66
COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL & ARCHITECTURAL ENGINEERING CVEN 220 : ANALYSIS OF STRUCTURES WAEL I. ALNAHHAL, Ph. D., P. Eng Spring, 2015 Ch.8: DEFLECTION –PART 1

Wael Alnahhal-Analysis of Structures-Deflection-Part 1f.pdf

Embed Size (px)

Citation preview

  • COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL & ARCHITECTURAL ENGINEERING

    CVEN 220 : ANALYSIS OF STRUCTURES

    WAEL I. ALNAHHAL, Ph. D., P. Eng

    Spring, 2015

    Ch.8: DEFLECTION PART 1

  • Deflections

  • IntroductionIntroduction

    Calculation of deflections is an important part ofCalculationofdeflectionsisanimportantpartofstructuralanalysis

    Excessivebeamdeflectioncanbeseenasamodeoffailure. Extensiveglassbreakageintallbuildingscanbeattributedtoexcessivedeflections

    Largedeflectionsinbuildingsareunsightly(andunnerving)and can cause cracks in ceilings and wallsandcancausecracksinceilingsandwalls.

    Deflectionsarelimitedtopreventundesirablevibrations

  • Beam DeflectionBeamDeflection

    Bending changes theBendingchangestheinitiallystraightlongitudinalaxisofthebeamintoacurvethatiscalledthe

    flDeflectionCurve orElasticCurve

  • Beam DeflectionBeamDeflection

    To determine the deflection curve:Todeterminethedeflectioncurve: Drawshearandmomentdiagramforthebeam Directlyunderthemomentdiagramdrawalineforthebeamandlabelallsupports

    Atthesupportsdisplacementiszeroh h i i h d fl i i Wherethemomentisnegative,thedeflectioncurveis

    concavedownward. Where the moment is positive the deflection curve isWherethemomentispositivethedeflectioncurveisconcaveupward

    WherethetwocurvemeetistheInflectionPoint

  • DeflectedShape

  • Example1Drawthedeflectedshapeforeachofthebeamsshown

  • Example2Drawthedeflectedshapeforeachoftheframesshown

  • DoubleIntegrationMethod

  • ElasticBeamTheory

    Consider a differential element Consideradifferentialelementofabeamsubjectedtopurebending.g

    Theradiusofcurvature ismeasuredfromthecenterofcurvaturetotheneutralaxis

    SincetheNAisunstretched,thedx=d

  • ElasticBeam TheoryElastic BeamTheory

    Applying Hookes law and the Flexure formula we ApplyingHooke slawandtheFlexureformula,weobtain:

    M1EI

    =

  • ElasticBeamTheory The product EI is referred to as the flexural rigidity TheproductEIisreferredtoastheflexuralrigidity. Sincedx =d,then

    M )(SlopedxEIMd =

    In most calculus booksIn most calculus books

    [ ]dxvd= 3

    22 /1

    InmostcalculusbooksInmostcalculusbooks

    ( )[ ]l titdxvdM

    dxdv+22

    23

    2

    )(//1

    ( )[ ] solutionexactdxdvEI +=2

    23

    2)(

    /1

    EIM

    dxvd =2

    2

  • The Double Integration MethodTheDoubleIntegrationMethodRelateMomentstoDeflections

    Md 2

    EIM

    dxvd =2

    2

    ( )== dxEI xMddvx )()(DoNotIntegrationConstants xEIdx )(

    ( ) xMUseBoundaryConditionstoEvaluateIntegrationConstants( )= 2)()( dxxEI xMxv Constants

  • AssumptionsandLimitations

    Deflectionscausedbyshearingactionnegligiblysmallcomparedtobending

    Deflectionsaresmallcomparedtothecrosssectionaldimensionsofthebeam

    Allportionsofthebeamareactingintheelasticrange

    Beamisstraightpriortotheapplicationofloads

  • ExamplesLx

    y

    PxPLM +=x

    P

    PL

    P

    PxPLM +=

    MdxydEI =2

    2

    yd 2@x PxPL

    dxydEI +=2

    Integratingonce 1

    2

    2cxPPLx

    dxdyEI ++=

    2dx

    @x=0 ( ) ( ) ( ) 020000 11

    2

    =++== ccPPLEIdxdy

    32PLIntegratingtwice 2

    32

    62cxPPLxEIy ++=

    @x=0 ( ) ( ) ( ) 00000 223

    2 =++== ccPPLEIy3

    ( ) ( )62 22

    y

    62

    32 xPPLxEIy +=@x=Ly=ymax EI

    PL3

    3

    max =

    62y

    EIPLyPLLPLPLEIy3662

    3

    max

    332

    max ==+=

  • y( )2xLWM =W ( )2

    xLM =

    MdxydEI =2

    2

    2 WydL

    xx

    WL2

    2WL

    @x ( )22 2 xLW

    dxydEI =WL2

    Integratingonce( )

    1

    3

    32cxLW

    dxdyEI +=

    @x=0 ( ) ( )63

    02

    003

    11

    3 WLccLWEIdxdy =+==

    ( )66

    33 WLxLW

    dxdyEI =

    66dx

  • Integrating twice( ) 34 cxWLxLWEIy +=Integratingtwice 2646 cxEIy +=

    @x=0 ( ) ( ) ( )24

    064

    06

    004

    22

    34 WLccWLLWEIy =+==

    ( ) 434 WLxWLxLWEIy +=

    ( ) ( )24646 22

    y

    ( )24624

    xxLEIy +=

    Max occurs @ x = LMax.occurs@x=L

    EIWLyWLWLLWEIy88246

    4

    max

    444

    max ==+=

    EIWL8

    4

    max = EI8

  • Exampley x

    L

    x

    WL WL2 2

    22xWxxWLM =

    22 xWLyd222xWxWL

    dxydEI =

    Integrating 1

    32

    3222cxWxWL

    ddyEI +=g g 13222dx

    Sincethebeamissymmetric 02

    @ ==dxdyLx

    32 LL

    ( ) +

    == 132

    222

    20

    2@ c

    LW

    LWLEILx

    24

    3

    1WLc =

    3

    2464

    332 WLxWxWL

    dxdyEI =

  • Integrating2

    343

    cxWLxWxWLEIy +=g g 2244634 cxEIy +

    @x=0 y=0 ( ) ( ) ( ) ( ) 2343

    0000 cWLWWLEI += 02 = c( ) ( ) 2244634 2

    xWLxWxWLEIy3

    43 = xxxEIy242412

    =

    Max occurs @ x = L /25 4WLEIy =Max.occurs@x=L/2384max

    EIy =

    WL5 4EI384max

    =

  • Exampley x P

    L/2

    x

    P PL/2

    f2 LPyd

    xPMLx22

    0for =

  • Integrating2

    23

    cxPLxPEIy +=g g 21634 cxEIy +

    @x=0 y=0 ( ) ( ) ( ) 223

    000 cPLPEI += 02 = c( ) ( ) 21634 2

    xPLxPEIy2

    3 = xxEIy1612

    Max occurs @ x = L /23PLEIy =Max.occurs@x=L/2

    48maxEIy =

    PL3EI48max

    =

  • Example

  • Example5

  • MomentAreaTheorems

  • MomentAreaTheoremsTheorem 1: The change in slope between any two points onthe elastic curve equal to the area of the bending momentdiagram between these two points, divided by the product EI.

    2

    2

    d v M dvdx EI dxd M M

    = =

    B

    d M Md dxdx EI EI

    M

    = = B

    B AA

    M dxEI

    =

  • dt xdM=

    B B

    Md dxEI

    M M

    = B A

    A A

    M Mt x dx x dxEI EI

    = =

  • MomentAreaTheoremsTheorem 2: The vertical distance of point A on a elasticcurve from the tangent drawn to the curve at B is equal tothe moment of the area under the M/EI diagram betweentwo points (A and B) about point A .

    B

    A BA

    Mt x dxEI

    = A

    B

    A BA

    Mt x dxEI

    = A

  • Example1

  • Example2

  • Example3

  • Example4

  • Example5

  • Example6

  • Example7

  • M/EI

    30/EI20/EI

    ( )20 1 10 22 1 2 2t = + ( )/3

    2 1 2 22 3

    53.33 0.00741

    C Bt EI EI

    kN m rad

    = + = =

    EI

  • Another Solution

  • Conjugate-Beam Method

  • Conjugate-Beam Method

    2

    2

    dV d Mw wdx dx

    = =2

    2

    dx dxd M d v Mdx EI dx EI = =

    dx EI dx EI

    Integrating

    V wdx M wdx dx

    M M

    = =

    M Mdx v dx dxEI EI = =

  • ts

    p

    p

    o

    r

    t

    m

    S

    u

    p

    -

    B

    e

    a

    m

    u

    g

    a

    t

    e

    -

    C

    o

    n

    j

    u

    C

  • Example 1Example 1Find the Max. deflection Take E=200Gpa, I=60(106)

  • EIVBB

    5.562' ==

    EIEIM

    EI

    BB5.14062)25(5.562'

    ===

  • Example 2Example 2Find the deflection at Point C

    C

  • EIEIEIMCC

    162)3(63)1(27'===

  • Example 3Example 3Find the deflection at Point D

  • 3600EI

    360

    EI720 EI

    MDD3600

    ' ==

  • Example 4Example 4Find the Rotation at A

    10 ft

  • 3.33EIA

    3.33=

  • Example 5Example 5

  • Copyright2009PearsonPrenticeHallInc.

  • Example 6Example 6

  • MomentDiagramsandEquationsforMaximumDeflectionMaximumDeflection

  • Example 4Example 4 Find the Maximum deflection for the following structure based onThe previous diagrams p g

  • Slide Number 1