18
Hidden Markov Modeling Michael Wasserman Quantitative Understanding in Biology June 3, 2009

wasserman hidden markov modeling

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: wasserman hidden markov modeling

Hidden Markov Modeling

Michael Wasserman

Quantitative Understanding in Biology

June 3, 2009

Page 2: wasserman hidden markov modeling

Markov ModelingMarkov Modeling

• Stochastic processStochastic process

• State machine assumption

i i b bili i• Transitions probabilistic

• Markov assumption– Current state depends only on a finite history of previous states

– 1st order: current state depends only on previous state  P(Xt|X0:t‐1) = P(Xt|Xt‐1) 

Page 3: wasserman hidden markov modeling

Markov ProcessMarkov Process

• To define 1st order process needTo define 1 order process need– States

• sunny cloudy rainysunny, cloudy, rainy

– Initial probabilities (π vector)• [sunny cloudy rainy] = [0 8 0 1 0 1][sunny cloudy rainy]   [0.8 0.1 0.1]

– Transition probabilities (A matrix)

Page 4: wasserman hidden markov modeling

What is a HMM?What is a HMM?

• Markov process with unobserved statesMarkov process with unobserved states

• Do observe output dependent on stateH it f t th– Hermit forecast weather

• HMM definition– Initial probabilities (π vector)

– Transition probabilities (A matrix)

– Emission probabilities (B matrix)

http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html

Page 5: wasserman hidden markov modeling

HMM UsesHMM Uses

• EvaluationEvaluation– Match most likely system to observations– Forward algorithmg

• Decoding– Find most probable sequence of hidden statesFind most probable sequence of hidden states– Viterbi algorithm

• LearningLearning– Define HMM parameters to a given data set– Forward‐backward algorithmForward backward algorithm

Page 6: wasserman hidden markov modeling

EvaluationEvaluation

• Probability of observed sequence given HMMProbability of observed sequence given HMM

• Number of paths needed increases exponentially with timeexponentially with time

• Solution: Use time invariance of probabilities

Page 7: wasserman hidden markov modeling

Forward AlgorithmForward Algorithm

• Reduce complexity with recursionReduce complexity with recursion– NT vs N2T

• Partial probability α sum of all possible paths• Partial probability α = sum of all possible paths to a state

( j ) P ( b i | hidd i j) P ( ll– αt+1 ( j )= Pr(observation | hidden state is j) x Pr(all paths to state j at time t) 

– Special case: t = 1

Page 8: wasserman hidden markov modeling

DecodingDecoding

• Find most probable sequence of hidden statesFind most probable sequence of hidden states– Maximize Pr(observed sequence | hidden state combination)combination)

– Again, reduce complexity with recursion!

Page 9: wasserman hidden markov modeling

Viterbi AlgorithmViterbi Algorithm

• Partial probability δ = most likely path to aPartial probability δ = most likely path to a state 

• Overall best path = state with the max δ and• Overall best path = state with the max δ and its partial best path

Partial best paths, each with a δ

Page 10: wasserman hidden markov modeling

Viterbi AlgorithmViterbi Algorithm

• Probability of most probable path to state XProbability of most probable path to state X– Pr(X at time t) = maxi=A,B,C Pr(it‐1) x Pr(X|i) x           Pr (obs. at time t|X)

– Special case: t = 1

• If I am here, by what route is it most likely I arrived?– “Remember” past best states with backpointers

Page 11: wasserman hidden markov modeling

Viterbi AlgorithmViterbi Algorithm

• Termination: determine state at final te at o : dete e state at a t

• Back‐trackBack track– For t = t‐1  1

• Advantages– Reduce complexity (NT vs N2T)– Robust to noise 

• Looks at whole sequence before deciding on most likely final state back‐track to best pathstate  back track to best path

Page 12: wasserman hidden markov modeling

HMM ApplicationsHMM Applications

• Speech recognitionSpeech recognition

• Bioinformatics Emission probabilities (B)

Transition Probabilities (A)

Eddy SR. Nature Biotechnology 22:1315(2004)

Page 13: wasserman hidden markov modeling

HMM ApplicationsHMM Applications

• Single‐molecule imagingSingle molecule imaging– Molecular movements diffraction‐limiteddiffraction limited (hidden)

– Infer conformationalInfer conformational changes from observed changes in fluorescence

http://www.olympusfluoview.com

Page 14: wasserman hidden markov modeling

FRETFRET

• Fluorescence Resonance Energy TransferFluorescence Resonance Energy Transfer

• Used as a spectroscopic rulerM l ti h i l l– Measure real‐time changes in molecular conformations

abs emm abs emmabs

y

emm abs emm

0.6

0.8

1

ency

Inte

nsity

0

0.2

0.4FR

ETef

ficie

Wavelength0 15 30 45 60 75 90 105 120

Distance (Å)

Page 15: wasserman hidden markov modeling

FRET Example ‐ RibosomeFRET Example  Ribosome

LOW FRET INTERMEDIATEFRET

HIGH FRETFRET

Page 16: wasserman hidden markov modeling

SimulationSimulation

• See how well model captures underlying p y gstates

0.8

1

0.2

0.4

0.6

FRE

T

0 50 100 150 200 250 300 350 400 450 5000

0 8

1

0.2

0.4

0.6

0.8

FRE

T

0 50 100 150 200 250 300 350 400 450 5000

0.2

Time

Page 17: wasserman hidden markov modeling

SummarySummary

• HMMs are useful to infer underlying MarkovHMMs are useful to infer underlying Markov states of a system

• Many applications (speech to science)• Many applications (speech to science)

• Advantage: computationally friendly

• Disadvantage: assumes time invariance in parameters 

Page 18: wasserman hidden markov modeling

Additional Questions?Additional Questions?