29
VERtical Transport In the Global Ocean VERTIGO http://cafethorium.whoi.edu VERTIGO project web site What controls the efficiency of particle transport between the surface and deep ocean? Geochemistry (particle characteristics), Biology (euphotic zone and mesopelagic bacteria/plankton) Physics (particle source region) Cruises- Jan & June 2004- Hawaii HOT station ALOHA w/RV Kilo Moana July 2005- Station “K2” 47N 160E with RV Revelle

VER tical T ransport I n the G lobal O cean VERTIGO

  • Upload
    nitza

  • View
    24

  • Download
    0

Embed Size (px)

DESCRIPTION

VER tical T ransport I n the G lobal O cean VERTIGO. What controls the efficiency of particle transport between the surface and deep ocean? Geochemistry (particle characteristics), Biology (euphotic zone and mesopelagic bacteria/plankton) Physics (particle source region). Cruises- - PowerPoint PPT Presentation

Citation preview

Page 1: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

VERtical Transport In the Global OceanVERTIGO

http://cafethorium.whoi.edu VERTIGO project web site

• What controls the efficiency of particle transport between the surface and deep ocean?

Geochemistry (particle characteristics),Biology (euphotic zone and mesopelagic bacteria/plankton)Physics (particle source region)

Cruises-Jan & June 2004- Hawaii HOT station ALOHA w/RV Kilo MoanaJuly 2005- Station “K2” 47N 160E with RV Revelle

Page 2: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

VERTIGO PI’s & InstitutionKen Buesseler, Woods Hole Oceanographic Jim Bishop, Lawrence Berkeley National Phil Boyd, National Institute of Water and Atmospheric Res., NZ Karen Casciotti, Woods Hole Oceanographic Carl Lamborg, Woods Hole Oceanographic Institution Dave Siegel, University of California, Santa Barbara Mary Silver, University of California, Santa Cruz Debbie Steinberg, Virginia Institute of Marine Tom Trull, University of Tasmania, Australia Jim Valdes, Woods Hole Oceanographic Institution Ben Van Mooy, Woods Hole Oceanographic Frank Dehairs, University of Brussels, Belgium

Collaborators Claudia Benitez-Nelson, University of South Carolina Bob Bidigare, University of Hawaii M. Sarin, Physical Research Laboratory, IndiaSei-ichi Saito, Hokkaido Univ., JapanNianghi “George” Jiao, Xiamen Univ., ChinaToru Kobari, Kagoshima Univ., Japan

Page 3: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

NBST – Neutrally Buoyant Sediment Trap

Free vehicleActive buoyancy control<1 day to multi day missionReturn to surface closed GPS & flasher

Page 4: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

VERTIGO traps 10 in water! n=4 @150, 3@ 300, 3@ 500mboth HgCl2 poisons & formalin (& blanks); 2 deployments

“Splitter”wet split at sea with clean methods

Analyses include-mass, C, N, P, PIC, bSiICPMS- Fe, Ca, Al, Mn, Ti…….234Th, 210Pb, 210PoChlorophyll pigmentsstable 13C & 15NDNAMicroscope- ID, pellets, stainsFrozen- organic biomarkers?

Swimmer removal-screens & picking

Separate experiments-“gel” trapsAging expt.

Page 5: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

VERTIGO Site Surveys- sensors & geochemistry/biology

Page 6: VER tical  T ransport  I n the  G lobal  O cean VERTIGO
Page 7: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

What a trap samples…Origins

Collections

Siegel et al.

250m

surface

trap path @500m

Page 8: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Deployment 1

Blank Corrected Mass Flux (mg/m2/d)

0 20 40 60 80 100 120

Dep

th (

m)

0

100

200

300

400

500

600

NBSTCLAP

Martin Curves (Fz=F100*(z/100)-b)

System F100 b F100 S.D. b S.D.NBST_Dep. 1 92.55 -1.0720 ±8.60 ±0.1331NBST_Dep. 2 88.33 -1.0040 ±6.46 ±0.1138CLAP_Dep. 1 101.00 -0.8400 ±6.20 ±0.0660CLAP_Dep. 2 87.54 -0.7166 ±6.16 ±0.0846

NBST

CLAP

Subtle differences between trapsNBST remineralization “b” >drifting CLAP trap

Page 9: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

PN Flux (mg m-2 d-1)

0 1 2 3 4 5 6 7

PO

C F

lux

(mg

m-2

d-1

)

0

10

20

30

PC=PN x (6.4±0.3) - (3.7±0.5) mass/massPC=PN x (7.5±0.4) - (4.4±0.6) mole/moler2=0.95

redfield ratio

max C/N = 35

- natural variability in flux vs. depth is common in all flux data

- but less difference in relative

compositions: element to element ratios

see preferentialremineralizationof N over C- follows Redfieldw/residual low C/Nmaterial intact

Page 10: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Fe 2nd Trap Deployment

Flux (µg m-2 d-1)

0 100 200 300 400 500 600

De

pth

(m

)

0

100

200

300

400

500

600

Iron shows less attenuation vs. depth than C

C/Fe ratio decreases with depth

NBST

CLAP

Page 11: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Ca/Al

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

mas

s ra

tio

0

10

20

30

40

50

150m

300m

500m

1st Dep. - Hg 2nd Dep. - Formalin

Fe/Al

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

mas

s ra

tio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

150m

300m 500m

1st Dep. - Hg 2nd Dep. - Formalin

P/Al

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

mas

s ra

tio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

150m

300m

500m

1st Dep. - Hg 2nd Dep. - Formalin

DOC in overlying brine

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

1 day

3 days

5 days

DO

C (

µM

)

0

50

100

150

200

150m

300m

500m

1st Dep. - Hg 2nd Dep. - Formalin

Incubations of Poisoned Trap Material (and DOC from brine)

Incubation shows scant evidence for systematic loss of particulate material, or in the case of C, appearance in the overlying brine (small impact on P)

Short-deployment trap experiments are not likely subject to diagenetic artifacts.

1,3,5days

Page 12: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

P/Al

T0

150

T1

150

T2

150

T3

150

T5

150

T0

300

T1

300

T2

300

T3

300

T5

300

T0

500

T1

500

T2

500

T3

500

T5

500

ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ca/Al

T0

150

T1

150

T2

150

T3

150

T5

150

T0

300

T1

300

T2

300

T3

300

T5

300

T0

500

T1

500

T2

500

T3

500

T5

500

ratio

0

5

10

15

20

25

Sr/Al

T0

15

0

T1

15

0

T2

15

0

T3

15

0

T5

15

0

T0

30

0

T1

30

0

T2

30

0

T3

30

0

T5

30

0

T0

50

0

T1

50

0

T2

50

0

T3

50

0

T5

50

0

ratio

0.0

0.2

0.4

0.6

0.8

Incubations of Unpoisoned Large Particles from MULVFS Screens

These unpoisoned samples do show evidence of loss of material from particle phase, esp. at the shallowest depth (compare to in situ changes vs. depth)

Ba/Al

T0

150

T1

150

T2

150

T3

150

T5

150

T0

300

T1

300

T2

300

T3

300

T5

300

T0

500

T1

500

T2

500

T3

500

T5

500

ratio

0.0

0.1

0.2

0.3

0.4

0,1,3,5 days

150m 300m 500m

Page 13: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Comparison of Unpoisoned Degradation Rate with Vertical Flux Attenuationto derive effective sinking rate

Element Vertical “Half-Distance”

Incubation “Half-Life”

Sinking Rate Needed to Match

P 150 m 3 days 50 m d-1

Ca 250 m 2 days 125 m d-1

Sr 65 m 2 days 33 m d-1

Ba large 1 day large

Page 14: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

VERTIGOgear includes-

Trull

Boyd

Bishop

Steinberg/Silver

Trull

Page 15: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Pellet Shape - Carbon

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

amorphous cylindrical elliptical ovoid spherical

Car

bo

n (

ug

)

150m

300m

500m

Biological studies-zooplanktonSteinberg et al.

Page 16: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Bacterial production (mmol C m-3 d-1)

0.0001 0.001 0.01 0.1 1 10

Log 1

0 d

epth

(m

)

0

100

200

300

400

500

Cast 028, b(100-500m) = -2.998

Cast 084, b(100-500m) = -2.366

VERTIGO ALOHABacterial Production

- goal is to understand rates and controls of particle export and remineralization in the mesopelagic zone

0

20

40

60

80

100

120

140

0.0 1.0 2.0 3.0

N-uptake (pmol/l/h)

Dep

th (m

) ctd 19 - 23 June

ctd 27 - 25 June

ctd 33 - 27 June

ctd 45 - 29 June

ctd 79 - 3 July

ctd 83 - 5 July

ctd 95 - 7 July

ctd 99 - 9 July

average (w/o ctd 19)

bacteria- rates & IDVan Mooy, Casciotti et al.

phytoplankton- rates & IDDehairs, Silver, Boyd et al.

Page 17: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

VERTIGO June 2004 Trap Deployment #1

Particulate Organic C / Inorganic C ratio

0 2 4 6 8 10

Dep

th (

m)

0

100

200

300

400

500

Preliminary PIC data (est. from Ca)

Changes in PIC:POC ratio impact strength of ocean C sink- ballast/PIC increases w/z- compare: ALOHA- Ca & coccolithophores

vs. NW Pacific K2- bSi & diatoms

Page 18: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

VERTIGOwhat’s next-

- Summer 2005 VERTIGO cruise out of Japan- organize one day science workshop July 18- Yokohama

50% VERTIGO science presentations50% Japanese time-series/K2/particle science

- Japanese & Chinese scientists to join cruise (n=4)- July 21-Aug 28, RV Revelle, Yokohama to Honolulu

- Special mesoplelagic/particle flux sessionFeb. 2006 Ocean Sciences meeting, HonoluluJoint with Cindy Lee (MedFlux); Hiroaki Saito (DEEP) & Buesseler (VERTIGO) PI meeting 2.5 days- prior to Ocean Sciences mtg.

- VERTIGO II?

Page 19: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

VERTIGO PI’s & InstitutionKen Buesseler, Woods Hole Oceanographic Jim Bishop, Lawrence Berkeley National Phil Boyd, National Institute of Water and Atmospheric Research Karen Casciotti, Woods Hole Oceanographic Carl Lamborg, Woods Hole Oceanographic Institution Dave Siegel, University of California, Santa Barbara Mary Silver, University of California, Santa Cruz Debbie Steinberg, Virginia Institute of Marine Tom Trull, University of Tasmania Jim Valdes, Woods Hole Oceanographic Institution Ben Van Mooy, Woods Hole Oceanographic

Collaborators Claudia Benitez-Nelson, University of South Carolina Bob Bidigare, University of Hawaii Frank Dehairs, University of BrusselsM. Sarin, Physical Research Laboratory S. Honjo & Japanese scientists? K2 site

Page 20: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Horizontal flow(hydrodynamics)

Shallow sediment traps

Preservation (solubilization in collection tubes)

Swimmers

- accuracy issues

Page 21: VER tical  T ransport  I n the  G lobal  O cean VERTIGO
Page 22: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Fe 2nd Deployment

Flux (µg m-2 d-1)

0 100 200 300 400 500 600

De

pth

(m

)0

100

200

300

400

500

600

Page 23: VER tical  T ransport  I n the  G lobal  O cean VERTIGO
Page 24: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

VERTIGO Site Surveys- sensors & geochemistry/biology

Page 25: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy

K. O. Buesseler, C. R. Benitez-Nelson, S. B. Moran, A. Burd, M. Charette, J. K. Cochran, L. Coppola, N. S. Fisher, S. W. Fowler, W. D. Gardner, L. D. Guo, O.

Gustafsson, C. Lamborg, P. Masque, J. C. Miquel, U. Passow, P. H. Santschi, N. Savoye, G. Stewart, and T. Trull

Submitted March 2005

Page 26: VER tical  T ransport  I n the  G lobal  O cean VERTIGO
Page 27: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Marine Particles“separate biogeochemistry from physical

oceanography”

Marine Particles“separate biogeochemistry from physical

oceanography”

How do we get from here?

C uptake in surface ocean-SeaWiFS global primary productionBehrenfeld & Falkowski, 1997

To here?

C flux to seafloor -benthic O2 demandJahnke, 1996

Page 28: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Diatom assoc. fluxhigh “b”

Coccolithophoridassoc. POC flux

Why can’t diatoms control upper ocean export on regional or seasonal basis, while CaCO3 materials show stronger association with deep flux?Differences abound- in diatom types, sinking rates & bSi/C ratios

Page 29: VER tical  T ransport  I n the  G lobal  O cean VERTIGO

Carbon flux = 234Th flux [C/234Th]sinking particlesCarbon flux = 234Th flux [C/234Th]sinking particles

• Empirical approach• Highest in (diatom) blooms & coastal ocean• Must use site and depth appropriate ratio•Issues remain on how best to sample particles