not  only  well  below  historic  levels,  they  are  below  the  emissions  cap  that  was  established  by  the  program.    These  retired  allowances  equaled  over  one-­‐fifth  of  the  legislated  emissions  cap  for  that  period.    As  detailed  further  below,  the  allowances  were  unsold  because  of  the  existence  of  a  price  floor  for  RGGI  auctions,  below  which  no  auction  bids  can  be  accepted.    

Taken  together,  this  suggests  a  system  that  has  either  been  extremely  effective,  less  stringent  than  it  should  be,  overtaken  by  other  economic,  technological  and  market  factors  that  are  driving  emissions  down,  or  some  combination  of  the  above  (LeGrand,  2013).    The  situation  that                                                                                                                            1  From  2009-­‐2011,  the  10  RGGI  states  were  Connecticut,  Delaware,  Maine,  Maryland,  Massachusetts,  New  Hampshire,  New  Jersey,  New  York,  Rhode  Island,  and  Vermont.  In  2012,  New  Jersey  left  the  program.  2  Emissions  and  generation  data  are  from  the  EIA  data.    Population  estimates  are  from  the  BEA.    Statewide  unemployment  rates  are  from  the  BLS.    The  population-­‐weighted  average  presented  here  is  the  authors’  calculation.    

3    

emerged  in  RGGI  states  after  program  inception  suggests  four  possible  factors  driving  the  dramatic  decline  in  emissions  (Tietenberg,  2013;  Stavins,  2012;  Hibbard  et  al,  2011,  Environment  Northeast,  2011):    

• The  RGGI  program  itself,  which  sends  a  price  signal  to  power  generators  favoring  lower  emitting  sources  and  generates  auction  revenues  to  finance  low  carbon  and  energy  efficiency  investments  within  the  region;      

• The  economic  crisis  commencing  in  2008  and  continuing  for  several  years,  which  lowered  economic  activity,  energy  demand  and  emissions  there  from;  

• The  surge  in  the  availability  of  lower-­‐emitting  natural  gas  due  in  part  in  to  rapid  expansion  of  hydraulic  fracturing  (“fracking”)  technology;  and    

• Complementary  state  environmental  programs  such  as  renewable  portfolio  standards  that  mandate  a  certain  share  of  electric  power  be  generated  by  renewable  (low  or  zero-­‐emitting)  sources.    

This  paper  attempts  to  quantitatively  decompose  the  emission  reductions  in  the  RGGI  region  into  these  and  other  factors.  We  do  so  by  developing  an  econometric  model  of  the  U.S.  electric  power  sector,  including  final  demand  for  electricity,  factor  demand  for  alternative  generation  sources,  and  CO2  emissions.    We  use  panel  data  from  each  of  the  48  states  in  the  continental  U.S.  for  the  time  period  1991-­‐2011  to  estimate  the  model.    This  allows  us  to  differentiate  responses  within  the  RGGI  region  and  time  frame  from  the  rest  of  the  population.    The  estimated  model  is  then  used  to  simulate  the  energy  and  emissions  effects  of  counterfactual  scenarios  to  quantify  the  separate  effects  of  the  RGGI  program,  macroeconomic  factors,  natural  gas  price  shifts  and  other  environmental  policies.    

The  paper  continues  with  a  conceptual  model  that  defines  how  the  RGGI  program  works  and  how  the  cap-­‐and-­‐trade  structure  along  with  other  factors  influence  emissions  and  price  outcomes.      The  conceptual  model  informs  a  discussion  the  actual  RGGI  program  allowance  auction  price  and  quantity  outcomes  since  the  inception  of  the  program.    The  paper  then  discusses  how  various  factors  other  than  the  RGGI  program  itself  could  have  influenced  emissions  outcomes  in  the  region.  An  econometric  model  of  the  power  sector  is  used  to  estimate  power  demand,  allocation  of  generation  sources,  and  emissions  with  state-­‐level  time  series  data  from  1990-­‐2011.    The  estimated  model  is  used  to  simulate  counterfactual  scenarios  to  quantitatively  attribute  emissions  effects  to  policy  and  market  factors.    The  paper  concludes  with  a  summary  of  key  findings,  caveats  and  recommendations  for  future  work.          

       

4    

2. The  RGGI  program  in  concept  and  practice        

RGGI  is  a  regulatory  cap-­‐and-­‐trade  program  under  which  the  states  collectively  establish  a  firm,  legally  binding  cap  on  the  region’s  electric  power  generation  emissions  for  a  specified  period  of  time.      The  regulatory  entity  creates  an  allowance  for  each  (short)  ton  of  emissions  allowed  under  the  cap.  A  vast  majority  of  the  allowances  are  initially  sold  via  an  auction,  but  can  be  resold  on  the  open  market  to  any  party  who  wishes  to  use  it.    For  compliance  purposes,  a  regulated  power  plant  must  submit  a  number  of  allowances  to  the  regulator  equal  to  the  emissions  generated  by  the  facility  during  the  compliance  period.  The  ability  to  trade  allowances  among  compliance  entities  establishes  a  market  price  for  those  allowances  that  provides  an  incentive  for  all  parties  to  reduce  their  emissions.  Because  some  parties  can  cut  emissions  less  expensively  than  other  parties,  the  ability  to  trade  creates  gains  from  trade  and  enhances  the  economic  efficiency  of  the  program  relative  to  no  trading  being  allowed  (Montgomery,  1972).        

Cap-­‐and-­‐trade  model  Figure  2  illustrates  how  such  a  program  creates  an  allowance  (“carbon”)  market.    To  simplify  the  explanation,  we  use  a  static  representation  of  the  market  for  the  compliance  period  of  interest.  Temporal  dynamics  within  and  between  compliance  periods  can  complicate  matters,  but  the  essence  of  the  story  can  be  captured  with  the  static  model.    Here  the  regulator,  RGGI,  establishes  an  emissions  cap  of  EC.      Initially,  assume  that  baseline  emissions  from  the  regulated  facilities  –  those  we  would  expect  to  occur  if  no  program  were  in  place  –  equals  EB0.    Reducing  emissions  below  this  point  (abatement)  incurs  costs  on  the  generators,  represented  by  the  marginal  abatement  cost  function,  MAC0,  rising  from  right  (more  emissions)  to  left  (less  emissions).        The  MAC  function  is  an  aggregate  of  all  plant-­‐level  cost  functions  within  the  region  and  thus  the  point  at  which  the  function  intercepts  the  emissions  cap  quantity  is  the  region’s  marginal  cost  of  meeting  the  cap.  Given  that  entities  within  the  region  can  trade  allowances  among  each  other,  the  marginal  cost  at  the  emissions  limit  will  dictate  the  allowance  market’s  equilibrium  price,  P0.      The  program  and  the  market  it  creates  lowers  regional  emissions  from  EB0  to  EC  at  a  marginal  cost  (price)  of  P0.  

One  key  aspect  here  is  that  the  true  baseline  emissions  quantity  is  uncertain  because:  (1)  exogenous  factors  affecting  emissions  such  as  weather,  energy  market  shocks,  policy  shocks  and  macroeconomic  variables  are  random  and  unknown  in  advance  of  setting  the  cap,  and  (2)  once  the  cap  is  set,  any  estimate  of  baseline  emissions  without  the  cap  is  purely  counterfactual  and  subject  to  estimation  error.    Thus,  the  true  baseline  may  shift,  say,  from  EB0  to  EB1  in  Figure  2.  This  inward  shift,  representing  a  decline  in  baseline  emissions,  might  be  due  to  a  slump  in  economic  activity  affecting  electric  power  demand,  or  it  could  be  because  changes  in  fuel  

5    

markets  lead  to  some  substitution  of  higher  carbon-­‐emitting  fuels  such  as  coal  to  lower  emitting  fuels  such  as  natural  gas,  as  discussed  below.  Whatever  the  cause,  this  reduces  pressure  on  the  carbon  market.  The  new  cost  curve  (MAC1)  originates  at  the  lower  baseline  level  and  intersects  the  cap  at  a  lower  equilibrium  market  price,  P1.    Here  the  cap  is  not  as  stringent  relative  to  the  baseline  and  the  price  drops  accordingly.    Consider  an  even  more  extreme  case  where  the  emissions  baseline  plummets  to  EB2,  a  level  that  is  below  the  regulatory  cap.    Here,  the  cap  is  not  binding  and  we  would  expect  a  market  clearing  price  of  zero  and  no  further  abatement  below  EB2.        

Price  floor  RGGI  has  a  price  floor,  established  by  a  minimum  reserve  price  below  which  bids  will  not  be  accepted  at  auction.  If  the  total  bids  offered  at  the  floor  price  are  less  than  the  total  allowances  available  for  auction,  the  remaining  allowances  remain  unsold  and  are  banked  or  retired  by  the  regulator.    

In  the  most  recent  revision  to  the  program,  RGGI  incorporated  a  cost  containment  reserve  (CCR),  which  holds  a  set  quantity  of  allowances  aside  and  introduces  them  into  the  market  via  auction  at  a  high  end  trigger  price.    The  CCR  offering  provides  a  “soft”  price  ceiling  by  making  extra  allowances  available  to  meet  demand  at  the  trigger  price.  If  the  CCR  is  sufficient  to  meet  demand  at  the  trigger  price,  the  trigger  price  will  be  a  firm  price  ceiling.  If  the  CCR  is  insufficient  to  meet  demand  at    the  trigger  price,  the  clearing  price  can  rise  above  the  trigger,  but  will  still  be  smaller  than  it  would  have  been  without  the  CCR  hence  the  term  “soft”  ceiling  (see  Murray,  Newell  and  Pizer,  2009).      However,  as  discussed  below  the  history  of  RGGI  has  been  one  of  low  prices  determined  by  the  price  floor,  we  focus  on  the  floor  and  ignore  the  CCR  ceiling  here.    

The  effects  of  the  price  floor  are  illustrated  in  Figure  1.    When  the  baseline  emissions  and  MAC  function  shift  from  (EB0,  MAC0)  to  (EB1,  MAC1),  the  market-­‐clearing  price  drops  to  P1  if  all  allowances  under  the  cap  are  offered  for  sale.    However,  P1  falls  below  the  price  floor,  PF,  established  by  the  program.    If  emitters  cannot  obtain  allowances  for  less  than  PF  at  auction  they  will  plan  to  abate  emissions  up  to  the  point  that  the  marginal  cost  of  abatement  equals  PF.    This  occurs  at  the  emissions  level  EF,  which  is  below  the  emissions  cap,  EC.    As  such,  allowances  in  the  amount  of  (EC  -­‐  EF)  go  unsold  and  emitters  over-­‐abate  relative  to  the  cap.  This  reflects  the  recent  situation  in  the  RGGI  states  as  indicated  in  the  Introduction  and  elaborated  upon  below.  

In  summary,  the  difference  between  a  prior  expected  baseline  emissions  rate  of  EB0  and  an  actual  outcome  of  EF  can  be  attributed  to  different  factors  as  follows:  

EB0  –  EB1  =    exogenous  factors  unrelated  to  the  program    EB1  –  EC  =    “free  market”  price  abatement  induced  by  cap-­‐and-­‐trade    EC  –  EF   =    price  floor-­‐induced  over-­‐abatement  

6    

 

RGGI  Program  auction  outcomes  since  inception  Figure  3  illustrates  the  outcomes  of  the  RGGI  quarterly  auctions  from  their  inception  in  late  2008  through  2013.    The  auctions  in  late-­‐2008  were  preparatory  for  the  introduction  of  the  cap  in  2009.    From  2009-­‐2011,  the  cap  was  188  million  short  tons  per  year  for  the  ten-­‐state  region.    New  Jersey  dropped  out  of  RGGI  after  2012,  and  the  nine  remaining  states  faced  a  reduced  cap  of  165  million  short  tons  per  year.      

The  bar  diagrams  show  the  allowances  offered  and  sold  each  period  (see  left  vertical  axis  for  units)  and  the  line  shows  the  market-­‐clearing  price  (right  axis).    At  the  beginning  of  the  program  through  mid-­‐2010,  all  allowances  offered  at  auction  were  sold.    Prices  started  to  decline  in  2009  and  by  3rd  quarter  2010,  the  price  floor  was  triggered  and  allowances  went  unsold  at  the  floor  price  (just  under  $2.00).  That  remained  the  status  quo  through  the  end  of  2012,  the  end  of  the  first  RGGI  period.  From  2009-­‐12,  more  than  169  million  allowance  tons  remained  unsold,  or  26  percent  of  the  total  allowance  pool  for  that  period  (RGGI,  2014).    In  January  2012,  five  RGGI  states  (Connecticut,  Delaware,  Massachusetts,  New  York,  Rhode  Island,  and  Vermont)  announced  that  they  would  retire  allowances  that  they  were  unable  to  sell  in  their  state’s  auction  for  carbon  allowances,  rather  than  hold  them  for  the  subsequent  compliance  period,  which  they  were  initially  entitled  to  do.      

After  a  program  review  in  2012,  the  nine  RGGI  states  implemented  a  new  2014  RGGI  cap  of  91  million  short  tons,  a  45  percent  drop  in  the  cap.  The  RGGI  cap  is  then  slated  to  decline  2.5  percent  each  year  from  2015  to  2020.This  combination  of  factors  returned  the  market  to  one  of  some  allowance  scarcity,  where  all  allowances  were  sold  at  auction  and  pushed  the  price  above  the  floor  in  2013.                

     

 

3. Key  exogenous  factors  affecting  emissions        As  mentioned  in  the  introduction,  the  decline  in  RGGI  states’  emissions  is  a  result  of  numerous  factors.  The  factors  outside  the  RGGI  program  generally  believed  to  be  most  critical,  as  outlined  in  the  introduction,  are:  the  economic  recession  and  subsequent  decrease  in  economic  activity  and  electricity  use,  the  increased  availability  and  lower  price  of  natural  gas  due  in  part  to  the  newfound  process  of  hydraulic  fracturing,  and  complementary  environmental  policies.    Each  effect  is  discussed  briefly  below  

7    

The  post-­‐2008  recession  The  economic  recession  that  gripped  the  region,  country  and  most  of  the  world  may  have  played  a  role  in  driving  down  electricity  generation.  Reduced  economic  activity  leads  to  a  decline  in  energy  use,  resulting  in  fewer  emissions  and  decreased  demand  for  carbon  allowances  in  the  system.  From  2008  to  2009,  both  GDP  and  total  emissions  declined  for  the  first  time  since  1990  (Figure  1).    GDP  and  total  emissions  follow  a  similar  trend  in  growth,  albeit  emissions  have  risen  at  a  much  slower  rate  than  GDP  in  the  past  20  years.    Moreover,  emissions  continued  to  decline  even  after  economic  activity  started  to  pick  up  after  the  recession.  

New  natural  gas  discoveries        Natural  gas  is  the  lowest  GHG  emitting  fossil  fuel,  producing  about  47%  of  the  carbon  dioxide  per  energy  unit  of  coal  (Moomaw  et  al,  2011).    In  its  2008  biennial  assessment  of  natural  gas  reserves  in  the  United  States,  the  Potential  Gas  Committee  of  the  Colorado  School  of  Mines  reported  a  40  percent  increase  in  available  gas  reserves  relative  to  its  previous  assessment  in  2006  (Potential  Gas  Committee,  2009).  This  unprecedented  growth  can  be  tied  to  the  discovery  of  shale  gas  fields  that  had  been  previously  written  off  as  inaccessible  or  not  worth  pursuing.  Now  that  companies  have  developed  the  process  of  hydraulic  fracturing  (or  “fracking”)  -­‐  a  method  that  shoots  a  pressurized  mixture  of  water,  sand  and  chemicals  through  shale  rock,  creating  fractures  in  the  rock  and  releasing  gas-­‐  the  estimated  size  of  the  United  States’  natural  gas  reserves  has  greatly  increased.      This  relatively  sudden  expansion  of  natural  gas  supply  contributed  to  the  price  of  natural  gas  plummeting  46%  between  2005  and  2011,  while  the  price  of  coal  rose  (see  Figure  4).      Together  with  the  economic  recession,  a  large  supply  of  natural  gas  has  kept  the  price  of  natural  gas  low  over  the  past  few  years.  The  market  has  reacted  to  these  low  prices  by  increasing  use  as  a  share  of  total  energy  generation.  In  1990,  natural  gas  accounted  for  12%  of  electricity  generation  in  the  ten  RGGI  states.  By  2011,  however,  that  number  had  increased  to  about  40%.  Meanwhile,  coal  reduced  its  market  share  from  25%  of  total  generation  in  1990  to  only  11%  in  2011.    This  monumental  shift  from  coal  to  natural  gas  generation  within  the  region  clearly  has  had  a  profound  impact  on  the  region’s  GHG  emissions;  however,  the  extent  to  which  this  is  driven  by  pure  energy  market  forces,  environmental  policy,  or  some  combination  is  one  of  the  foci  of  our  analysis  below.    

 

Complementary  policies    The  exogenous  shifts  in  emissions  could  also  be  due  to  policies  that  are  complementary  to  the  RGGI  cap-­‐and-­‐trade  program,  such  as  renewable  portfolio  standards  (RPS)  which  exist  in  all  of  

8    

the  10  original  RGGI  states.3  An  RPS  requires  a  certain  portion  of  state  power  come  from  renewable  non-­‐emitting  sources  and  thereby  creates  the  kind  of  baseline  emission  reduction  and  MAC  curve  shifts  depicted  in  Figure  1.    Additionally,  the  RGGI  program  itself  has  a  number  of  complementary  measures  within  it,  apart  from  the  cap  itself,  aimed  at  reducing  emissions,  such  as  the  use  of  RGGI  auction  revenues  for  energy  efficiency  purposes  (Hibbard  et  al,  2011).    Federal  Clean  Air  Act  regulations  for  air  pollutants  such  as  SO2,  NOx  and  mercury  all  impose  regulatory  requirements  on  coal-­‐powered  generation  that  favor  substitution  to  viable  alternatives  such  as  natural  gas,  nuclear,  and  renewables.    

4. Empirical  Analysis        

Relevant  literature  Some  policy  organizations  release  data  on  RGGI  emissions  and  provide  opinions  on  the  causes  of  the  emissions  trends  (e.g,  Environment  Northeast,  2011),  but  to  our  knowledge  no  research  has  been  published  that  statistically  estimates  RGGI  programmatic  effects  versus  other  effects  on  emission  reductions.      

One  study  with  a  similar  ambition  to  estimate  a  cap-­‐and-­‐trade  program’s  effect  on  emissions  was  performed  for  the  EU  Emissions  Trading  Scheme  (EU  ETS)  by  Ellerman  and  Buchner  (2008).    They  analyze  emissions  data  prior  to  and  after  introduction  of  Phase  I  of  the  EU  ETS  from  2005-­‐2007  to  gauge  how  much  of  the  observed  decline  in  the  region’s  emissions  could  be  attributed  to  the  EU  ETS  program,  how  much  as  attributable  to  secular  trends  in  emission  determinants  such  as  weather,  energy  markets  and  improvements  in  energy  efficiency  and  emissions  intensity.    They  use  a  mix  of  quantitative  and  qualitative  analysis  of  emissions  data  to  develop  different  proxies  for  the  counterfactual  emissions  that  would  have  occurred  without  the  ETS  and  estimate  the  program  dropped  emissions  from  as  much  as  8  percent  to  as  little  as  0.5  percent  across  the  continent.  Our  analysis  departs  from  Ellerman  and  Buchner  by  using  time  series  cross-­‐sectional  econometric  methods  to  estimate  emissions  as  a  function  of  a  range  of  policy,  market  and  environmental  variables,  which  allows  us  to  estimate  the  size  and  significance  of  different  factors  contributing  to  the  emissions  decline  before  after  the  RGGI  program  takes  effect.    

A  paper  by  Chevallier  (2011)  seeks  to  econometrically  estimate  the  relationship  between  macroeconomic  and  energy  market  factors  and  EU  ETS  carbon  prices  using  a  Markov-­‐Switching  VAR  model  ,  finding  strong  links  between  the  factors  but  Chevallier’s  ambition  was  not  to  quantify  emissions  reduction  attribution,  as  is  ours  here.  

                                                                                                                         3  The  RPS  is  voluntary  in  Vermont.  

9    

       

Empirical  strategy    

Our  empirical  strategy  is  to  first  develop  a  three-­‐stage  econometric  model  of  electricity  generation  at  the  state  level.    We  then  use  this  econometric  model  to  simulate  baseline  emissions  based  on  observed  data  as  well  as  a  variety  of  counterfactual  scenarios  which  remove  particular  policies  or  observed  market  shocks.      

Data  and  Econometric  model    In  the  first  stage,  we  estimate  the  demand  for  state-­‐level  electricity  generation  as  a  function  

of  own  price  and  demand  shifters  such  as  potential  energy  macroeconomic  variables,  weather  variables,  and  policy  variables.          The  first  stage  is  estimated  as  equation  1.  

𝑐!" = 𝑋!"𝛽 + 𝜇! + 𝜀!"             [1]  

where  c  is  the  detrended  electricity  capacity  utilization  factor  for  state  i  in  year  t,  X  includes  detrended  electricity  price,  detrended  unemployment  rate,  population-­‐weighted  heating  and  cooling  degree  days  (measures  of  weather-­‐induced  heating  and  cooling  demand),  the  level  of  the  state  RPS,  and  a  dummy  for  whether  the  state  is  under  the  RGGI  program.    The  RGGI  program  uses  some  of  its  auction  revenues  for  energy  efficiency  expenditures  within  the  region  (Hilliard  et  al  2011)  which  could  shift  power  demand.    We  do  not  observe  these  expenditures  directly.    Instead  we  assume  they  are  homogenous  across  RGGI  states  and  use  the  RGGI  dummy  variable  to  capture  its  effects  on  demand.    A  state-­‐level  fixed  effect  is  captured  by  µi,  while  εit  is  an  iid  unobservable.  

The  second  stage  estimates  derived  power  demand  by  generation  fuel  type,  conditional  on  own  and  cross-­‐  fuel  prices  as  well  as  total  generation.    This  is  estimated  as  equation  2.  

𝑓!!" = 𝑌!Θ+ 𝑍!"Γ+ 𝜈! + 𝛿!"         [2]  

where  fijt  is  the  detrended  capacity  utilization  factor  for  generation  using  fossil  fuel  j  in  state  i  in  year  t.    Fuel  type  j  is  one  of  [coal,  natural  gas,  oil].    For  coal  and  gas  generation,  Yt  includes  U.S.  average  coal  prices  and  wellhead  natural  gas  prices  while  Zit  includes  the  state  capacity  utilization  factor  (cit  above),  state  RPS  requirement,  the  detrended  annual  average  carbon  price  for  RGGI  states,  and  a  dummy  variable  for  RGGI  states  in  the  RGGI  compliance  period.4    A  state-­‐level  fixed  effect  is  captured  by  νi,  while  δit  is  an  iid  unobservable.      

                                                                                                                         4  These  may  depart  from  the  actual  prices  which  generators  face  in  a  variety  of  ways.    Coal  generators  often  use  long-­‐term  contracts  with  pre-­‐specified  prices  as  well  as  entering  the  spot  market.    Coal  is  primarily  distributed  by  rail,  so  generators’  actual  procurement  prices  in  the  spot  market  will  reflect  both  spot  prices  and  rail  prices.  

10    

Due  to  its  high  marginal  cost,  oil  generation  is  now  used  sparingly  in  most  states  and  typically  only  when  demand  is  too  high  to  be  met  with  other  generation  sources.    For  oil  generation,  Yt  includes  West  Texas  Intermediate  oil  prices  and  wellhead  natural  gas  prices  while  Zit  includes  the  same  set  of  variables  as  for  gas  and  coal  plants.  

The  third  stage  estimates  CO2  emissions  as  a  function  of  generation  from  fossil  fuels  as  in  equation  3.  

𝑚!" = 𝑉!"Κ+ 𝜉! + 𝜎!"           [3]  

where  mit  is  the  emissions  from  state  i  in  year  t  and  Vit  includes  generation  from  coal,  gas,  and  oil  generation  in  state  i  in  year  t.    A  state-­‐level  fixed  effect  is  captured  by  ξi,  while  σit  is  an  iid  unobservable.      

   Our  econometric  model  uses  state-­‐year  data,  largely  from  the  U.S.  Energy  Information  Administration  (EIA  2013).    They  provide  state-­‐year  data  on  CO2  emissions,  total  electricity  generation,  generation  by  fuel  type,  total  generation  capacity,  generation  capacity  by  fuel  type,  annual  natural  gas  wellhead  prices,  and  annual  coal  prices.5    Annual  price  indices  are  from  the  Bureau  of  Economic  Analysis  while  unemployment  statistics  are  from  the  Bureau  of  Labor  tatistics.    RPS  data  is  from  the  Database  of  State  Incentives  for  Renewable  Energy  (DSIRE).    Annual  carbon  prices  are  the  average  of  clearing  prices  of  carbon  allowance  auctions  held  in  each  year;  auction  clearing  prices  are  available  from  RGGI.    Finally,  weather  data  is  available  from  the  National  Climatic  Data  Center  (BEA,  BLS,  DSIRE,  NCDC,  RGGI).  

Summary   statistics   are   presented   in   Table   1   for   all   48   continental   states   and   the   ten   RGGI  states.      

 

Stationarity  Tests     As  is  well  known,  estimation  based  on  nonstationary  time  series  can  lead  to  spurious  results  (Kennedy  2008).    However,  many  series  can  be  rendered  stationary  by  removing  a  time  trend.    Fisher-­‐style  unit  root  tests  (which  run  a  unit  root  test  on  each  panel  and  then  jointly  test  the  results)    with  Phillips-­‐Perron  tests  with  two  lags  on  each  group  cannot  reject  the  null  of  stationarity  for  total  utilization  rates  (Choi  2001).    However,  the  same  tests  do  reject  the  null  for  the  total,  coal,  gas  and  oil  utilization  rates  at  the  1%  level  after  detrending.    Thus  the  use  of  detrended  data  in  our  estimations.                                                                                                                                                                                                                                                                                                                                                                                                                Natural  gas  generators  make  more  use  of  spot  markets.    Gas  is  primarily  distributed  via  pipeline,  and  thus  there  may  be  temporary  local  or  regional  shortages  or  gluts  induced  by  limited  pipeline  capacity.    Nonetheless,  local  gas  prices  are  driven  by  broader  spot  prices  and  thus  spot  price  are  a  reasonable  measure.    Furthermore  national  price  indices  ameliorates  concerns  that  fuel  prices  would  be  endogenous  to  local  production  needs.    

11    

 

Estimation  Results    Estimation  results  are  below  in  Tables  2  through  4.          We  report  both  random  and  fixed  effects  estimates  for  each  model.    We  will  use  fixed  effects  results  for  simulations  as  not  all  random  effects  models  passed  Hausman  specification  tests  for  random  effects  (Hausman  1978).      

Most  of  the  econometric  estimates  comport  with  theoretical  expectations  on  sign.  For  instance  in  the  generation  demand  equation  (Table  3),  own-­‐price  effects  are  negative,  higher  unemployment  reduces  demand,  and  weather  variables  have  expected  effects  (the  more  cooling  and  heating  degree  days  in  a  state/year,  the  more  power  demand),  though  this  is  only  marginally  significant  statistically.    The  RGGI  program  variable  seems  to  have  a  positive  effect  on  total  utilization  rate,  which  is  somewhat  surprising  given  the  energy  efficiency  expenditures  associated  with  the  program.  6  The  generation  fuel  source  demand  equations  (Table  4)  also  comport  largely  with  expectations  –  own  price  effects  are  negative  and  cross-­‐price  effects  with  competing  fuels  are  positive,  individual  fuel  source  utilization  varies  more  strongly  with  total  utilization  for  base  load  power  such  as  coal  than  for  gas,  which  often  is  utilized  to  hit  peak  demand.    Coal  utilization  is  lower  in  proportion  to  a  state’s  RPS  requirements.    On  the  contrary,  the  impact  of  an  RPS  on  oil  generation  is  near  zero.    This  makes  sense  as  oil  generation  is  primarily  used  for  peaking  generation  during  very  high  demand.    The  effects  of  RPS  on  gas  generation  are  statistically  insignificant  and  somewhat  ambiguous  given  the  direct  competition  and  renewables  on  one  hand,  but  the  differences  in  th    use  of  each  for  base  and  peak  load  on  the  other.    Carbon  prices  reduce  fossil  generation,  but  the  effects  are  small  and  statistically  insignificant  because  the  prices  themselves  are  low,  for  reasons  discussed  above.      The  emissions  equation  estimates  (Table  5)  line  up  perfectly  with  expectation,  with  coal  and  oil  having  more  than  double  the  emissions  impact  of  gas.      

In  considering  these  results,  the  reader  could  be  concerned  about  a  lack  of  precision  in  some  point  estimates.          However,  note  that  estimates  which  we  would  think  would  have  the  biggest  impact  are  quite  precisely  estimated  –  for  example,  price  elasticities.    Similarly  note  that  the  impact  of  an  RPS  is  indistinguishable  from  unity  on  coal,  implying  that  renewables  nearly  entirely  substitute  for  coal  base  load.    This  is  both  quite  precise  and  reassuring  for  our  purposes  as  coal  has  the  greatest  emissions  per  unit  of  generation.        

 

                                                                                                                         6  Additional  analyses  suggest  that  there  has  been  a  modest  decline  in  the  scale  of  generation  under  RGGI.    This  reduces  both  the  numerator  and  denominator  of  the  total  utilization  rate,  resulting  in  a  theoretically  ambiguous  sign.    Analyses  which  estimate  the  level  of  total  generation  based  on  a  similar  set  of  covariates  (interacted  with  population  to  control  for  state  size)  show  more  intuitive  point  estimates  and  qualitatively  similar  counterfactual  simulation  results.  

12    

Results  of  Simulation  Exercise  for  Emissions  Attribution        

The  model  simulation  scenarios  are  detailed  in  Table  5.  We  can  then  attribute  the  effect  of  different  policies  and  market  shocks  by  taking  the  difference  between  each  scenario’s  emissions  and  baseline  emissions.  

  For  each  simulation,  we  first  calculate  the  simulated  statewide  capacity  utilization  factor  and  fuel-­‐specific  capacity  factors  but  based  on  counterfactual  data,  as  defined  in  Table  6.    Note  that  these  are  identical  to  equations  1  and  2  except  that  they  omit  the  unobservable  error  term  and  add  the  time  trend  θ  back  in.    

𝑐!" = 𝑋!"𝛽 + 𝜃!𝑡 + 𝜇!           [1’]  

𝑓!!" = 𝑌!Θ+ 𝑍!"Γ+ 𝜃!𝑡 + 𝜈!         [2’]  

We  then  calculate  the  generation  level  of  each  fuel  by  multiplying  the  capacity  factor  times  the  capacity  (measured  in  megawatt  hours)  times  the  number  of  hours  in  a  year  (8760  for  most  year,  8784  for  leap  years)  and  use  this  to  simulate  the  emissions  based  on  equation  [3    

𝑚!" = 𝑉!"Κ+ 𝜉!           [3’]  

In  each  case,  the  coefficients  are  those  estimated  and  reported  in  Tables  3  through  5.    Simulations  were  developed  for  all  “Lower  48”  states  as  these  data  were  all  used  for  the  econometric  estimation,  but  most  simulation  results  are  reported  here  for  RGGI  states  only,  given  the  policy  focus  of  the  paper.  

Figure  6  shows  total  RGGI  state  emissions  for  each  scenario  over  time  in  red,  with  the  95%  confidence  intervals  shaded.    Panel  A  shows  the  simulated  baseline,  panel  B  the  full  counterfactual  scenario,  panel  C  the  no  recession  scenario,  panel  D  the  historic  gas  price  scenario,  panel  E  the  no  RGGI  scenario,  panel  F  the  no  RPS  scenario,  panel  G  the  no  RGGI  program  effect  scenario,  and  panel  H  the  no  RGGI  price  effect  scenario.      Note  that  the  RGGI  program  commenced  in  2009  and  continues  through  2011,  our  last  data  year.    In  our  “full  counterfactual”  scenario,  emissions  across  the  2009-­‐2011  period  remained  near  their  mid-­‐2000’s  (pre-­‐RGGI)  peak.    The  simulations  suggest  that  much  of  the  decline  is  attributable  to  RGGI  program  effects  even  after  controlling  for  other  factors  such  as  the  recession,  natural  gas  prices  and  RPS.      Emissions  declined  much  less  in  the  “no  RGGI”  scenario  than  under  the  baseline.    However,  we  cannot  strongly  distinguish  the  RGGI  carbon  price  effect  from  a  RGGI  programmatic  effect  –  see  the  broad  confidence  intervals  for  the  program  and  price  effects  but  the  relatively  narrow  one  for  the  joint  effect.      Emissions  under  our  “historic  gas  prices”  scenario  were  also  higher,  suggesting  that  reduced  natural  gas  prices  did  play  a  role  in  reducing  emissions.  

13    

Figure  7  shows  a  t-­‐test  for  the  difference  between  the  simulated  emissions  and  baseline  emissions  for  each  scenario  along  with  a  horizontal  line  at  1.96  representing  the  standard  5%  confidence  level.    Panel  A  shows  the  full  counterfactual  scenario,  panel  B  the  no  recession  scenario,  panel  C  the  historic  gas  price  scenario,  panel  D  the  no  RGGI  scenario,  panel  E  the  no  RPS  scenario,  panel  E  the  no  RGGI  program  effect  scenario,  and  panel  F  the  no  RGGI  price  effect  scenario.    We  see  that  the  emissions  in  our  “full  counterfactual”  and  “no  RGGI”  scenarios  were  statistically  distinct  from  the  baseline  showing  that  the  collective  influence  of  RGGI,  natural  gas  prices,  RPA  and  the  economy  lead  to  a  statistically  significant  decline  in  emissions  in  the  region,  as  did  the  isolated  effect  of  the  RGGI  program  alone,  all  else  equal.  

The  impact  of  the  recession  alone  on  emissions  was  both  economically  modest  and  statistically  insignificant.    This  is  due  to  the  low  elasticity  of  total  generation  (total  utilization  rate)  with  respect  to  the  macroeconomic  indicator  used  (state  unemployment  rate).  

  Table  6  summarizes  the  attribution  of  emissions  effects  in  2009-­‐11.    For  each  scenario,  it  shows  the  percentage  difference  between  emissions  under  that  scenario  and  baseline  emissions  for  both  the  RGGI  region  and  the  entire  US.    Most  of  the  reduction  in  emissions  can  be  attributed  to  the  RGGI  program,  although  the  dramatic  decrease  in  gas  prices  also  played  a  major  role.    The  effect  of  the  recession  was  neither  economically  substantial  nor  statistically  significant.    Interestingly,  the  dramatic  decrease  in  gas  prices  had  a  bigger  effect  on  emissions  in  the  RGGI  region  than  nationally.    This  could  be  because  the  RGGI  region  is  so  close  to  Pennsylvania,  a  center  of  the  recent  expansion  in  gas  production.  

 

   

Testing  for  evidence  of  leakage       One  potential  explanation  for  why  RGGI  emissions  have  declined  is  that  generation  and  emissions  have  shifted  to  non-­‐RGGI  states.    If  it  is  due  to  the  policy,  this  is  called  “leakage”.    Studies  of  leakage  of  subnational  policies  in  other  contexts  have  shown  leakage  rates  of  up  to  70%  and  that  regulations  which  place  compliance  costs  on  producers  in  a  market-­‐based  setting  (such  as  generators  in  electricity  markets)  are  particularly  likely  to  lead  to  leakage  (Goulder  2012,  Bushnell  2008).      Evidence  for  the  existence  of  leakage  from  RGGI  is  mixed  –  Shawhan  et  al  (2014)  use  ex  ante  simulation  methods  and  find  that  leakage  would  occur,  while  RGGI  (2013)  found  no  ex  post  statistical  evidence  of  leakage.  

  Natural  gas  production  increased  dramatically  over  our  study  period  to  due  technological  advances  in  production  technology  (fracking).    This  increase  was  particularly  dramatic  in  Pennsylvania,  not  a  RGGI  state  itself,  but  it  shares  a  border  with  RGGI  states  to  the  

14    

north,  east,  and  south.7      This  increase  in  gas  production  lead  to  lower  gas  prices  and  fuel  switching  from  coal  to  gas  generation.    We  find  evidence  that  coal  generation  decreased  significantly  and  substantially  more  in  RGGI  states  than  in  other  nearby  states.    This  suggests  that  gas-­‐based  electricity  may  have  been  preferentially  exported  to  RGGI  states,  perhaps  due  to  the  RGGI  program  regulating  emissions  within  its  borders.    We  note  however  that  preferential  exports  could  also  be  affected  by  transmission  limits,  electricity  price  differentials,  or  other  factors  and  leave  it  to  future  research  to  differentiate  between  these  factors.      

  To  test  for  leakage,  we  consider  three  different  sets  of  potential  “leaker”  states.    In  the  first  we  consider  the  member  states  of  PJM,  an  electric  power  regional  transmission  organization  (RTO)  that  coordinates  the  distribution  of  wholesale  electricity  in  all  or  parts  of  13  eastern  U.S.  states  and  the  District  of  Columbia,  which  are  not  in  RGGI  (some  PJM  states  are  in  RGGI,  some  are  not).    In  the  second  case,  we  consider  a  limited  set  of  PJM  states  –  Ohio,  Pennsylvania,  West  Virginia,  and  Virginia.    These  states  are  closer  to  RGGI  than  other  PJM  members  and  thus  potentially  would  have  more  tightly  linked  electricity  grids.    In  the  third  case  we  consider  only  Pennsylvania.    For  each  of  these  potential  leakers,  we  reestimate  the  econometric  equations  for  coal  and  gas  [Eq  2]  adding  in  dummy  variables  which  are  1  for  potential  leaker  states  during  the  RGGI  compliance  period.    These  dummies  variables  are  detrended  in  keeping  with  the  rest  of  the  estimation.    All  specifications  in  Table  7  include  fixed  effects  and  omit  the  carbon  price  so  as  to  more  clearly  compare  treatment  effects.  

  Note  that  for  all  three  specifications  of  leakers,  the  coal  utilization  rate  declined  by  more  in  RGGI  states  than  in  the  leakers  and  that  the  difference  was  statistically  significant.    While  gas  utilization  rate  also  declined  by  more  in  RGGI  states,  this  difference  was  not  statistically  significant  in  any  specification.      These  results  provide  some  evidence  of  RGGI  induced  leakage  effects.    A  more  robust  assessment  of  the  nature  and  specific  attribution  of  these  effects  is  beyond  the  scope  of  this  paper  but  would  make  an  excellent  topic  of  further  research.  

  We  make  a  back-­‐of-­‐the-­‐envelope  calculation  of  the  potential  emissions  implications  of  this  leakage  by  assuming  that  the  entire  difference  between  the  utilization  rates  inside  and  outside  RGGI  were  due  to  leakage.    We  do  this  for  coal  and  gas  and  for  coal  alone.    These  calculations  should  be  viewed  as  illustrative  only.    The  gas  calculation  in  particular  is  likely  quite  high  as  there  have  been  reports  that  pipeline  capacity  constraints  have  limited  gas  shipments  into  parts  of  the  RGGI  region,  and  again  the  difference  in  point  estimates  is  not  statistically  significant.8      Caveats  aside,  using  the  “PJM  as  leaker”  specifications,  if  the  entire  difference  

                                                                                                                         7  New  Jersey  has  since  left  the  program,  but  was  in  the  program  through  2011,  which  is  the  time  period  covered  by  this  study.      8  EIA  Today  In  Energy:  New  England  spot  natural  gas  prices  hit  record  levels  this  winter.    http://www.eia.gov/todayinenergy/detail.cfm?id=15111  accessed  4/18/2014  

15    

between  the  RGGI  effect  and  the  leaker  effect  were  indeed  due  to  leakage,  the  coal  leakage  would  constitute  9.2  percent  of  RGGI  region  emissions  over  the  period  2009-­‐2011,  while  the  coal  and  gas  leakage  combined  would  constitute  39.5  percent  of  emissions.    This  is  greater  than  the  entire  reduction  in  emissions  under  the  RGGI  program.    Policy  leakage  is  plausible,  consistent  with  observed  generation  and  emission  outcomes,  and  potentially  of  economically  significant  magnitude.        

Conclusions  and  Policy  Implications  (BCM)    

The  end  of  the  first  decade  of  the  21st  century  provided  an  unusual  time  window  to  discern  how  different  policy,  technology  and  market  factors  influenced  greenhouse  gas  emissions  in  the  United  States.    During  this  period,  policies  were  emerging  at  different  levels  of  government  to  directly  reduce  GHGs  or  indirectly  reduce  them  through  complementary  measures  such  as  renewable  portfolio  standards  and  energy  efficiency  programs.    At  the  same  time,  technological  breakthroughs  in  hydraulic  fracturing  and  horizontal  drilling  lead  to  a  surge  of  new  accessible  natural  gas  reserves,  lower  prices  and  expanded  use,  especially  in  the  northeastern  U.S.,  where  this  study  is  focused.    The  switch  on  the  margin  from  higher  emitting  coal  to  lower  emitting  gas  has  reduced  the  emissions  intensity  of  electricity  production.    Added  to  the  mix,  the  late  2000s  brought  the  deepest  economic  recession  in  the  U.S.  since  the  1930s,  a  factor  that  also  contributed  to  a  decline  in  emissions.      

While  many  researchers  and  industry  observers  agree  that  all  of  these  factors  –  policies,  markets  and  macroeconomic  conditions  -­‐  contributed  to  the  decline  in  emissions  experienced  after  2008  in  the  U.S.,  there  is  little  to  no  empirical  evidence  of  how  much  each  of  these  factors  individually  contributed  to  the  decline.  This  lack  of  specific  evidence  is  particularly  important  for  the  10  northeastern  states  that  comprised  the  Regional  Greenhouse  Gas  Initiative  (RGGI)  that  formed  during  the  middle  of  the  last  decade  and  went  into  full  effect  in  2009.  The  RGGI  states  experienced  a  far  more  dramatic  decline  in  emissions  in  the  electric  power  sector  (the  nation’s  largest  source  of  emissions)  than  the  rest  of  the  U.S.,  which  could  be  attributable  to:  the  RGGI  program  itself  which  directly  regulated  GHG  emissions  from  electric  power,  other  policies,  the  fact  that  these  10  states  were  at  or  near  the  epicenter  of  the  natural  gas  resource  surge,  or  asymmetric  effects  of  the  economic  recession  on  this  region.  An  ability  to  attribute  these  effects  to  the  different  factors  is  particularly  important  in  this  region  because  of  the  magnitude  of  the  decline  and  because  of  the  uniqueness  of  the  policy  experiment  there.  

This  study  attempts  to  rectify  this  shortcoming  by  linking  a  conceptual  framework  of  the  cap-­‐and-­‐trade  program  developed  under  RGGI  to  an  econometric  model  of  the  U.S.  electric  power  sector  that  estimates  state-­‐level  power  generation  demand,  fuel  mix  and  emissions.  We  use  the  

16    

econometric  model  to  develop  counterfactual  simulations  to  attribute,  ex  post,  the  factors  driving  emissions  trends.  For  the  RGGI  states  we  find  the  following  key  results:  

-­‐ Power  sector  emissions  would  be  more  than  50%  higher  by  2011  in  RGGI  states  were  it  not  for  the  combination  of  policy,  natural  gas  market  and  macroeconomic  factors  that  emerged  in  the  late  2000s.  

-­‐ Looking  at  individual  factors,  the  economic  recession  had  a  very  small  influence  on  the  emissions  decline  during  this  period  (only  about  1  percent  of  the  emissions  decline)    

-­‐ Natural  gas  markets  were  responsible  for  more  than  one-­‐third  of    the  emissions  decline  via  induced  substitution  in  the  generation  mix  from  higher  emitting  fossil  fuels  to  natural  gas  

-­‐ Controlling  for  the  factors  just  referenced,  the  RGGI  program  itself  appears  to  be  the  dominant    factor  in  the  emissions  decline.    It  is  difficult  to  statistically  separate  the  effects  of  the  RGGI  price  from  other  programmatic  aspects  such  as  the  use  of  RGGI  auction  proceeds  for  energy  efficiency  and  other  low-­‐carbon  investments,  but  given  the  low  RGGI  price,  and  the  regional  effects  appeared  to  commence  once  the  program  was  announced  and  before  trading  started,  the  complementary  program  effects  may  be  the  key  factor.    More  research  is  needed  to  explore  the  causes  further.  

-­‐ Some  or  all  of  the  reduction  in  RGGI  emissions  may  be  countered  by  generation  and  emissions  leakage  to  surrounding  states.    We  conducted  an  econometric  analysis  on  spillover  effects  in  states  adjacent  to  the  RGGI  states  who  are  part  of  the  same  regional  transmission  organization.  The  analysis  suggests  that  the  adjacent  non-­‐RGGI  states  may  have  picked  up  generation,  especially  from  coal,  that  was  diverted  because  of  the  RGGI  program.    Back-­‐of-­‐the-­‐envelope  calculations  show  that  this  effect  could  be  as  large  as  the  entire  reduction  in  emissions  under  the  RGGI  program.                                              

Taken  together,  we  believe  these  results  have  important  policy  implications.  First,  there  appears  to  be  substantial  room  for  emissions  reduction  in  electric  power  generation.  Given  this  sector  accounts  for  more  than  one-­‐third  of  national  emissions  in  the  United  States,  this  has  implications  for  U.S.  efforts  to  meet  domestic  and  international  global  climate  commitments.    The  results  also  suggest  that  a  tightly  targeted  cap-­‐and-­‐trade  program  like  RGGI  can  be  effective  at  reducing  emissions  through  a  combination  of  the  emissions  trading  elements  and  other  programmatic  elements  that  incentivize  energy  efficiency  and  reduced  carbon  intensity  of  electric  power.    This  has  implication  for  the  state  of  California,  who  in  2013  instituted  a  multi-­‐sector  cap-­‐and-­‐trade  program  to  help  meet  its  GHG  reductions  under  state  law,  as  well  as  its  recent  efforts  to  link  their  carbon  market  to  the  Canadian  province  of  Quebec.        

17    

The  results  also  strongly  point  to  the  critical  role  that  natural  gas  discoveries  have  played  in  reducing  emissions.    Natural  gas,  even  before  the  recent  surge  in  availability,  has  been  viewed  as  a  “bridge  strategy”  to  a  lower-­‐carbon  future,  given  its  lower  carbon  content  per  unit  energy  than  coil  and  oil.  That  crossing  of  that  bridge  has  begun,  but  it  awaits  to  be  seen  what  is  on  the  other  side.  Will  demand  surge  so  strongly  causing  a  rise  in  prices  that  will  put  a  brake  on  continued  expansion  and  emission  reductions  on  the  margin?  Will  water  quality  and  other  environmental  and  safety  concerns  place  limits  on  fracking  and  natural  gas  production?  And  how  will  even  more  ambitious  targets  for  GHG  reductions  (e.g.,  more  than  50%  by  mid-­‐century)  direct  responses  beyond  natural  gas,  which  is  still  a  carbon  emitter?  

The  results  suggest  that  regional  strategies  can  be  effective  in  cutting  emissions  within  a  region,  but  the  leakage  analysis  suggests  that  one  consequence  of  improvements  of  one  region  targeted  by  policies  is  the  possibility  of  shifting  problems  to  other  regions.  As  GHGs  are  a  global  pollutant,  more  comprehensive  coverage  is  necessary  for  effective  policy.                

   

18    

References    

BEA.  2012.    “NIPA  tables:  Table  1.1.4.  Price  Indexes  for  Gross  Domestic  Product.”    Washington,  D.C.    

BLS.  2013.    Local  Area  Unemployment  Statistics  Home  Page.    Washington,  D.C.  Retrieved  from  http://www.bls.gov/lau/    “Annual  Average:  Statewide  data:  Tables”  

Bushnell, J, Peterman, C., Catherine Wolfram, C. 2008 Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction. Review of Environmental Economics & Policy 2 (2): 175-193

Chevallier,  Julien.  2011.    “A  model  of  carbon  price  interactions  with  macroeconomic  and  energy  dynamics”  Energy  Policy  33(6):  1295–1312  

 Choi,  I.  2001.    Unit  root  tests  for  panel  data.    Journal  of  International  Money  and  Finance  20:  249-­‐272.  

DSIRE.  2013.    “DSIRE  Quantitative  RPS  Data  Project  Database  of  Energy  Efficiency,  Renewable  Energy  Solar  Incentives,  Rebates,  Programs,  Policy”.    Raleigh,  NC.    http://www.dsireusa.org/rpsdata/index.cfm    

EIA.  2013.  “Net  Generation  by  State  by  Type  of  Producer  by  Energy  Source  ”  Washington,  D.C.  From  http://www.eia.gov/electricity/data/state/    

EIA.  2013.  “Existing  Nameplate  and  Net  Summer  Capacity  by  Energy  Source,  Producer  Type  and  State”  Washington,  D.C.  From  http://www.eia.gov/electricity/data/state/    

EIA.  2013.    “U.  S.  electric  power  industry  estimated  emissions  by  state,  back  to  1990  ”.    Washington,  D.C.    From  http://www.eia.gov/electricity/data.cfm#elecenv    

EIA.    2013.  “U.S.  Natural  Gas  Prices”.  Washington,  DC    http://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_a.htm        

EIA.  2011.    “Annual  Energy  Review”.    “Table  7.9  Coal  Prices,  1949-­‐2011”    Washington,  DC    

EIA.    2013.  “Spot  Prices  for  Crude  Oil  and  Petroleum  Products.”    Washington,  DC  http://www.eia.gov/dnav/pet/pet_pri_spt_s1_a.htm    

Ellerman  and  Buchner  (2008).    “Over-­‐Allocation  or  Abatement?  A  Preliminary  Analysis  of  the  EU  ETS  Based  on  the  2005-­‐06  Emissions  Data.”  Environmental  and  Resource  Economics  (2008)  41:267-­‐287.    

Environment  Northeast,  2011  (January).  RGGI  Emissions  Trends.    http://www.env-­‐ne.org/public/resources/pdf/ENE_RGGI_Emissions_Report_120110_Final.pdf    

19    

Galperin.  2011.    “The  RGGI  Emissions  Cap:  Is  it  too  Forgiving?”    On  the  Environment.    Yale  Center  for  Environmental  Law  and  Policy.      April  1,  2011.    http://environment.yale.edu/envirocenter/the-­‐rggi-­‐emissions-­‐cap-­‐is-­‐it-­‐too-­‐forgiving    

 

Hausman,  J.  A.  1978.  Specification  tests  in  econometrics.  Econometrica  46:  1251–1271.  

Hibbard,  Paul  J.  et  al.,  2011.  The  Economic  Impacts  of  the  Regional  Greenhouse  Gas  Initiative  on  Ten  Northeast  and  Mid-­‐Atlantic  States.  Published  by  The  Analysis  Group,  available  at  http://www.analysisgroup.com/uploadedFiles/Publishing/Articles/Economic_Impact_RGGI_Report.pdf  

Goulder,  L.,  Jacobson,  M.,  van  Bentham,  A.,  2012.  Unintended  Consequences  from  Nested  State  &  Federal  Regulations:  The  Case  of  the  Pavley  Greenhouse-­‐Gas-­‐per-­‐Mile  Limits  Journal  of  Environmental  Economics  and  Management,  Vol.  63,  No.  2  

Kennedy,  Peter.    2008.  A  Guide  to  Econometrics.    Blackwell  Publishing,  Malden,  MA.    

Legrand,  Marc.  2013.  “The  Regional  Greenhouse  Gas  Initiative:  Winners  and  Losers  .”  Columbia  Journal  of  Environmental  Law    (24  April,  2013).  http://www.columbiaenvironmentallaw.org/articles/the-­‐regional-­‐greenhouse-­‐gas-­‐initiative-­‐winners-­‐and-­‐losers      

Montgomery,  W.D.  1972.    "Markets  in  Licenses  and  Efficient  Pollution  Control  Programs".  Journal  of  Economic  Theory  5:  395–418  

Moomaw,  W.,  P.  Burgherr,  G.  Heath,  M.  Lenzen,  J.  Nyboer,  A.  Verbruggen,  2011:  Annex  II:  Methodology.  In    IPCC    Special  Report  on  Renewable  Energy  Sources  and  Climate  Change  Mitigation  [O.  Edenhofer,    R.  Pichs-­‐Madruga,  Y.  Sokona,  K.  Seyboth,  P.  Matschoss,  S.  Kadner,  T.  Zwickel,  P.  Eickemeier,  G.  Hansen,    S.  Schlömer,  C.    von  Stechow  (eds)],  Cambridge  University  Press,  Cambridge,  United  Kingdom  and  New  York,    NY,  USA    Murray,  B.C,  R.G.  Newell,  and  W.A.  Pizer.    2009.  “Balancing  Cost  and  Emissions  Certainty:  An  Allowance  Reserve  for  Cap-­‐and-­‐Trade.”  Review  of  Environmental  Economics  and  Policy  3(1):  84-­‐103  

NCDC.  2012.    “Divisional  Data  Select”  from  http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp    

Potential  Gas  Committee,  2009.    Potential  Supply  of  Natural  Gas  in  the  United  States  (December  31,  2008).    Potential  Gas  Agency,  Colorado  School  of  Mines,  Golden,  CO.    

20    

RGGI,  2013.    “CO2  Emissions  from  Electricity  Generation  and  Imports  in  the  Regional  Greenhouse  Gas  Initiative:  2011  Monitoring  Report.”    Available  at  http://www.rggi.org/docs/Documents/Elec_monitoring_report_2011_13_06_27.pdf  accessed  4/4/2014  

RGGI,  2014.    Regional  Greenhouse  Gas  Initiative  Fact  Sheet.    http://www.rggi.org/design/overview/cap/  (accessed  March  27,  2014)  

RGGI,  2014.  Allowances  Offered  and  Sold  by  Auction.      http://www.rggi.org/market/co2_auctions/results  (Accessed  March  27,  2014)  

Shawhan,  D.L,  Taber,  J.T.,  Shi,  D.,  Zimmerman,  R.D.,  Yan,  Jubo,  Marquet,  C.M.,  Qi,  Y.,  Mao,  M.,  Schuler,  R.E.,  Schulze,  W.D.,  Tylavsky,  D.  2014.  “Does  a  detailed  model  of  the  electricity  grid  matter?  Estimating  the  impacts  of  the  Regional  Greenhouse  Gas  Initiative”  Resournce  and  Energy  Economics  36(1):  191-­‐207  

Stavins,  Robert  N.  "Low  Prices  a  Problem?  Making  Sense  of  Misleading  Talk  about  Cap-­‐and-­‐Trade  in  Europe  and  the  USA."  Web  log  post.  An  Economic  View  of  the  Environment.  Harvard  University  Kennedy  School  Belfer  Center  for  Science  and  International  Affairs,  25  Apr.  2012.  Web.  9  Aug.  2012.  http://www.robertstavinsblog.org/2012/04/25/low-­‐prices-­‐a-­‐problem-­‐making-­‐sense-­‐of-­‐misleading-­‐talk-­‐about-­‐cap-­‐and-­‐trade-­‐in-­‐europe-­‐and-­‐the-­‐usa/.  

Tietenberg,  Tom  H.    2013.    “Reflections  –  Carbon  Pricing  in  Practice.”  Review  of  Environmental  Economics  and  Policy  7(2):  313-­‐329.    US  EIA.      Average  annual  prices  for  coal  and  natural  gas.    Release  dates:  (Coal    December  12,  2013  http://www.eia.gov/coal/data.cfm#prices)  Natural  gas  (wellhead)  http://www.eia.gov/dnav/ng/hist/n9190us3A.htm  Feb  28,  2014)      

   

21    

Table  1.  Summary  statistics  for  data  used  in  estimation.  

Variable   Units   48  states   RGGI  states  Emissions   Million  tons   4.76  x  10^7   1.63  x  10^7  Total  capacity  utilization    

  0.467   0.433  

Coal  capacity  utilization      

  0.594   0.454  

Gas  capacity  utilization  

  0.283   0.529  

Coal  price   2005  $  per    short  ton  

24.36   24.36  

Gas  price   2005  $  per  ‘thousand  cubic  feet    

3.82   3.82  

Unemployment  rate   %   5.54   5.42  RPS  level     .0276   0.0277  Carbon  price   2005  $  per  

ton  CO2e  $0.0620   $0.298  

Carbon  price  for  2009-­‐2011  

2005  $  per  ton  CO2e  

$0.455   $2.18  

Heating  degree  days  

  5103   6031  

Cooling  degree  days     1125   634    

   

22    

Table  2.  Econometric  Estimation  Results:  Total  Generation    

  Total  Utilization  Rate  Electricity  Price   -­‐0.0336***  

(0.00419)  -­‐0.00293**  (0.00119)  

Unemployment   -­‐0.0550***  (0.00125)  

-­‐0.0106***  (0.00102)  

Heating  degree  days   3.78e-­‐06  (4.74e-­‐06)  

-­‐2.02e-­‐07  (1.47e-­‐06)  

Cooling  degree  days   1.19e-­‐5  (1.11e-­‐5)  

-­‐8.19e-­‐07  (3.82e-­‐06)  

RPS   -­‐0.0104  (0.0550)  

-­‐0.0758  (0.0545)  

RGGI  program  effect   0.0797***  (0.0127)  

0.0318***  (0.0107)  

Fixed  effects   Y   N  R-­‐squared   0.02   0.11  Total  utilization  rate  results.    Standard  errors  in  parentheses.    *  =  10,  **  =  5%,  ***  =  1%  confidence  interval  

Table  3.    Econometric  Estimates  –  Generation  Fuel  Source  Demand  

  Coal  Utilization  Rate   Gas  Utilization  Rate   Oil  Utilization  Rate  Coal  price   -­‐0.00326***  

(0.000596)  

-­‐0.00343***  

(0.000582)  

0.0107**  

(0.00500)  

0.0105**  

(0.00488)  

   

Gas  price   0.0178***  

(0.00194)  

0.0182***  

(0.00189)  

-­‐0.0187  

(0.0162)  

-­‐0.0178  

(0.0158  

0.0508***  

(0.0191)  

0.0508***  

(0.0185)  

Oil  price           -­‐0.00750***  

(0.00189)  

-­‐0.00749***  

(0.00185)  

Carbon  price   -­‐.0.00602  

(0.0200)  

-­‐-­‐0.00222  

(0.0195)  

-­‐0.0822  

(0.168)  

-­‐0.0732  

(0.164)  

-­‐0.0409  

(0.189)  

-­‐0.0412  

(0.183)  

Total  Util  Rate  

0.267***  

(0.0465)  

0.265***  

(0.0455)  

0.204  

(0.391)  

0.200  

(0.382)  

0.909**  

(0.423)  

0.909***  

(0.414)  

RPS   -­‐1.01***   -­‐1.02***   0.625   0.588   -­‐0.0889   -­‐0.0875  

23    

(0.0804)   (0.0784)   (0.675)   (0.657)   (0.760)   (0.739)  

RGGI  program  effect  

-­‐0.0700  

(0.0428)  

-­‐0.0652  

(0.420)  

-­‐0.052  

(0.360)  

-­‐0.0401  

(0.352)  

0.0975  

(0.405)  

0.0971  

(0.396)  

Fixed  effects   Y   N   Y   N   Y   N  R-­‐squared   0.38   0.38   0.01   0.1   0.03   0.03  Coal,  gas,  and  oil  utilization  rate  results.    Standard  errors  in  parentheses.    *  =  10,  **  =  5%,  ***  =  1%  confidence  interval  

Table  4.  Econometric  Estimation  Results  -­‐  Emissions  

     Coal  generation   0.980***  

(0.00876)  0.989***  (0.00739)  

Gas  generation   0.394***  (0.00616)  

0.430***  (0.00601)  

Oil  generation   0.841***  (0.0223)  

0.897***  (0.0233)  

Fixed  effects   Y   N  R-­‐squared   0.98   0.99    

 

Table  5.  Model  Simulation  Scenarios  

Scenario  number  

Scenario  name   Description  

0 Baseline   Uses  observed  data  to  simulate  outcomes  of  interest.  1 Full  counterfactual   Replace  natural  gas  prices  from  2009-­‐2011  with  those  

that  existed  in    2008  ,  replace  unemployment  rates  from  2007-­‐2011  remained  with  2007  levels,  setRGGI    program  effect  and  price  effect  to  zero,  set  RPS      variable  to  zero  

2 Historical  gas  prices   Replace  natural  gas  prices  from  2009-­‐2011  with2008  levels  

3   No  RGGI   Set  RGGI  program  effect  and  price  effect  to  zero  4 No  RPS   Set  RPS  variable  to  zero  5 No  RGGI  program  effect   No  RGGI  program  effect  6 No  RGGI  price  effect   No  RGGI  price  effect  

24    

 

   

25    

Table  6.  Emissions  Effect  by  Scenario:  2009-­‐11  Average  (percent).  

Scenario   Percentage  change  in  RGGI  emissions  

Percentage  change  in  US  emissions  

Full  counterfactual   65.5%   9.2%  No  recession   1.4%   1.1%  Historic  gas  prices   23.5%   7.3%  No  RGGI   41.2%   1.9%  No  RPS   -­‐0.6%   -­‐1.1%  No  RGGI  program  effect   -­‐1.7%   -­‐0.1%  No  RGGI  price  effect   42.9%   2.0%    

Table  7.  Estimation  of  leakage  effects  in  states  adjacent  to  RGGI.      

  Coal  Utilization  Rate   Gas  Utilization  Rate  

  PJM  as  leaker  

Some  PJM  as  leaker  

PA  as  leaker  

PJM  as  leaker  

Some  PJM  as  leaker  

PA  as  leaker  

Coal  price   -­‐0.00335***  

(0.000611)  

-­‐0.00317***  

(0.0006)  

-­‐0.00336***  

(0.000597)  

0.0110**  

(0.00514)  

0.0111**  

(0.00505)  

0.0107**  

(0.00502)  

Gas  price   0.0179***  

(0.00202)  

0.0170***  

(0.00200)  

0.0178***  

(0.00194)  

-­‐0.0196  

(0.170)  

-­‐0.0201  

(0.0165)  

-­‐0.0182  

(0.0164)  

Total  Utilization  Rate  

0.269***  

(0.464)  

0.267***  

(0.0464)  

0.266***  

(0.0465)  

0.207  

(0.391)  

0.202  

(0.391)  

0.199  

(0.391)  

RPS   -­‐1.00***  

(0.0806)  

-­‐1.00***  

(0.0804)  

-­‐1.01***  

(0.0807)  

0.633  

(0.678)  

0.637  

(0.677)  

0.615  

(0.679)  

RGGI  dummy   -­‐0.0892***  

(0.169)  

-­‐0.0940***  

(0.166)  

-­‐0.0884***  

(0.0166)  

-­‐0.242*  

(0.142)  

-­‐0.245*  

(0.140)  

-­‐0.232*  

(0.140)  

Leaker  dummy  

0.00540  

(0.169)  

-­‐0.0405*  

(0.235)  

0.0531  

(0.0456)  

-­‐0.0256  

(0.142)  

-­‐0.0889  

(0.198)  

0.152  

(0.383)  

R-­‐squared   0.38   0.38   0.38   0.01   0.01   0.01  

Wald  test  –   Y  at  1%   Y  at  5%   Y  at  1%   N   N   N  

26    

leaker  dummy  different  than  RGGI  dummy      

 

   Figure  1.    Trends  in  Electricity  Emissions  and  Determinants,  RGGI  States,  1990-­‐2011.  Index  (1990=100)  

 

 

     

27    

Figure  2.    Baseline  Emissions,  Cap,  and  Carbon  Price  

 

   

28    

Figure  3.    RGGI  Auction  2008-­‐13:  Allowances  Offered,  Sold,  and  Clearing  Price      

 

 Source:  RGGI,  2014.  Allowances  Offered  and  Sold  by  Auction.      http://www.rggi.org/market/co2_auctions/results    

   

   

29    

Figure  4.  Coal  and  Natural  Gas  Nominal  Prices  Indexes  (1990=100)  

 

Source:  Index  derived  using  data  from  US  EIA,  Average  annual  prices  for  coal  and  natural  gas.    Release  dates:  (Coal    December  12,  2013  http://www.eia.gov/coal/data.cfm#prices)  Natural  gas  (wellhead)  http://www.eia.gov/dnav/ng/hist/n9190us3A.htm  Feb  28,  2014)  

   

   

30    

Figure  5.  Electricity  Generation  by  Source,  RGGI  States:  1990-­‐2011  

 

Source:  US  EIA  (2013:  Annual  Power  Generation  Data  by  State,  summed  for  RGGI  states)  

     

31    

Figure  6.    Simulated  RGGI  Emissions  Across  Scenarios    

 

 

   

32    

Figure  7.  T-­‐tests  of  RGGI  Emissions  vs  Baseline  Across  Scenarios  

 

Note:  horizontal  line  at  1.96  (5%  confidence  threshold)