42
Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen-Batterien Lösungsansätze für geschlossene Stoffkreisläufe Arno Kwade 1)2) , Wolfgang Haselrieder 1) , Stefan Doose 1) , Stefan Blume 2) 1) Institute for Particle Technology and Battery LabFactory (BLB), TU Braunschweig 2) Fraunhofer Center for Energy Storage and Systems, Braunschweig

Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen-Batterien –

Lösungsansätze für geschlossene Stoffkreisläufe

Arno Kwade1)2), Wolfgang Haselrieder 1), Stefan Doose 1), Stefan Blume2)

1) Institute for Particle Technology and Battery LabFactory (BLB), TU Braunschweig2) Fraunhofer Center for Energy Storage and Systems, Braunschweig

Page 2: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 2

Motivation

E-mobility and green energy production

cause extreme increase in battery

demand, especially lithium-ion batteries

Primary raw material reserves are not

sufficient to fulfill mid- and longterm demand

of battery materials and are ecological not

advantageous

Germany must become less dependent on

material delivery from foreign countries

Circular production and closed

material cycles are essential for

ecological friendly e-mobility and

green energy production

Page 3: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 3

Components and function of Lithium-ion battery

Cath

od

eA

no

de Active material

Anode

Active material

Cathode

Carbon black

Binder

Electrolyte

Page 4: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 4

Cath

od

eA

no

de

Discharge

Components and function of Lithium-ion battery

A. Kwade et.al. (2018) Nature Energy 3 (4), pp. 290-300

Energy & Power

density

CostsLife

time

SafetySustainability

(e.g. CO2 foot print)

Requirements

Page 5: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 5

Cost breakdown of cell production costs and material costs

Manufacturing

cost

Material costs

74.9 %

Direct labour

8.2 %

Depreciation

8.5 %

Capital

2.8 %

Energy

3.1 %

Other

2.5 %

Anode

14.3 %

Cathode

49.5 %

Separator

17.5 %

Electrolyte

4.8 %

Housing/parts

13.9 %

Material cost

Accum

ula

ted

valu

e

ES

A

Determination based on C//NMC, PHEV2, 36 Ah

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 5

A. Kwade et.al. (2018) Nature Energy 3 (4), pp. 290-300

Page 6: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 6

Demand of materials for battery production

Very high demand of

following metals for

battery production

Nickel (cathode)

Graphite (anode)

Cupper (current

collector, pack

wiring)

Aluminium (current

collector, housing,

cathode material)

Page 7: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 7

High importance of low environmental impact

[Ellingsen et al. (2017), Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction

batteries with focus on greenhouse gas emissions, Transportation Research Part D: Transport and Environment, 55:82–90.]

Cell materials have high

share with regard to the

environmental impact of

batteries

Car manufacturer force

material supplier and by

that mines to minimize

environmental impact

(e.g. CO2 footprint) and

production cost

We require new environmental

friendly material production

technologies

Page 8: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 8

Content

Motivation of closed material cycles1

Recycling of spent lithium-ion batteries2

Re-synthesis of active material3

Battery cell production4

Conclusions5

Outlook – Future battery technologies6

20

µm10 µm

Page 9: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 9

Circular Economy and Production of Batteries

Knowledge based

CircularBattery

Production

System Integration

Raw

materials Material/Component

Production

Manufacturing

of cells

Battery system manufacturing

Battery usage

(primary/secondary)

Recycling of

battery systems Production of

electrodes

Page 10: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 10

Circular Economy and Production of Batteries

Pilot scale battery production facility

Knowledge based

CircularBattery

Production

System Integration

Material/Component

production

Manufacturing

of cells

Battery system manufacturing

Battery usage

(primary/

secondary)

Recycling of

battery systems Electrode

production

Page 11: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 11

Circular Economy and Production of Batteries

Knowledge based

CircularBattery

Production

System Integration

Material/Component

Production

Manufacturing

of cells

Battery system manufacturing

Battery usage

(primary/secondary)

Recycling of

battery systems Production of

electrodes

Page 12: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 12

Importance of Battery Recycling

Number of End-of-Life Battery Systems and components

Source: Institute of Automotive Management and Industrial Production

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

0

50k

100k

150k

200k

250k

300k

350k

Qu

an

tity

of E

oL

Batt

ery

Syste

ms

Year

BEV

PHEV

HEV

Quantity of EoL Battery Systems in EuropeRealistic Scenario

Plastics

3.8%

Volatile

Components

8.3%

Aluminium

5.8%

Graphite

8.2%

Copper

9.2%

Oxygen

4.8% Mn

2.8%Co

3.1%

Ni

3.1%

Li

1.0%

Aluminium

5.5%

Steel

3.3%

Plastics

1.5%

Alumimium

5.3%

Cables

2.3%

Plastics

5.7%

Aluminium

18,0%

Electronics

2.7%Steel

5.7%

Electrolyte,

Separator,

OthersCell

Housing

Anode

Cathode

Module

Periphery

Battery

System

Periphery

Electrolyte,

Separator,

OthersCell

Housing

Anode

Cathode

Module

Periphery

Battery

System

Periphery

Electrolyte,

Separator,

OthersCell

Housing

Anode

Cathode

Module

Periphery

Battery

System

Periphery

Li

1 %Co, Ni

6 %

Copper

9 %

A. Kwade, J. Diekmann (2017) Recycling of Lithium-Ion Batteries:

The LithoRec Way, Springer

Page 13: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 13

Unit operations of battery recycling

Deassembling

Crushing / Milling

Classifying

(sieving, air

classification)

Sorting

(e.g. magnetic

separation)

Smelting of

Battery Moduls

Electrode Scraps

Active Material

Powder

Regaining of

Co, Ni, Cu

Chemical Processes

Leaching

Extraction

Cristallisation

Precipitation

Regaining of

Metals Co, Ni, Li

from separated

powders or slag

Thermal

Pretreatment

Discharging

Freezing of

Electrolyte

Short circuit

(e.g. in water)

Mechanical

Processing

Hydro-

metallurgy

Pyro-

metallurgyDeactivation

of cells

Page 14: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 14

Li

Co, Ni

Mechan. Treatment Hydro-Metallurgy Pyro-Metallurgy

Casing,

etc.

Cu, Al

Battery / Battery Cells

Co, Ni,

Mn

Cu

Possible solutions with recovery of lithium

Deactivation

Page 15: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 15

Lithorec process overview

Hydro-metallurgy

Active Material Synthesis

Separation of housing, foil, coating, electrolyte Separated

Coating

Module

Electrode

Intermediates

Separated

Foils

Li2CO3 / LiOH

Battery Active

Material

Co / Ni / Mn

Discharge andDisassembling

Battery Module Crushing

C. Hanisch, T. Loellhoeffel, J. Diekmann, K.J. Markley, W. Haselrieder,

A. Kwade (2015). Journal of Cleaner Production 108, pp. 1-11

Page 16: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 16

Process Chain for

Demonstration Plant

Discharge Disassembly Crushing Drying Sieving1st Classification 2nd

Classification

2nd Crushing

Page 17: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 17

Use of inert gas

to avoid

hazardeous

reactions and fire

Lithorec process overview

Module

Intermediates

Discharge andDisassembling

Battery Module Crushing

Page 18: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 18

Lithorec process overview

Separation of Foil andCoating Separated

Coating

Module

Intermediates

Separated

Foils

Discharge andDisassembling

Battery Module Crushing

Page 19: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 19

Al module

26.6 %

Copper

5.0 %

Al housing

47.7 %

Steel

13.8 %

Plastics

4.0 %

Inclusions

2.9 %

heavy parts

Cu-, Al- Foil, Separator,

Plastics, Black Mass

vS 3,34 m s-1

µS 190 g kg-1

36 %

1st Air-Classification

Page 20: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 20

2nd Air-Classification

vS 1,10 m s-1

µS 25 g kg-1

89 %

Separator (+ Al foil)

Cu foil

29.8 %

Al foil

16.6 %

Plastics

5.9 %

Black Mass

44.8 %

Separator

2.9 %

Page 21: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 21

0

2

4

60

80

100

120

with

2nd

crushing step

mass o

upu

t [%

]

Black Mass

Fe impurities

Al impurities

Cu impurities

without

2nd

crushing step

Mass ouput and impurities of black mass fraction

Battery Type: EV

Battery cells: 6 PHEV1, LiNiCoMnO2 / Graphite

Fraction: < 500 µm

Fine sieving of fine/light fraction

Yield and purity black mass

97.6 %

0.6 %

1.7 %

97.7 %

0.5 %

1.6 %

mass o

utp

ut

[%] Black mass

recovery rate

> 75% at this point

Black mass recoverd by sieving at 200 µm

Page 22: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 22

Lithorec process overview

Hydro-metallurgy

Separation of housing, foil, coating, electrolyte Separated

Coating

Module

Intermediates

Separated

Foils

Li2CO3 / LiOH Co / Ni / Mn

Discharge andDisassembling

Battery Module Crushing

A. Kwade et.al. (2018) Nature Energy 3 (4), pp. 290-300

Page 23: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 23

Active material

Cathode

Residual cross contamination (Al, Fe, Cu)

Acidic desintegration of active material

Dissolution of metal components

Solid separation

Metal salt solution

Solids remaining

Precipitation

of transition metal salts

Preservation of a Lithium-Salt-Solution Rockwood Lithium

Recycling

Hydrometallurgical treatment

Page 24: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 24

Recycling Efficiency

based on material recycling

Separator4%

Rod2%

Case11%

Lithium2%

Cobalt7%

Nickel6%

Manganese6%

Oxygen11%

Al Foil5%

Anode Coating19%

Cu Foil11%

Electrolyte16%

Separator4%

Rod2%

Case11%

Lithium2%

Cobalt7%

Nickel6%

Manganese6%

Oxygen11%

Al Foil5%

Anode Coating19%

Cu Foil11%

Electrolyte16%

Separator4%

Rod2%

Case11%

Lithium2%

Cobalt7%

Nickel6%

Manganese6%

Oxygen11%

Al Foil5%

Anode Coating

19%

Cu Foil11%

Electrolyte16%

State of the art(mainly pyrometallurgy)

≈ 30%

Available technology(Mechanical treatment,

hydrometallurgy)

≈ 80% *

Advanced technology

(Mechanical treatment,

hydrometallurgy)

> 95%*

Material recyclingOther recycling or disposal

* on battery cell level, normalized after substraction of oxygen

Page 25: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 25

76204

-2600

448

-1874

1481

-460

-2725

Transp

ort

Dis

asse

mbly

Dis

asse

mbly

Mec

h. Sep

arat

ion

Mec

h. Sep

arat

ion

Hyd

rom

. Tre

atm

ent

Hyd

rom

. Tre

atm

ent

Sum

-3000

-2000

-1000

0

1000

2000

GW

P [

kg

CO

2-

eq

.*t

batt

ery

sy

ste

ms

-1]

Ecobalance LithoRec-ProcessÖko-Institut e.V.

Source: Abschlussbericht zur Ökobilanz des LithoRec II –Verfahrens, Öko-Institut e.V.

Recycling of 1 ton of NMC based

batteries results in a reduction of

approximately 2.7 ton of CO2

Page 26: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 26

Circular Economy and Production of Batteries

Knowledge based

CircularBattery

Production

System Integration

Material/Component

Production

Manufacturing

of cells

Battery system manufacturing

Battery usage

(primary/secondary)

Recycling of

battery systems Production of

electrodes

Page 27: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 27

Active materials of Lithium-ion battery

Cath

od

eA

no

de Active material

Anode

Active material

Cathode

Carbon black

Binder

Electrolyte

Page 28: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 28

Active materials for the cathode

• Lithium metal oxides with morphology of layered oxide

• LiCoO2

• LiNMO2 (N, M = Ni, Co, Mn in different amounts N + M = 1)

- e.g. LiNiMnCoO2 (NMC 111, NMC 622, NMC 811)

- e.g. LiNiCoAlO2 (NCA)

• Lithium metal oxides with morphology of spinels

- LiM2O4 (M = Mn, Ni, Co)

• Lithium metal phosphates

- LiMPO4 (M = Fe, Co, Ni, Mn) e.g. LiFePO4

VAss. Dr. Kai-C. Möller, Primäre und wiederaufladbare Lithium-Batterien

Page 29: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Milling in Energy Storage Industry | BLB | Slide 29

Synthesis of cathode material

Calcination

Dispersion

GrindingPyrolysis

Precipitation

Pre

-tre

ate

dre

agant

Mate

rial w

ith

defined

part

icle

siz

e

NMC Precursor after precipitationNMC after calcination

Page 30: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Milling in Energy Storage Industry | BLB | Slide 30

Production and preparation of cathode active materials

Continuous Stirred Tank ReactorTaylor Vortex Reactor

Source: www.anl.gov

Page 31: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 31

SEM-Images of Re-Synthesized NCM

Source: S. Krueger, C. Hanisch, A. Kwade, M. Winter, S. Nowak, Effect of Impurities Caused by

a Recycling Process on the Electrochemical Performance of Li[Ni0.33Co0.33Mn0.33]O2, Journal of Electroanalytical

Chemistry (2014), doi: http://dx.doi.org/10.1016/j.jelechem.2014.05.017

/ g·L-1 Referen

ce

Rejects Cycled

Li - 0.56 6.46

Ni 34.00 39.00 39.00

Co 34.00 38.00 37.70

Mn 32.00 32.00 33.60

Al < 0.02 0.24 1.48

Cu < 0.01 <0.01 0.10

Fe < 0.01 <0.01 0.03

Mg - 0.01 0.03

Si < 0.01 0.01 0.11

Reference

From pure

metal salts

Rejects

From electrode

production

rejects

Cycled

From resynthe-

sized spent

cells

Increase of BET-surface area

Reference 0.23 m2 g-1

Rejects 0.28 m2 g-1

Cycled 0.60 m2 g-1

Reference and Rejects are closer in BET-

surface area

Reason is secondary particle shape as a result

of particle conditioning

Aluminium content increases as main impurity

Page 32: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 32

Electrochemical Performance of Re-Synthesized NCM - Material

Source: S. Krueger, C. Hanisch, A. Kwade, M. Winter, S. Nowak, Effect of Impurities Caused by

a Recycling Process on the Electrochemical Performance of Li[Ni0.33Co0.33Mn0.33]O2, Journal of Electroanalytical

Chemistry (2014), doi: http://dx.doi.org/10.1016/j.jelechem.2014.05.017

Reference

From pure

metal salts

Rejects

From electrode

production

rejects

Cycled

From resynthe-

sized spent

cells

Page 33: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 33

Re-Synthesized Graphite – Recycling Strategies

Graphite

recycling

strategies

Electrolyte extraction with

subcritical CO2 in combination

with acetonitrile

Thermal evaporation of volatile

electrolyte compounds

Washing steps,

removal of SEI and

binder

Source: Rothermel S, Evertz M, Kasnatscheew J, Qi X, Grützke M, Winter M, Nowak S (2016) Graphite recycling from Spent

Lithium Ion Batteries. ChemSusChem [accepted]. doi:10.1002/cssc.201601062

Thermal evaporation of volatile

electrolyte compounds

Page 34: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 34

Production of Battery cells – German competency cluster on

battery cell production ProZell

Knowledge based

CircularBattery

Production

System Integration

Material/Component

production

Manufacturing

of cells

Battery system manufacturing

Battery usage

(primary/secondary)

Recycling of

battery systems

Electrode

production

(5 Institute)

(4 Institute)

(5 Institute)

(2 Institute)

(2 Institute)

Page 35: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 35

New german wide academic recycling platform „INNOREC“

within German competency cluster ProZell

Page 36: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 36

Conclusions

Closed material circuits within circular battery production

Demand of battery cells and consequently required raw materials and

synthesized active materials rise tremendously in the future

Sustainable processes especially for materials are very important to

fulfill environmental goals of car manufacturer (e.g. CO2 footprint)

In the future recycling of spent batteries and re-synthesis of active

materials from spent lithium battery systems are decisive

to close material cycle,

to decrease dependency on primary raw materials and

to minimize ecological impact of battery production.

Mechanical-hydrometallurgical recycling process developed in

Niedersachsen is advantageous compared to other processes

Recycling and Re-Synthesis of battery materials should be future key

technology of Niedersachsen

Battery

system

20

µm10 µm

Page 37: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 37

Challenges of future recycling processes –

Diversity of battery materials and technologies

Substrat

Substrat

cath

od

e co

atin

g

Separator

ano

de

coat

ing

Li+

Li+

Li+ Li+

Li+

Li+

Li+

Li+

Li+

Li+

Li+

e-

e-

Li+

e-

Lithium-Ion

Sodium-Ion

Separator

Anode: Lithium

Kathode: C/S

Li +

2Li +

Li2 S8

Li2 S6

Li2 S4

Li2 S2

Li2 S

V

e-

Lithium-Sulfur

Metal-Air

Batteries

Anode: porous Zinc-Structure

Cathode: Gasdiffusionelectrode

Zn(O

H)4

2-

Ve

-

Zn2

+

OH

-O

2

ZnO

O2

Lithium/Sodium-Metaloxide vs. Graphit/Si

Solvent based electrolyte

Sulfur-Carbon-Composite vs. Li

Solvent based or solid state electrolyte

Gasdiffusion electrode vs. metal (z.B. Lithium, Zinc)

Solvent based electrolyte

All-Solid-State Lithiummetaloxide vs. Li

Solid state electrolyte

+

Li AlCu+

A

l

Li+ Li+

Li+Li+

Li+

Li+

Li+

Li+

Li+

Page 38: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 38

Challenges in Recycling of All Solid State Batteries

Challenges in Process Technology:

Shredding of the systems / cells only possible

under protective atmosphere

Li-metal is very reactive

Dissolving the Li-metal in water

In aqueous systems formation of LiOH with

release of H2

Polymer-based solid electrolytes: Removal of

valuable cathode active materials (NCM) e.g.

by swelling or dissolving polymers (PEO)

Sulfidic solid electrolytes: Danger of release of

H2S and other sulphur compounds

Anode Composit-Cathode

Oxidic

Polymer-based

Sulfidic

Li

+

AlCu

Charge / Discharge

e-

-

+

Li+

Al

+

Separator

Li+

Li+

Li+

Li+

Li+

Li+

Li+

Li+

Li+

Page 39: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 39

Thank you very much

.... for the support by

….for the great work of my

PhD-students and co-workers,

especially

Sabrina Zellmer

Julian Mayer

… for your attention

Page 40: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 40

International Battery Production Conference, IBPC 2019

Visit us in Braunschweig, Steigenberger Parkhotel www.ibpc2019.de

Page 41: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 41

Estimation of recycling burdens remains a challenge

Source: Ciez R E, Whitacre J F (2019) Examining different recycling processes for lithium-ion batteries. Nature Sustainability.

2(2):148–156.

GW

P (

cra

dle

-to-g

rave

) thro

ug

hre

cyclin

g

Page 42: Von Li-Ionen-Altbatterien zur Produktion neuer Li-Ionen

Arno Kwade | Lösungsansätze für geschlossene Stoffkreisläufe | BLB | Slide 58

Recycling burdens of battery recycling

Methodology | Step 3: Impacts

Source: Cerdas et al. (2018) Environmental Aspects of the Recycling of Lithium-Ion Traction Batteries, in Recycling of

Lithium-Ion Batteries : the LithoRec Way, pp. 267–288.

Product

Analysis

Target

Materials

Net Env.

ImpactsAllocation

1 2 3 4