Vincent Pinto.pdf

Embed Size (px)

Citation preview

  • 8/16/2019 Vincent Pinto.pdf

    1/14

    11/26/20

    =

    •   .

    , ,

    .

    BB A F

    .

    BB

    .

    •   I 1989

    () 1989.

    •   F

    1990 E

    •   F A

    H I. ( H B

    I.)

    •   F BB A

    2002 H

    •   1,000

    2010

    Dr. Hallvard Ødegaard

  • 8/16/2019 Vincent Pinto.pdf

    2/14

    11/26/20

    ,

    .

    BB ,

    Stagnant LiquidLayer

    Imbedded

    ParticulateMatter

    Moving

    Mixed

    Liquor

    Out Diffusionof

    Biodegradation

    Products

    Erosion

    Biofilm

    BWT Media

    Nutrients & O2enter Biofilm via

    Adsorption

    Diffusionmechanism

    ,

    .

    E

    .

    .

    20

  • 8/16/2019 Vincent Pinto.pdf

    3/14

    11/26/20

    :

     

  • 8/16/2019 Vincent Pinto.pdf

    4/14

    11/26/20

          D   D

     

  • 8/16/2019 Vincent Pinto.pdf

    5/14

    11/26/20

     D BD . ≥ 8 / .

      .

      .

     

    I

  • 8/16/2019 Vincent Pinto.pdf

    6/14

    11/26/20

      ≤ 3 / .

      .

          D

     

  • 8/16/2019 Vincent Pinto.pdf

    7/14

    11/26/20

          D   D

     

    I I I I I

     

  • 8/16/2019 Vincent Pinto.pdf

    8/14

    11/26/20

    Comparison

    MBBR Activated Sludge

    Single Pass Process Requires returnin g the sludge back to the hea d

    of the process

    No Process Adjustments Requi res an operator exper ienced in measur ingand balancing the biomass concentrationsbetween the different process.

    Smaller Foo t Print Larger volumes requ ired f or th e sa me level oftreatment.

    Not affected by washout of biology Surges in flow can wash out the biomass losingtreatment capability

    Less mechanical equipment Requires return pumps and controls for wastepumps

    More efficient nutrient removal Takes up to 12 weeks to develop maturenitrifiers if they are lost or die out.

    •   (BD, H3, 3, .)

    .

    •   : /2/.

    •   C BD ( )

    .

    •   G BD BD .

    •   (2) : A (3) I (2/3).

    ()

    •   F = 2,000 3/

    •   BD C = 300 / = 300 /3

    •   BD = 2,000 300 = 600,000 /

    •   = 200 3

    •   F F = 50%

    •   A = 100 3

    •   A = 680 2/3 (I )

    •   A = 100 680 = 68,000 2

    •   = 600,000 / / 68,000 2 = 8.82 /2/

  • 8/16/2019 Vincent Pinto.pdf

    9/14

    11/26/20

    •   :rA = rA-max * SBODeff / (SBODeff + Khs)……………(1)where,rA = SBOD removal rate, g/m

    2 /day

    rA-max = Maximum SBOD removal rate at 20o C = 15 g/m2 /day

    SBODeff = Effluent SBOD or Substrate SBOD, mg/lKhs = Substrate half saturation coefficient = 10 mg/l

    rA = SALR [(SBODin – SBODeff) / (SBODin)]………….(2)where,

    SALR = surface area loading rate, g/m2 /day

    •  

    •   BD

    50 90% : 5 15 /2/

    > 90% 1: 10 20 /2/

    2: 5 7.5 /2/

    E BD < 5 / LR 1:10 – 20 g/m2/day

    LR2: 5 –7.5 g/m2/day

    LR3: 1 – 5 g/m2/day

    • NH3-N Removal

    Single Reactor 50 – 90% removal LR: 0.5 – 0.7 g-N/m2/day

    Two Reactors > 90% Removal LR 1 : 1.0 – 1.5 g-N/m2/day

    LR2: 0.25 –0.75 g-N/m2/day

    1: ,

    •   22 D•   E A BD •   E H3 < 4 /•   C (6 10 C )

    •   ( C)•   BB C•   C •   C •  

  • 8/16/2019 Vincent Pinto.pdf

    10/14

    11/26/20

    ,

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0.5 1 1.5 2 2.5 3   N   H   3  -   N   R  e  m  o  v  a   l   R  a   t  e   (  g   N   /  m   2   /   d  a  y   )

    NH3-N Loading Rate (g N/m2/day)

    NH3-N Removal Rate vs. NH3-N Loading Rate

    100% Removal

    7 - 10 oC

    11 - 14 oC

    15 - 18 oC

    19 - 22 oC

    •   I 0.5 0.6 H3 /2/, 99%.

    •   I 0.6 0.8 H3 /2/, 90%.•   I 0.8 1.0 H3 /2/, 80%.•   I 1.0 1.5 H3 /2/, 60%.

    •   I A = 30 /

    •   E = 4 /•   = 87%

    •   D•   0.6 0.8 H3/2/

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    0 30 60 90 120 150 180 210 240 270 300 330 360

    H3I

    H3E

    Number of Days [in 2010]

       C  o  n  c  e  n   t  r  a   t   i  o  n   (  m  g   /   L   )

  • 8/16/2019 Vincent Pinto.pdf

    11/14

    11/26/20

    2: •   C C., I. (CCI) 5 6 (1923 3)

    ( A D)

    •  

    2:

    •   1: B

    •   2: C

    •   3: F

    •   C

    •   I : 15,000 GD (57 3/)

    •   I CD: 15,000 /

    •   E CD: < 550 /

    •   E : < 2 /

  • 8/16/2019 Vincent Pinto.pdf

    12/14

    11/26/20

    •   I CD > 10,000 /, H > 8 .

    •   I CD < 10,000 /, H 3 5

    0

    2000

    4000

    6000

    8000

    10000

    18-Jun-05 25-Jun-05 2-Jul-05 9-Jul-05 16-Jul-05 23-Jul-05 30-Jul-05 6-Aug-05 13-Aug-05

    Time (Days)

       S   C   O   D   (  m  g   /   L   )

    70

    75

    80

    85

    90

    95

    100

    105

    110

    115

       H   R   T   (   h  o  u  r  s   )

    SCOD InfluentSCOD EffluentFloc SCOD EffluentHRT

    •   H 70 80 (3 4 ).

    •   H 100 .

    •   F D•   I F: 15,000 GD (57 3 /)

    •   I CD: 15,000 /

    •   E CD: < 550 /

    •   : 95,472 (360 3)

    •   C: AC 450

    •   C F F: 31%

  • 8/16/2019 Vincent Pinto.pdf

    13/14

    11/26/20

    0

    5,000

    10,000

    15,000

    20,000

    25,000

    19-Nov-05 27-Feb-06 7 -J un-06 15-Sep-06 24-De c-06 3 -Apr -07

    Time (days)

       C   O   D   (  m  g   /   L   )

    Influent COD

    Effluent COD

    0

    2

    4

    6

    8

    10

    12

    14

    2 5- Oc t- 05 2 4- Ma r- 06 21 -A ug -06 1 8- Ja n-0 7 1 7- Ju n- 07

    Time (days)

       E   f   f   l  u  e  n   t   P   h  e  n  o   l   (  m  g   /   L   )

    . 97%

    y = 0.9668x

    R 2 = 0.999

    0

    5

    10

    15

    20

    0 2 4 6 8 10 12 14 16 18 20

    COD Surface Loading Rate (gCOD/m2/d)

       C   O   D   R  e  m  o  v  a   l   R  a   t  e

       (  g   T   C   O   D  -   F   C   O   D   /  m

       2   /   d   )

    Full-Scale

    Lab-Scale

  • 8/16/2019 Vincent Pinto.pdf

    14/14

    11/26/20