28
ortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Vortex Pinning and Sliding in Superconductors

Charles Simon, laboratoire CRISMAT, CNRS

Page 2: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Laboratoire CRISMATA. PautratC. Goupil

Ecole Normale Supérieure ParisP. Mathieu

LEMA ToursA. RuyterL. Ammor

Laboratoire Léon BrillouinA. Brûlet

Institut Laue LangevinC. Dewhurst

Page 3: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

I Introduction to vortex pinning and dynamics

II A neutron diffraction study in low Tc materials

III The peak effect in NbSe2

IV The surface pinning in Bi-2212V Conclusions

Page 4: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Vortex dynamics

V

BFLI Vff

0 5 10 15 200

1

2

3

I (A)

V (

mV

)0.1 T

0.2 T

0.3 T

I c (B)

Nb-Ta

4.2 K

V= Rff(B,T) (I-Ic(B,T))

E=B. Vff

Page 5: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Typical disordered elastic system with pinning and sliding with the possibility to vary the intensity of the pinning by changing the magnetic field.

But from the beginning: problems (shape of the IV, …)

Here : Low temperature physics Neutron scattering, very difficult but quite

simple to interpret (10 years)

Page 6: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Neutron scattering

B

T

Bc2

Bc1Meissner

Normal phase

Niobium

Nb-Ta

Bi-2212

Page 7: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

B(G)

Cubitt, R. et al. Nature 365, 407-411 (1993).

T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 72, 1530 (1994).and Phys. Rev. B 52, 1242 (1995).

Page 8: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

T. Klein et al., Nature 413, (2001) 404

Page 9: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Neutrons with current

Nb-Ta singlecrystal

P. Thorel and al., J. Phys. (Paris) 34, 447 (1973).A. Pautrat, Phys. Rev. Lett. 90,   087002   (2003).

Page 10: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Neutrons with current

Nb-Ta singlecrystal

Page 11: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

How flows the current?

Ic/2Ibulk=0

Ic/2 Ic/2

Ic/2Ibulk=(I-Ic)

Bneutrons

curl B = J

tan by / B = Jxe / B

A. Pautrat, et al. Phys. Rev. Lett. 90, 087002 (2003)

Page 12: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

surface pinning (Pb-In)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8

V(I)

C

V(m

V)

I (A)

Ic

0 0.1 0.2 0.3 0.4 0.50

10

20

30

40

B (T)

I c (A

)

Bc2 (4.2 K)

Ic (

Am

p)

Surface treatments

Page 13: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Why surface pinning?

Normal rough surface

ic (A/m) = . sin cr

B

1000 Å

MS length

P. Mathieu et Y. Simon, Europhys Lett 5, 1988

~ 0-100 A/cm

ic v (o/B)1/2 ao

Boundary conditionsncr

Page 14: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

/ H

C2

/ BC2

= 1

Numerical solution of Ginzburg equationsby Guilpin and Simon

Nb film

deg10.070.0 cr

Quantitative prediction

Quantitative analysis of the critical current due to vortex pinning by surface corrugation A. Pautrat, J. Scola, C. Goupil, Ch. Simon, C. Villard, B. Domengès, Y. Simon,

B. Phys. Rev. B 69, 224504 (2004)

Page 15: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

What happens at high current?

0

1

2

3

4

5

6

0 5 10 15 20 25 30

B

V=Rff (I-Ic)V(m

V)

I(A)

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16

Ic

(

deg

)

I (Amp)

0

100

200

300

400

500

600

0 1 2 3 4 5 6

V (V

)

0

50

100

150

200

250

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Ic

Smooth surface Rough surface

(d

eg)

I (Amp)

V (V

)

0

0.02

0.04

0.06

0.08

0.1

0.12

-0.5 0 0.5 1 1.5

(deg)

0 A

20 A

Page 16: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Inhomogeneous critical current

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

Ic min

< Ic >

0

500

1000

1500

2000

0 5 10 15 20

(

deg

)V

(V

)

Ic1 < I < Ic2

Ic1Ic2 Ic2

Page 17: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

The peak effect in NbSe2

0 1 2 3 4 5 6

0

20

40

60

FCZFC

2K 0.4TV

(V)

I(Amps)

0 2 4 6 8 100

200

400

0.3T

1T

1.5T

V(V

)

I(Amps)

Metastable states of a flux-line lattice studied by transport and small-angle neutronA. Pautrat, J. Scola, Ch. Simon, P. Mathieu, A. Brûlet, C. Goupil, M. J. Higgins,

Phys. Rev. B 71, 064517 (2005)

Page 18: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.60

50

100

150

200

250

Bc2

(c)=B

c2(0)/(cos2+-2sin2)1/2

tan=2tan =3

Jc=sinc B

c (1-B/B

c2)/21/2

c=9°

c=0.9°

4.2KNbSe

2

Jc(A

/cm

)

B(T)

NbSe2

Page 19: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Iron doped NbSe2

Page 20: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS
Page 21: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.60

50

100

150

200

250

Bc2

(c)=B

c2(0)/(cos2+-2sin2)1/2

tan=2tan =3

Jc=sinc B

c (1-B/B

c2)/21/2

c=9°

c=0.9°

4.2KNbSe

2

Jc(A

/cm

)

B(T)

Page 22: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

T. Klein et al., Nature 413, (2001) 404

Page 23: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Bi-2212 Transport in the peak effect

Page 24: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Bi-2212

Persistence of an ordered flux line lattice above the second peak in Bi2Sr2CaCu2O8+δ A. Pautrat, Ch. Simon, C. Goupil, P. Mathieu, A. Brûlet, C. D. Dewhurst, and A. I. Rykov

Phys. Rev. B 75, 224512 (2007)

Page 25: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Bi-2212 with columnar defects

5K 0.4T

B=1T

Microbridge 50m20 m

Surface vortex depinning in an irradiated single crystal microbridge of Bi2Sr2CaCu2O8+δ : Crossover from individual to collective bulk pinning

A. Ruyter, D. Plessis, Ch. Simon, A. Wahl, and L. Ammor Phys. Rev. B 77, 212507 (2008)

Page 26: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Do columnar defects product bulk

pinning?

No, there is no bulk currents

Do Columnar Defects Produce Bulk Pinning ? M. V. Indenbom, C. J. van der Beek, M. Konczykowski, and F. Holtzberg Phys. Rev. Lett. 84, 1792 (2000)

Page 27: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Reversible magnetization

A. Wahl et al., Physica C 250 163(1995)

R. J. Drost et al, PRB 58 R615 (1998)

Page 28: Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Very powerful technique

Surface currents Peak effect = metastable states

What is the limit of this stability? Noise measurements, ac response, Hall

effects…

Conclusions