54
Water and Energy Savings, and Carbon Emission Reductions From Rain Water Harvesting, Combined Heat and Power, and Compact Residential Communities John C. Crittenden, Hyunju Jeong, Zhongming Lu, Jean-Ann James, Director – Brook Byers Institute for Sustainable Systems Hightower Chair and Georgia Research Alliance (GRA) Eminent Scholar in Sustainable Technologies School of Civil and Environmental Engineering, Georgia Institute of Technology Steve French, and Sangwoo Sung School of Architecture Bert Bras, and Jennifer Frankland Mechanical Engineering Miroslav M. Begovic, and Insu Kim School of Electrical and Computer Engineering email: [email protected] http://sustainable.gatech.edu/

Water and Energy Savings, and Carbon Emission …sustainable.gatech.edu/sites/default/files/documents/GreenPrints... · and Power (CHP) Policies for ... 27% of total greenhouse gas

Embed Size (px)

Citation preview

Water and Energy Savings, and Carbon Emission Reductions From Rain Water

Harvesting, Combined Heat and Power, and Compact Residential Communities

John C. Crittenden, Hyunju Jeong, Zhongming Lu, Jean-Ann James, Director – Brook Byers Institute for Sustainable Systems

Hightower Chair and Georgia Research Alliance (GRA) Eminent Scholar in Sustainable TechnologiesSchool of Civil and Environmental Engineering, Georgia Institute of Technology

Steve French, and Sangwoo SungSchool of Architecture

Bert Bras, and Jennifer FranklandMechanical Engineering

Miroslav M. Begovic, and Insu KimSchool of Electrical and Computer Engineering

email: [email protected]://sustainable.gatech.edu/

Outline Infrastructure Ecology Decentralized Water

Resource Development: Low Impact Development (LID)

Decentralized Energy Production: Combined Heat and Power (CHP)

Policies for Adoption of Rain Water Harvesting and Compact Living

Urban Development Simulation and Large Scale Water Savings Carbon Emission Reductions from LID and CHP

Interdependence of Different Infrastructure Components

Energy for Water in the U.S.

6

Water Treatment* kWh/MGal

Surface Water Treatment 220

Groundwater Treatment 620

Brackish Groundwater Treatment 3,900‐9,700

Seawater Desalination 9,700‐16,500

Wastewater Treatment kWh/MGal

Trickling Filter 950

Activated Sludge 1,300

Advanced Treatment without Nitrification

1,500

Advanced Treatment with Nitrification 1,900

Average Energy requirement for different water and wastewater treatment technologies2

*Includes collection but does not include distribution

About 4% of the total electricity consumption in the US is for the water and wastewater sector1

Of the total energy required for water treatment, 80% is required for conveyance and distribution

1 EPRI, Water & Sustainability, Volume 4, 20022 Stillwell, A S, et al. Energy‐Water Nexus in Texas, 2009

Water for Energy in US (gal/kW-hr)

0.38 0.49 0.440.32

0.600.47

12.40

55.10 64.8547.42

18.00

4.42

2.33

0.43

7.85

1.65 2.00

0.10

1.00

10.00

100.00

WesternInterconnect

EasternInterconnect

TexasInterconnect

Arizona Georgia US Aggregate

Thermoelectric Hydro Weighted Average

Gal

/kW

h

Water for Transportation in US

Life Cycle consumptive water use by different transportation fuel alternatives 

(Source: Harto, C; et al., Life cycle water use of low‐carbon transport fuels, Energy Policy, 2010)

Transportation Alternatives:Plug-In Hybrid Electric vehicles (PHEVs) (Source: PNNL, 2007)

73% of the U.S. light duty vehicle fleet (cars, pickup trucks, SUVs, and vans) can be supported by existing electric power infrastructure

43% if only charging vehicles between 6pm-6am

This is equivalent to 52% of the nation’s oil usage (we import 50% of our oil)

27% of total greenhouse gas emissions can be reduced even if we use coal fired power plants

Key driver: overall improvement in efficiency of electricity generation compared to the conversion process from crude oil to gasoline to the combustion in the vehicle

Utility cost (life-cycle) can be reduced between 7%~26%.

The equivalent price of gasoline for EV is $1.07, assuming average economy is 25 mpg.

9

Water for Mobility Network: Metro Atlanta, 2010 and 2030 Conditions

Source: Jeffrey Yen (2011) A system model for assessing water consumption across transportation modes in urban mobility networks, Masters thesis

Outline Infrastructure Ecology Decentralized Water

Resource Development: Low Impact Development (LID)

Decentralized Energy Production: Combined Heat and Power (CHP)

Policies for Adoption of Rain Water Harvesting and Compact Living

Urban Development Simulation and Large Scale Water Savings Carbon Emission Reductions from LID and CHP

Water Stress Index• Water Supply Stress Index(WaSSI)

RFETPWUWaSSI

)(( flow Returnpiration)EvapotransionPrecipitatUse Water

Different Cases WU P - ET RF (80% of WU) WaSSI

2010 demand 88 283.5 70.4 0.249

2010 demand with drought* 88 170.1 70.4 0.366

2030 demand 97 283.5 77.6 0.269

2030 demand with drought* 97 170.1 77.6 0.392

• WaSSI application for City of Atlanta Water Balance

*drought(30 in.) Vs Average(50 in.)

Sun et al.(2008)

Southeastern, U.S.

Atlanta, GA Austin, TX Nashville, TN

WaSSI 0.146 0.248 0.420 0.189

Decentralized Water Production – Low Impact Development - LID Best Management Practices(BMPs)

• Bioretention • Cistern • Constructed

Wetland • Dry Pond • Grassed Swale • Green Roof • Infiltration Basin • Infiltration Trench • Porous Pavement • Rain Barrel • Sand Filter • Vegetated Filterstrip • Wet Pond

Sand filter near garages, NYC

Rain Barrel and Green Roof, Atlanta (Southface)

Vegetated Swale, Vancouver(Crown Street)

Case Study: Storm water treatment for Vancouver

• It was estimated that there was a $4 billion expense to separate stormwater systems from wastewater. However, when they opted for LID technique implementation there was an estimated $400 million income from increased property value and associated tax revenue.

• The new concept was aptly titled “From Pipe Dreams to Healthy Streams: A Vision for the Still Creek Watershed“

Interdependency between Water Infrastructure and Socio-Economic Environment

Source: Philadelphia Water Department (2009) Philadelphia combined sewer overflow long term control plant update, supplemental document volume 2; Triple bottom line analysis

Philadelphia case– LID (low impact development) options instead of

storage tunnel for CSO (combined sewer overflow) control in watershed areas;

– Total net benefit over the 40-year projection : 2.2 billion (LID for 25 % runoff), 4.5 billion (LID for 100 % runoff), 2009 USD.

ATL Case Study: Implemented LID Technologies

Grasspaver surface for parking Vegetated medians and sidewalksXeriscaping

Street surface runoff harvesting w/ rain garden + underground tank

Rooftop or building top harvestingW/ aboveground cistern

Green space runoff harvesting w/ underground tank

For single family residential zones, - Rooftop harvesting only because harvesting potential >> water demand for irrigation, toilet flushing, and laundry

Flood Risk ControlFor extreme rainfall events (Atlanta)

Return period Rainfall intensity, in./24hr

1‐yr 3.36

2‐yr 4.08

5‐yr 4.8

10‐yr 5.52

25‐yr 6.48

50‐yr 7.2

100‐yr 7.92

Rain gardens occupying 11 %(R‐1) ~ 16% (RG‐6) of community size control 100 % of stormwater runoff generated in extreme rainfall events up to 8 in.

Water Flowrates with Rainwater Harvesting individual water use (91 gal/capitaday) in 2‐story apartment (RG‐1) Implemented LID technologies ‐ rainwater harvesting, grass pavement, rain 

gardens, and xeriscaping Outdoor irrigation (gal/capitaday ): 12  1  Stormwater runoff (kgal/capitayr) : 16  0 

Water Flowrates with Reclamation Option

Unit: gal/(capitaday)

individual water use (91 kgal/capitaday) in 2‐story apartment (RG‐1)

Water Demand and Decentralized Water Supply

Zoning Code Single family residential communities Multi‐family residential communities

Zoning code R‐1 R‐2 R‐3 R‐4 R‐5 RG‐1 RG‐2 RG‐3 RG‐4 RG‐5 RG‐6

Population (10 acre) 16 31 72 138 169 147 316 632 1,352 2,904 5,808

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

0

20

40

60

80

100

120

140

160

180

200

1 1.5 2 2.5 3 3.5 4

Satisfaction, % of total dem

and

106gal/y

log (Population), per 10 acresTotal water demand% water demand for irrigation, toilet flushing, and laundry (overlapped with purple line)% satisfaction by rainwater harvesting% satisfaction by reclamation% satisfaction by rainwater harvesting + reclamation

Single‐family residential zones (w/ rooftop harvesting only)

Multi‐family residential zones(w/ 3 harvesting options)

Energy Use for Decentralized Options

Energy use for water, wastewater, rainwater harvesting, and reclaimed water

Water (the City of Atlanta)

Wastewater (the City of Atlanta)

Harvested rainwaterw/ Carbon block filter and UV 

disinfection + Pumping (3 story apartment)

Reclaimed waterw/ Submerged membrane

bioreactor + Pumping (3 story apartment)

kWh/kgal 2a 3.2a 0.1b + 0.25 3c + 0.25Note aGeorgia Power; bAmerican Water; cOrtiz et al. (2006)

Energy use for water supply and wastewater treatment

w/o any option0.44

kWh/capitaday

w/ rainwater harvesting

0.34kWh/capitaday

w/ reclamation0.32

kWh/capitaday

Vs. Vs.

For individual water use (91 kgal/capitaday) in 2‐story apartment (RG‐1)

Outline Infrastructure Ecology Decentralized Water

Resource Development: Low Impact Development (LID)

Decentralized Energy Production: Combined Heat and Power (CHP)

Policies for Adoption of Rain Water Harvesting and Compact Living

Urban Development Simulation and Large Scale Water Savings Carbon Emission Reductions from LID and CHP

Diagram of CHP System Analyzed – Winter Mode– Air Cooled!! No Water Needed 

Natural Gas Compressor

Microturbine(w/generator in set)

Heat Recovery Unit

Absorption Chiller

Chilled Water Coil

Heating Coil

Electricity fed to building

Domestic Hot Water

Chilled Air

Hot Air

Hot exhaust gasT = 500–600º F

Microturbine w/ onboard gas compressor

Low pressurenatural gas

Exhaust air(to atmosphere)

Hot waterT = 150-180º F

Hot water

Hot water

Chilled waterReturn water

Return water

Return waterT = 135–165º F

Electrical Transformer

480 V 3-phase electrical output

Pipe loss coefficient = 0.9

Pipe loss coefficient = 0.9

Pipe loss coefficient = 0.9η = 0.75

η = 0.75

Resources for System Configuration:– Petrov, A. Y., et al. (2005). "Dynamic Performance of a 30‐kW 

Microturbine‐Based CHP System." ASHRAE Transactions 111(1): 802‐809.– Chamra, L. (2008). Micro Cooling, Heating, and Power (Micro‐CHP) and 

Bio‐Fuel Center, Mississippi State University, Mississippi State University.– Rocha, M. S., et al. (2012). "Performance Tests of Two Small 

Trigeneration Pilot Plants." Applied Thermal Engineering 41(0): 84‐91.– (2003). Environmental Technology Verification Report:  Ingersoll‐Rand 

Energy Systems IR PowerWorks 70 kW Microturbine System. D. A. Kirchgessner, Greenhouse Gas Technology Center:  Southern Research Institute.

– (2003). Environmental Technology Verification Report:  Combined Heat and Power at a Commercial Supermarket‐ Capstone 60 kW MicroturbineCHP System. D. A. Kirchgessner, Greenhouse Gas Technology Center:  Southern Research Institute.

Legend:

= End use products

= System components

Efficiency = 23%

Efficiency = 68%

Efficiency = 68%

Diagram of CHP System Analyzed – Summer Mode– Air Cooled!! No Water Needed 

Natural Gas Compressor

Microturbine(w/generator in set)

Heat Recovery Unit

Absorption Chiller

Chilled Water Coil

Heating Coil

Electricity fed to building

Domestic Hot Water

Chilled Air

Hot Air

Hot exhaust gasT = 500–600º F

Microturbine w/ onboard gas compressor

Low pressurenatural gas

Exhaust air(to atmosphere)

Hot waterT = 150-180º F

Hot water

Hot water

Chilled waterReturn water

Return water

Return waterT = 135–165º F

Electrical Transformer

480 V 3-phase electrical output

Pipe loss coefficient = 0.9

Pipe loss coefficient = 0.9

Pipe loss coefficient = 0.9η = 0.75

η = 0.75

Resources for System Configuration:– Petrov, A. Y., et al. (2005). "Dynamic Performance of a 30‐kW 

Microturbine‐Based CHP System." ASHRAE Transactions 111(1): 802‐809.– Chamra, L. (2008). Micro Cooling, Heating, and Power (Micro‐CHP) and 

Bio‐Fuel Center, Mississippi State University, Mississippi State University.– Rocha, M. S., et al. (2012). "Performance Tests of Two Small 

Trigeneration Pilot Plants." Applied Thermal Engineering 41(0): 84‐91.– (2003). Environmental Technology Verification Report:  Ingersoll‐Rand 

Energy Systems IR PowerWorks 70 kW Microturbine System. D. A. Kirchgessner, Greenhouse Gas Technology Center:  Southern Research Institute.

– (2003). Environmental Technology Verification Report:  Combined Heat and Power at a Commercial Supermarket‐ Capstone 60 kW MicroturbineCHP System. D. A. Kirchgessner, Greenhouse Gas Technology Center:  Southern Research Institute.

Legend:

= End use products

= System components

Efficiency = 23%

Efficiency = 68%

Efficiency = 51%

Decentralized Energy Production-Perkins + Will, Atlanta Office

• LEED Platinum Building:– Microturbines are used to for heating and cooling using Adsorption

Chillers– Radiant heating floors system– Microturbines also supply 40% of the total electricity

Adsorption Chiller65 kW Microturbine Perkins+Will Office Building

R4 Vs. RG4 – House size, People, Energy Demand

R4 RG4

2‐Story Detached Single Family 

Home

6‐Story Apartment Building

PER HOUSEHOLD

Size, ft2 3,000 1,200

People, # 2.5 2.2

Energy demand,kWh/yr

Heating 12,500 3,100

Cooling 5,300 2,800

Others(appliances, lights, etc.)

8,000 4,200

Summary of building energy requirements met by CHP

30kW MT

Electricity: 477MWh (54%)

Thermal: 452.5 MWh (123%)

60kW MT

Electricity: 778 MWh (66%)

Thermal: 900 MWh (140%)

Georgia Power

Electricity: 218MWh (46%)

Electricity: 260MWh (34%)

RG4: 2 6‐story apartment buildings

R4: 12 Single Family homes

Thermal load includes heating and cooling demand

437600 Gal985300 Gal                                                                                                                   Water for energy savings

Environmental Impacts ‐ Emissions for CHP Scenarios vs Centralized Energy

• Analysis for 30 kW MT (R4: 12 single family homes)

Annual Emissions Analysis

CHP System

Displaced Electricity Production

Displaced Thermal

ProductionEmissions/Fuel

Reduction Percent Reduction

NOx (tons/year) 0.09 0.23 0.06 0.21 70%

SO2 (tons/year) 0.00 1.07 0.00 1.07 100%

CO2 (tons/year) 233 324 74 165 41%

CH4 (tons/year) 0.004 0.005 0.001 0.002 27%

N2O (tons/year) 0.000 0.005 0.000 0.005 91%

Total GHGs (CO2e tons/year) 233 325 74 166 42%

Carbon (metric tons/year) 58 80 18 41 41%

Fuel Consumption (MMBtu/year) 3,980 3,349 1,259 629 14%

Environmental Impacts – Emissions for CHP Scenarios vs Centralized Energy

• Analysis for 60 kW MT (RG4: 2 X 6 story apartments)

Annual Emissions Analysis

CHP System

Displaced Electricity Production

Displaced Thermal

ProductionEmissions/Fuel

Reduction Percent Reduction

NOx (tons/year) 0.18 0.42 0.17 0.41 70%

SO2 (tons/year) 0.00 1.91 0.00 1.91 100%

CO2 (tons/year) 465 579 202 316 40%

CH4 (tons/year) 0.009 0.008 0.004 0.003 28%

N2O (tons/year) 0.001 0.009 0.000 0.008 91%

Total GHGs (CO2e tons/year) 466 582 202 319 41%

Carbon (metric tons/year) 115 143 50 78 40%

Fuel Consumption (MMBtu/year) 7,960 5,994 3,457 1,491 16%

NO‐PV 40% PV

42

Intermittency of PV Generation• We estimate the generation of PV systems with a 1.4 MW

capacity dispersed throughout the 19 sites in Georgia• Then, we scale PV output to produce a capacity of 10 % of

38.7 GW peak.

42

Date June/24/2010σ of incremental changes in W 59,790,960

Peak(GW) 2.71PV Output(GWh/day) 19.36

Variation in PV output caused from transient clouds

44

Emissions and Water Consumption

PV with Capacityof % of Peak Demand

SO2 NOX CO2 Waterkg/day

/householdkg/day

/householdton/day

/householdkgal/day

/household

Daily Total of No-PV 0.1494 0.0835 0.0352 0.0835

10%Daily Total 0.1345 0.0750 0.0316 0.0812

% Change from No-PV -9.97% -10.18% -10.23% -2.75%

40%Daily Total 0.1037 0.0567 0.0237 0.0763

% Change from No-PV -30.59% -32.10% -32.67% -8.62%

Daily emissions and water consumption, April 16

Daily water consumption of non-solar plants in kgal/day/household, April 16

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090kgal/day/household

No‐PV 10% PV 40% PV

• PV systems dispersed throughout the state produce their max power on April 16.

Energy for Transportation: Atlanta

45

0

1

2

3

4

5

6

7

8Co

nv.

Gas

olin

e

Dies

el

CNG

E-85

FFV

(Co

rn)

SI G

asol

ine

HEV

Dies

el H

EV

SI P

HEV

Dies

el P

HEV EV

Dies

el B

us

MAR

TA C

lean

Die

sel B

us

MAR

TA C

NG

Bus

MAR

TA R

ail

Ene

rgy

Use

Pe

r Pa

sse

nge

r D

ista

nce

(M

J/p

ers

on-k

m)

-100

0

100

200

300

400

500

Conv

. G

asol

ine

Dies

el

E85

FFV

(Cor

n)

CNG

SI G

asol

ine

HEV

Dies

el H

EV

SI P

HEV

Dies

el P

HEV EV

Dies

el B

us

MAR

TA C

lean

Die

sel B

us

MAR

TA C

NG

Bus

MAR

TA H

eavy

Rai

l

CO

2 O

utp

ut

Per

Pass

en

ger

Dis

tan

ce

(g/p

ers

on-k

m)

PTW CO2 Output Per Passenger DistanceWTP CO2 Output Per Passenger Distance

Preliminary Energy & CO2 Results, Atlanta (Base Case) Courtesy: Bras, B; GT

• Poor environmental performance of electric vehicles, all sizes, due to coal fired power plants

– Georgia Power’s Plant Bowen emits about 0.9kg CO2/kWh• MARTA rail & bus performance bad due to low ridership

Plug-in Hybrid Electric Vehicles (PHEVs) andVehicle-to-Grid (V2G) power

Credit: Kempton and Tomić, 2005

PHEVs can send power back to the grid when parked, and function as distributed storage for intermittent energy from renewable sources

US demand-supply balances during maximum demand with various V2G ratios in 2045

30% V2G penetration could reduce ~100 GW or about ⅓ of the total peak demand of ~300 GW in US by 2045

Source: Modelling Load Shifting Using Electric Vehicles in a Smart Grid Environment – © OECD/IEA 2010

False Creek Neighborhood Energy UtilityVancouver, BC: City of Vancouver

Sewage heat recovery supplies 70% of annual energy demand and reduces ghg 50%

Credit: Ellen Dunham-Jones

RENEWABLE RESOURCES AND TECHNOLOGIES

Only currently commercial technologies were modeled (no EGS, ocean, floating wind) with incremental and evolutionary improvements RE characteristics including location, technical resource potential, and grid output characteristics were considered

Biopower ~100GW• Stand-alone• Cofired with coal

Hydropower ~200GW• Run-of-River

Solar CSP ~37,000 GW• Trough• Tower

With thermal storage

Solar PV ~80,000 GW(rooftop PV ~700 GW)• Residential• Commercial• Utility Scale

Geothermal ~36 GW• Hydrothermal

Wind ~10,000GW• Onshore• Offshore fixed-bottom

Source: NREL. 2012. “Renewable Electricity Futures Study”. http://www.nrel.gov/analysis/re_futures/.

HIGH RENEWABLE REDUCES EMISSIONSAND WATER USE

80% renewable electricity in 2050 could lead to: • ~ 80% reduction in GHG emissions (combustion-only and full life-

cycle) • ~ 50% reduction in electric sector water use (withdrawals and

consumption) Source: NREL. 2012. “Renewable Electricity Futures Study”. http://www.nrel.gov/analysis/re_futures/.

Outline Infrastructure Ecology Decentralized Water

Resource Development: Low Impact Development (LID)

Decentralized Energy Production:mCombinedHeat and Power (CHP)

Policies for Adoption of Rain Water Harvesting and Compact Living

Urban Development Simulation and Large Scale Water Savings Carbon Emission Reductions from LID and CHP

Housing Market House inventory:

apartment, single-family Infrastructure service Stormwater management(1st yr)Transportation improvement (5th

yr)

Prospective homebuyers Social-economic attributes Preference Evaluate candidate houses Decide the biding house Determine willingness to pay

Homeowners Property valueLiving community Green space Transportation accessibility

DevelopersAsking price New house investment decision Consider LID options if impact fee exists

Apartment vs. Single-family Transaction price Estate sale

Government• Collect property tax• Distribute property tax for infrastructure improvement

Bid price Asking Price

New houses

Impact fee ?

Infrastructure improvement

Agent-based Housing Marking Simulation

Community Design

10 acre-size residential communityHousing% 13.8%

Infrastructure% 22.9%Public space% 63.3%Dwelling unit 270Population 675

Population density (Person/acre) 67.5

10 acre-size residential communityHousing% 73.5%

Infrastructure% 23.6%Public space% 2.9%Dwelling unit 44Population 110

Population density ( Person/acre) 11

Single‐family community

Apartment

House/Building Street Open Space Private Yard Front and 

back yard

Impact FeeConstruction cost ($ per unit) profiles related to stormwater infrastructure

SF: single‐family houseAP: apartment homeLID: rainwater harvesting system  with distributed storage tanks

oImpact fee as a non‐compliance penalty:o$13,000 per unit for single‐family houseo$1,500 per unit for apartment home

$0

$5,000

$10,000

$15,000

$20,000

$25,000

SF_LID AP_LID

Developer pay the costin private space

Government pays thecost in public space

Government pays allmoney

The increased cost of the developer using LID (e.g., permeable pavement, rain cistern/barrel, roadside swales) as compared to impermeable pavement, curbs and gutters for community construction. 

The cost of government using LID for both types of communities was higher if the developer does not accept the LID techniques then the cost sharing between them.

Developers will use LID based on profit maximization expectation.

Modeling Scope

Urban areas

9 sq mile

Study Area: 9 sq mile greenfield land for residential development.Commercial development is ignored assuming no spatial effect in house location within the 9 sq mile area. Living utility in the area is associated with housing characters, neighborhood quality and accessibility. Housing characters are about house size and lot size; neighborhood quality is about the landscape design of open space adjunct to community; accessibility is about the transportation connectivity to other areas. Annual 1,000 perspective homebuyers visit the area for housing purchase.

Residential District

10 acre size community

oImpact fee for LID non‐compliance penalty:o$13,000 per unit for single‐family houseo$1,500 per unit for apartment home

Land Use Pattern Between Business As Usual (BAU) and More Sustainable Development (MSD)

: Single Family Homes : Apartment Homes

The total area for new development: 9 sq mi

More Sustainable Development

Business As Usual

Time: Year

Hou

seho

ld Num

ber

Hou

seho

ld Num

ber

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30

Total households

Households living in single‐family housesHouseholds living inapartments

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30

Scenarios Totalhouseholds

% of households living in apartment

BAU 23,630 35.0%

MSD 24,475 58.0%

Dynamics of House Price

Comparison with hedonic analysis as model validation P1: Price in the 1st year;P5: Price in the 5th yearP30: Price in the 30th

Simulated startingprice Estimated price

Single‐family house $347,699 $336,270 *

Apartment home $149,525 $144,262 **

* National Association of Home Builders (NAHB), House Price Estimator** NAHB, Apartment Rent Estimator

2) Percentage of house price increase up to the 5th year due to the increase of green space falls into (2.7%, 15%) in the literatures.

1)

$320,000

$330,000

$340,000

$350,000

$360,000

$370,000

$380,000

$390,000

$400,000

0 5 10 15 20 25 30

Time: YearBAU MSD

Single-family House

$120,000

$130,000

$140,000

$150,000

$160,000

$170,000

$180,000

$190,000

$200,000

0 5 10 15 20 25 30Time: Year

BAU MSD

Apartment Home

Property Tax Revenues• BAU versus MSD• Accumulation of property tax revenues for 30 years

– Surplus at time t = property tax revenues at time t – new construction cost for stormwater management at time t + Surplus at time t-1

– Property tax revenues at time t = house value at time t * 0.4 * 0.01 * number of households

‐$100

‐$50

$0

$50

$100

$150

$200

$250

$300

$350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Millions

Time: Year

BAU

MSD

Rainwater Harvesting

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

1,800.00

2,000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Millions

Time: Year

Water Demand in BAU (Same Volume From WTP)

Water Demand In MSD

Water Supply From WTP in MSD

Millions Gallons Per Year (The population size is 59,075 in BAU and 61,186 in LID_IF in the end of 30th year.) 

WTP: water treatment plant

Scenarios

Water Demand (GallonsPer Year Per Capita)

Water Supply From Rainwater Harvesting (Gallons Per Year Pear Capita)

Water Supply From WTP (Gallons Per Year Per Capita)

BAU 31,308 0 31,308

MSD 28,886 10,578 18,308

Water Demand and Supply in 30th yearUnit: Gallons per year per capita

Outline Infrastructure Ecology Decentralized Water

Resource Development: Low Impact Development (LID)

Decentralized Energy Production:mCombinedHeat and Power (CHP)

Policies for Adoption of Rain Water Harvesting and Compact Living

Urban Development Simulation and Large Scale Water Savings Carbon Emission Reductions from LID and CHP

RESIN Meeting Sept. 24, 2009

SPATIAL DATABASES FOR URBAN MODELING ‐ 1

The SMARTRAQ project

Supports research on land 

use impact on transportation 

and air quality

1.3 million parcels in the 13 

metropolitan Atlanta non‐

attainment counties

RESIN Meeting Sept. 24, 2009

SMARTRAQ  DATA AND ATTRIBUTES Address Road Type City Zip Code Owner Occupied Commercial/Residential Zoning Sale Price Sale Date Tax Value Assessed Value Improvement Value Land Value Year Built No. of Stories Bedrooms Parking Acreage

Land Use Type Number of Units X,Y Coordinate

Estimated Sq Feet Total Sq Feet

Business As UsualYear 2030

More Sustainable Development Year 2030

Existing Land Use Base Year 2005

Growth Scenarios in Atlanta

Courtesy: French, S; GT

2030 DevelopmentSummary Table (# of Households)

Scenarios Single Family (R4) Apartment (RG4)

2030 (Additional)BAU 613652 191700

MSD 501313 304812

2005 (Current) 1170283 12728

59,500

30,600

26,900

22,900

11,80010,200

0

10000

20000

30000

40000

50000

60000

70000

Base Year BAU MSD

2005 2030

GWh

Energy from Grid

Energy from Grid w/ CHP

Projected additional residential energy demand from grid

62% reduction

62% reduction

BAU= Business As Usual    MSD= More Sustainable Development

# of Households:  Single Family: 1170283Apartments: 12728

Single Family: 613652Apartments: 191700

Single Family: 501313Apartments: 304812

61% reduction

268

104

137

55

121

47

0

50

100

150

200

250

300

grid grid + CHP grid grid + CHP grid grid + CHP

Base year BAU MSD

2005 2030

MGD (1

06gallo

n pe

r day)

Water for additional residential energy projections 

61% reduction 62% reduction

61% reduction

Domestic Water Projection(with low flow fixture + rooftop rainwater harvesting + Reclamation)

507

800729 707

102163

108 1080

100

200

300

400

500

600

700

800

900

2005 2030 2030(w/ low flow

fixture)

2030(w/ low flowfixture +rooftoprainwaterharvesting)

2005 2030 2030(w/ low flow

fixture)

2030(w/ low flowfixture +rooftoprainwaterharvesting)

Base year BAU MSD Base year BAU MSD

Water withdrawal Water consumption

MGD (106

gallon pe

r day)

57 %

11.6 %8.8 %

60 % 34 %

Water Withdrawal Water Consumption

32865%

52065%

45663%

44363%

Reclamation

Potential GHG reductions in 2030• The reduction is based on the electricity produced by CHP replacing that from the 

centralized power plant.• Base year case assumes that all existing homes are retrofitted to facilitate a CHP system. • For MSD implementation the CO2e Savings is 0.307 gT

623

173143

374

104 86

0

100

200

300

400

500

600

700

Base year BAU MSD

2005 2030

Million Tons of C

O2e

w/o CHP

w/ CHP

~ 40% Reduction in all cases

Summary• Urban Systems Are All

Connected and More Efficiency Can be Achieved by Looking at Their Interactions

• Decentralized Energy and Combined Heat and Power Can Save Energy and Water

• Decentralized Water / Low Impact Development Can Save Water, Energy and Money

• Land Use/ Planning Is Vital in Reducing the Impact Of Urban Systems and Examining Their Interactions

• Agent Based Models May Be Useful to Examine the Adoption Rate of Policy Instruments