53
LBNL 1005988 Exploring the Energy Benefits of Advanced Water Metering Michael A. Berger, Liesel Hans, Kate Piscopo, and Michael D. Sohn Energy Analysis and Environmental Impacts Division Energy Technologies Area August 2016 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

Embed Size (px)

Citation preview

Page 1: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

LBNL 1005988

Exploring the Energy Benefits of Advanced Water Metering

Michael A. Berger, Liesel Hans, Kate Piscopo, and Michael D. Sohn

Energy Analysis and Environmental Impacts Division Energy Technologies Area

August 2016

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

Page 2: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

1

DISCLAIMER

ThisdocumentwaspreparedasanaccountofworksponsoredbytheUnitedStatesGovernment.Whilethisdocumentisbelievedtocontaincorrectinformation,neithertheUnitedStatesGovernmentnoranyagencythereof,norTheRegentsoftheUniversityofCalifornia,noranyoftheiremployees,makesanywarranty,expressorimplied,orassumesanylegalresponsibilityfortheaccuracy,completeness,orusefulnessofanyinformation,apparatus,product,orprocessdisclosed,orrepresentsthatitsusewouldnotinfringeprivatelyownedrights.Referencehereintoanyspecificcommercialproduct,process,orservicebyitstradename,trademark,manufacturer,orotherwise,doesnotnecessarilyconstituteorimplyitsendorsement,recommendation,orfavoringbytheUnitedStatesGovernmentoranyagencythereof,orTheRegentsoftheUniversityofCalifornia.TheviewsandopinionsofauthorsexpressedhereindonotnecessarilystateorreflectthoseoftheUnitedStatesGovernmentoranyagencythereof,orTheRegentsoftheUniversityofCalifornia.

ErnestOrlandoLawrenceBerkeleyNationalLaboratoryisanequalopportunityemployer.

Page 3: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

2

ABSTRACT

Recentimprovementstoadvancedwatermeteringandcommunicationstechnologieshavethepotentialtoimprovethemanagementofwaterresourcesandutilityinfrastructure,benefitingbothutilitiesandratepayers.Thehighlygranular,near‐real‐timedataandopportunityforautomatedcontrolprovidedbytheseadvancedsystemsmayyieldoperationalbenefitssimilartothoseaffordedbysimilartechnologiesintheenergysector.Whilesignificantprogresshasbeenmadeinquantifyingthewater‐relatedbenefitsofthesetechnologies,theresearchonquantifyingtheenergybenefitsofimprovedwatermeteringisunderdeveloped.SomestudieshavequantifiedtheembeddedenergyinwaterinCalifornia,howeverthesefindingsarebasedondatamorethanadecadeold,andunanimouslyassertthatmoreresearchisneededtofurtherexplorehowtopography,climate,watersource,andotherfactorsimpacttheirfindings.Inthisreport,weshowhowwater‐relatedadvancedmeteringsystemsmaypresentabroaderandmoresignificantsetofenergy‐relatedbenefits.Wereviewtheopenliteratureofwater‐relatedadvancedmeteringtechnologiesandtheirapplications,discusscommonthemeswithaseriesofwaterandenergyexperts,andperformapreliminaryscopinganalysisofadvancedwatermeteringdeploymentanduseinCalifornia.Wefindthattheopenliteratureprovidesverylittlediscussionoftheenergysavingspotentialofadvancedwatermetering,despitethesubstantialenergynecessaryforwater’sextraction,conveyance,treatment,distribution,andeventualenduse.WealsofindthatwaterAMIhasthepotentialtoprovidewater‐energyco‐efficienciesthroughimprovedwatersystemsmanagement,withbenefitsincludingimprovedcustomereducation,automatedleakdetection,watermeasurementandverification,optimizedsystemoperation,andinherentwaterandenergyconservation.Ourfindingsalsosuggestthattheadoptionofthesetechnologiesinthewatersectorhasbeenslow,duetostructuraleconomicandregulatorybarriers.InCalifornia,weseeexamplesofdeployedadvancedmeteringsystemswithdemonstratedembeddedenergysavingsthroughwaterconservationandleakdetection.Wealsoseesubstantialuntappedopportunityintheagriculturalsectorforenablingelectricdemandresponseforbothtraditionalpeakshavingandmorecomplexflexibleandancillaryservicesthroughimprovedwatertrackingandfarmautomation.

Keywords:waterresourcesmanagement,advancedmeteringinfrastructure,water‐energynexus,energyservices

Page 4: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

3

ACKNOWLEDGEMENTS

ThisworkwassupportedbytheU.S.DepartmentofEnergy’sOfficeofEnergyPolicyandSystemsAnalysisunderLawrenceBerkeleyNationalLaboratoryContractNo.DE‐AC02‐05CH11231.

WewouldliketothankDianaBauer,SandraJenkins,andAliceChaooftheU.S.DepartmentofEnergy’sOfficeofEnergyPolicyandSystemsAnalysisfortheirvaluablesupportandsuggestions.WewouldalsoliketothankArianAghajanzadehofLBNLforhisvaluablefeedback.

Page 5: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

4

TableofContents Introduction.....................................................................................................................................81.1 MethodsandScope................................................................................................................................81.2 TheWater‐EnergyNexus....................................................................................................................91.3 AdvancedWaterMetering...............................................................................................................12

EnergyBenefitsofAdvancedWaterMetering...................................................................172.1 EmbeddedEnergySavings...............................................................................................................172.2 ElectricLoadManagementandDemandResponse................................................................222.3 SupportingEnergy,Water,andClimatePolicyGoals............................................................26

ChallengesandBarriers.............................................................................................................283.1 ValueCapture.......................................................................................................................................283.2 WaterRights.........................................................................................................................................293.3 UtilityCoordinationandConflictingPriorities........................................................................30

CaseStudy:California.................................................................................................................324.1 Background...........................................................................................................................................324.2 EmbeddedEnergyofWaterinCalifornia...................................................................................324.3 PotentialforEnergyEfficiency.......................................................................................................354.4 PotentialforPeakLoadReduction...............................................................................................374.5 Summary................................................................................................................................................40

ConcludingRemarks...................................................................................................................41

FutureWork...................................................................................................................................42

References......................................................................................................................................44

Page 6: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

5

ListofFigures

Figure1:Energy‐waterflowdiagramshowingthemajorsourcesandsinksofbothwaterandenergyresourcesintheUnitedStates,usingdatafrom2011(USDOE“TheWater‐EnergyNexus”).Sectorsdiscussedinthisreportareoutlinedinred.........10

Figure2:High‐leveldiagramofadvancedwatermeteringsystem(Sensus2016).BasicAMIsystemsincludeasubsetoftheshownfunctionality,andinclude,ataminimum,smartwatermeters,acustomerportal,andcentralizeddatacollectionandprocessing.............................................................................................................................................15

Figure3:Non‐RevenueWaterperformanceofutilitiesinTheInternationalBenchmarkingNetworkforWaterandSanitationUtilities(IBNET)database(Kingdometal.2006)......................................................................................................................................................18

Figure4:Left,California’sInvestorOwnedUtilities’serviceterritories(CEC).Right,locationandsizeofCalifornia’sregulatedwaterutilities(CaliforniaWaterAssociation).30

Figure5:EnergyintensityrangebycomponentforCalifornia’sthreeIOUs(GEIConsultantsandNavigantConsulting2010)..................................................................................................35

Figure6:Averagedailydemandprofilesforapproximately35,000agriculturalcustomers’intervalmetersfromPG&E’sserviceterritory,2003‐2012.Figureshowshowdailyagriculturalloadprofileshaveflattenedsince2006,butstillpeakduringmid‐dayhours.ReproducedfromOlsenetal.(2015).......................................................39

ListofTables

Table1:Summaryofcommonwatermeteringtechnologies............................................................13

Table2:Summaryofcommonadvancedwatermeteringcommunicationstechnologies....14

Table3:Estimatedwaterandembeddedenergysavingsfromprogram‐relatedleakrepairs,andpotentialuntappedsavings(ECONorthwest2011)....................................................21

Table4:WaterandEnergyConsumptionbySectorinCalifornia....................................................33

Table5:RangeofEnergyIntensitiesWaterUseCycleSegment(CEC2005)..............................34

Table6:Summaryofestimatedwaterandenergyimpactpotentialforvariouswater‐relatedadvancedmeteringstrategiesinCalifornia.............................................................40

Page 7: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

6

AbbreviationsAB AssemblyBill

ADR Automateddemandresponse

AMI Advancedmeteringinfrastructure

AMR Automaticmeterreading

AS Ancillaryservices

AWWA AmericanWaterWorksAssociation

BG Billiongallons

CEC CaliforniaEnergyCommission

CPUC CaliforniaPublicUtilitiesCommission

DCU Datacollectionunit

DR DemandresponseDWR DepartmentofWaterResourcesEBMUD EastBayMunicipalUtilityDistrictGPM GallonsperminuteGW GigawattHEM HomeenergymanagementIHD In‐homedisplayIOU InvestorownedutilitykWh KilowatthourLBNL LawrenceBerkeleyNationalLaboratoryMG Milliongallons

MIU MeterinterfaceunitMNF MinimumnighttimeflowMTU MetertransmissionunitM&V Measurementandverification

MW Megawatt

NRW Non‐revenuewater

PUC PublicUtilitiesCommission

RF RadiofrequencySB SenateBill

SCADA SupervisoryControlAndDataAcquisition

SWP StateWaterProject(ofCalifornia)

TOU Time‐of‐useUSDOE UnitedStatesDepartmentofEnergy

VFD Variablefrequencydrive

Page 8: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

7

GlossaryofTerms

AdvancedMeteringInfrastructure(AMI):Atechnologysystemthatconnectscustomermeterstotheutilitythroughabi‐directionalcommunicationnetwork,suchastelephonewiresorradiofrequencytransmission,andstoresandanalyzesthecollecteddatainacentraldatabase.Utilitiescancollectmeterdataatfrequentintervals,relaythatdatatocustomers,andhaveadditionalcapabilities(e.g.remoteshutoff)dependingonthesystemconfiguration.

AutomaticMeterReading(AMR):Atechnologysystembywhichautilitycandigitallycollectandstoremeterreadings.Datacanbecommunicatedthroughhand‐helddata‐loggers,radiofrequencytransmission,ortelephonewires.Doesnotallowtwo‐waycommunicationbetweenutilityandmeters.

MunicipalWaterSystem:Theinfrastructurethatextracts,conveys,andtreatswaterforuseintheresidentialandcommercialsectors.Someindustrialcustomersarepartofthemunicipalsystem,howeverthemajorityself‐supplywater(Maupinetal.2014).

EmbeddedEnergyofWater:Theamountofenergyusedtocollect,convey,treat,anddistributewatertoendusers,andtheamountofenergyusedtocollect,transport,andtreatwastewater.

Page 9: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

8

Introduction 

Thisreportidentifiesthewaysinwhichadvancedwatermeteringisbeingusedtoenableenergybenefitsandhighlightswhattheresearchsuggeststobeprominentareasoffutureopportunity.Thisreportisthesynthesisofacomprehensiveliteraturereview,interviewswithsubjectmatterexperts,andoriginalanalyses.Section1provideshistoricalcontextofthewater‐energynexusandwaterdevelopment,definescommonlyusedterminology,anddescribesthemethodsused.Section2isanin‐depthdiscussionoftheopportunitiesforenergybenefitsaffordedbyimprovedwatermetering.Section3highlightsbarriersandchallengestorealizingtheseenergybenefits.Section4exploresthescaleofopportunitiesandthebarrierstorealizingtheenergybenefitsofadvancedwatermeteringinCaliforniathroughahigh‐levelquantitativeanalysisanddiscussion.Sections5and6provideconcludingremarksandrecommendationsforfuturework.

1.1 Methods and Scope 

Thisreportcoversthreebroadefforts.Ourfirsttaskwasaliteraturereviewofthreeprimaryareas:(1)thewater‐energynexus;(2)advancedmeteringinboththeenergyandwatersectors;and(3)applicationsofsynergisticwater‐energyactivitiesenabledbyimproveddatacollectionandsystemcontrol,whichincludesapplyingwater‐relateddatatoprovideenergybenefits(e.g.,energyefficiency).

Oursecondtaskwastogainanappreciationofthecurrentstateofpracticebyinterviewingexpertsfromacademia,industry,utilities,andregulatorybodies.Weinterviewedtwoacademicresearchers,tworesearchersfromindependentindustrythinktanks,engineersatafacilitiesdepartmentofalargecollegecampus,membersofastatepublicutilitiesandservicescommission,seniorengineersatamunicipalutilityresponsibleforprovidingbothwaterandenergy,anoperationsexpertatautility‐focusedsoftwarecompany,andasenioradvisoratanagriculturalsensorscompany.Duetotherecentdemandforresearch,technicalexpertise,andmarketsolutionsinthewater‐energyspaceintheSouthwesternUnitedStates,fouroftheseexpertsarefromCaliforniaandtwoarefromtheRockies.AnotherisfromtheMidwest,andtwoarebasedontheEastCoast.

Lastly,wepresentascopingstudyandfollow‐ondiscussionoftheenergybenefitsofadvancedwatermeteringinCalifornia.WechoseCaliforniaasacasestudybecausethereexistsmomentumfortacklingwater‐energyissuesfromregulators,industry,andconsumers.Thesignificantfour‐yeardroughtaffectingmuchoftheAmericanSouthwest,particularlyCalifornia,hasmotivatedabroadinterestinimplementingimprovedwatermetering.Wethereforeanticipatetheavailabilityofarelativelylargeamountofwater‐energydatafrompilotstudiesinthenearfuture.Finally,weseeincreasedactivitiesfrom

Page 10: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

9

regulatorsandotheragencies,includingtheCaliforniaPublicUtilitiesCommission(CPUC)andtheCaliforniaEnergyCommission(CEC),totackleresourceuseefficiencymatters.

Thisresearchfocusesprimarilyonthemunicipalandagriculturalsectors.Wesurveyedindustrialapplicationsofwatermeteringforenergybenefits,andconcludedthatmostindustriesforwhichenergyandwaterarevariablecostshaveinternalizedandattemptedtooptimizetheirprocesses.Additionally,industrialapplicationsvarywidelyingeographyandprocess,makinghigh‐levelscopingandassessmentunwieldy.Forthesereasons,furtherdiscussionofadvancedwatermeteringforenergybenefitsintheindustrialsectorhasbeenlefttothoseindustryexpertsbettersuitedtoadditional,tailoredanalyses.

1.2 The Water‐Energy Nexus 

PeterGleick’sseminal1994report,“WaterandEnergy”,setthefoundationforunderstandinghowwaterandenergysystemsarefundamentallyinterconnected.Overthelasttwodecades,thewater‐energynexushasgainedattentionduetolocal,regional,national,andglobalconcernsregardingenergysecurity,waterscarcity,andtheimpactsofglobalclimatechange.Forexample,thehistoric2012‐2015NorthAmericanDroughtimpactedelectricitygenerationcapacitybyrestrictingsurfacewaterwithdrawalsusedforpowerplantcooling,aswellasdrasticallyreducinghydropowerresourceavailability(Pulwarty2013).Situationssuchasthishighlighthowwaterandenergysystemsareinextricablylinkedandthepotentialvulnerabilitiesthiscreates.Workhasalsobeendonetoquantifythemagnitudeofthelinksbetweenwaterandenergysystems,exemplifiedbyFigure1.

Asaresultofthegrowingappreciationofhowinterconnectedwaterandenergysystemsare,theUnitedStatesDepartmentofEnergy(USDOE)hasidentifiedareasinneedofproactiveandimprovedjointsystemoptimizationandmanagement(USDOE“TheWater‐EnergyNexus”).Inaddition,USDOEhasinvestedinextensiveresearchontechnologiesthatcanimprovetheenergyefficiencyofwatersystemsorreducetheuseofwaterduringenergyproduction,aswellaspoliciestoenhancetheeffectivenessofjointsystemsmanagement.

Page 11: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

10

Figure1:Energy‐waterflowdiagramshowingthemajorsourcesandsinksofbothwaterandenergyresourcesintheUnitedStates,usingdatafrom2011(USDOE“TheWater‐EnergyNexus”).Sectorsdiscussedinthisreportareoutlinedinred.

Page 12: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

11

1.2.1 Embedded Energy of Water 

Theembeddedenergyofagivenunitofwaterishighlydependentuponthelocation,underlyingtopographyofthewaterinfrastructure,andwatersource(deMonsabertetal.2009).Forexample,a2005CECreportonwater‐relatedenergyusefoundthattheaverageembeddedenergyforNorthernandSouthernCaliforniawas4,000and12,700kWh/MG,respectively,withevengreaterspreadinembeddedenergyvaluesduetolocalsystemcharacteristics(CEC2005).Additionally,theenergyneededforprovidingwatercanbeasignificationportionofallenergyuse,withtheCEC’sreportestimatingthat5%ofenergyconsumptioninCaliforniacanbeattributedtotheconveyance,distribution,andtreatmentofwater.

Terminology: Energy for Water 

Theliteratureregarding“energyforwater”systemslacksasetofagreedupondefinitionsforcommontermsandmetricsnecessaryforquantitativediscussion.Termsincluding“energyintensity,”“associatedenergy,”“embodiedenergy,”and“embeddedenergy”areoftenusedinterchangeablyandwithoutformaldefinition.Theterminologyusedthroughoutthisreportis“embeddedenergy,”andhasthefollowingdefinition.

“EnergyEmbeddedinWater”referstotheamountofenergythatisusedtocollect,convey,treat,anddistributeaunitofwatertoendusers,andtheamountofenergythatisusedtocollectandtransportusedwaterfortreatmentpriortosafedischargeoftheeffluentinaccordancewithregulatoryrules.(GEIConsultantsandNavigantConsulting2010)

Itisimportanttonotethat“embeddedenergy”specificallyandintentionallyexcludestheenergyuseassociatedwithwater‐relatedenduses(e.g.,residentialwaterheating),andistypicallyreportedasanamountofenergyperunitofwater(kWh/gallon).End‐usespecificenergyuseisexcludedfortworeasons:(1)thefocusofthisreportisonlarge‐scaleadvancedwatermeteringsystems,whichdonotdisaggregateend‐uselevelwaterandenergyuse;and(2)theenergyneededforspecificwater‐relatedendusesdeservesdetailedresearchonatechnology‐by‐technologyandend‐use‐by‐end‐usebasis,andisoutsidethescopeofthisstudy.

Additionally,“energyintensity”willbeusedthroughoutthisreportinreferencetotheamountofenergyrequiredperunitofwaterforindividualsegments(e.g.,wastewatertreatment)ofthewatersystem.

Page 13: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

12

Improvedwaterflow,pressure,andleakagedatacollection,enabledbyadvancedwatermeteringtechnologies,couldbettercharacterizetheembeddedenergyinwatersystems,whichinturncouldhelpidentifyandprioritizeresearchanddevelopmentopportunitiestotaplargepotentialefficiencygainsforbothwaterandenergy.Targetingwater‐energyprogramsinareaswheretheembeddedenergyishighest,forinstance,ismorelikelytoresultinsignificantenergysavingsthanprogramsinareaswheretheembeddedenergyofthewatersystemislow.Inordertofullycapitalizeonthesepotentialsavings,however,moreinformationabouttheenergyintensityofindividualprocesses(e.g.,freshwatertreatment),howthatenergyintensitydiffersbygeographyandtopography,andthetemporaldifferencesinenergyintensityisneeded(USDOE“TheWaterEnergyNexus”).

1.3 Advanced Water Metering 

Sincethedevelopmentofthefirstcommercialmechanicalwatermeterinthe1850s(Walski2006),water‐meteringtechnologyhassteadilyimprovedinprecision,accuracy,andreliability.However,onlyrecentlyhavecommunicationstechnologiesimprovedandbecomecost‐effectiveenoughtochangehowthedatageneratedbythesemetersarecollected.Table1outlinesthecommonvolumetricandleakdetectionmetertechnologies,andTable2outlinesthecommunicationscomponentsthatrelaythemeterdata.

Traditionally,customer‐levelmeteringrequireswaterutilityemployeestophysicallyvisitindividualcustomersitesonasemiannualormonthlyscheduletoreadthewatermeter’slogger,whichonlyprovidesthetotalvolumeofwaterthathasbeenusedsincethelastreading,andhastobemanuallyenteredintoacentraldatabaseforbillingpurposes.Giventhetimeandlaborinvolved,thetraditionaloperatingmodelisanexpensiveprocessthroughwhichcustomersandutilitiesgainverylittleknowledgeofthetemporalaspectsofcustomerwateruse.Assuch,recentadvancementsinmeteringandcommunicationstechnologieshaveresultedindrasticallyimproved,moreintegratedmethodsofmetering,communication,datastorage,andanalytics.Twotechnologiestohavemajorimpactsonwatermeteringinfrastructureareautomaticmeterreading(AMR)andadvancedmeteringinfrastructure(AMI).

AMRisasysteminwhichthecustomermetersareabletosendconsumptiondataatregularintervalsthroughcommunicationinfrastructuresuchasradiofrequency(RF)ortelephonewires.NotonlydoesAMRallowformorefrequentdatacollection,butmostAMRsystemsalsoeliminatetheneedforutilityemployeestovisitindividualsites.However,itdoesnotallowtwo‐waycommunicationbetweenthemetersandtheutility(e.g.,theutilitycannotremotelytellthemetertochangerecordingbehavior).Forthisreason,metersinanAMRsystemarenotconsidered“smart”metersandareprimarilyusedinthewatersectortoreducethelaborcostofdatacollection.Improvedmeteraccuracyandstandardizingmeterinventoriesareadditionalbenefits(Kooetal.2015).

Page 14: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

13

Table1:Summaryofcommonwatermeteringtechnologies.

MeteringTechnology DescriptionNormalOperatingRange

Mechanical

1

Useseitherpositivedisplacementorvelocity‐basedmethodstomeasurevolumeofwaterconsumed.Theoverwhelmingmajorityofutilitymetersaremechanical,andtheyaretypicallyusedforresidentialandcommercialbillingpurposes.

NutatingDisk:0.25‐170GPM2

OscillatingPiston:1‐50GPM3

Multi‐jetImpeller:1‐100GPM4

Static

5

Usesstaticmeasurementmethods,suchasmagneticoracousticflowsensors,tomeasurevelocityofwaterflow,andthencomputevolumetricwaterconsumption.Muchnewerthanmechanicalmeters,staticmetershavebeenusedinindustrialandcommercialsettings,butareincreasinglycommonforresidentialapplications.

Ultrasonic:0.05‐160GPM6

Magnetic:0.7‐180GPM7

Compound

8

Incorporatesmultiplemeasurementtechnologies,typicallyonetechnologythatperformswellathighflows,andonethatperformswellatlowflows.Typicallyusedforcommercialormulti‐familyresidentialapplications.

0.5‐4000GPM8,9

AcousticLeakDetection

10

Deployedonwaterdistributioninfrastructure,thesesensorsusesoundwavestomeasureflowlevelsduringthenight,whenambientnoiseanddemandarelowest,andthenrelaysthedatatothecentralserverforanalysis.

N/A

1NiagraMeters,“NutatingDisc”2BadgerMeter,“Recordall®DiscSeriesMeters”3Sensus,“accuSTREAMTMMeters”4RG3Meters,“Multi‐Jet–BottomLoad–Meters”5Sensus,“AccuMAGTMWaterMeters”

6BadgerMeter,“E‐Series®UltrasonicMeters”7Sensus,“accuMAGTMMeters”8ZennerPerformance,“CompoundMeters”9BadgerMeter,“Recordall®CompoundSeriesMeters”10Sensus,“Permalog+AcousticMonitoringSensor”

AMIisthenaturalextensionofAMRtechnology,withmoresensorintegration,two‐waycommunication,systemcontrols,andreal‐timeanalytics.WaterAMIconsistsof“smart”watermetersthatmeasurethevolumeofwatertransferredbetweenlocationsandreportsthisinformationthroughbi‐directionalcommunicationwiththesystem’scommunicationsinfrastructure.Thisvolumetrictransactionistypicallyonlyrecordedwhenautilitytransferswaterfromitsownershiptoabuildingoperator,suchaswhenthewatercrosses

Page 15: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

14

autilitymeter,howeveritcanalsoberecordedwithinautility’sdistributioninfrastructureasameansofmonitoringflows(Janković‐Nišićetal.2004).Thesesmartwatermetersgivetheutilitymorecapabilities,includingflexibledatarecording,real‐timeanalyticslikeleak‐detection,andremoteshutoff(e.g.,inthecasewhenalargeleakisdetected).Thedatageneratedbythesmartwatermetersiscollectedandrelayedthrougharangeofcommunicationsinfrastructures(e.g.,RF,telephonewires)totheutility’scentralserver,wheredataiscleaned,analyzed,andstored.

Table2:Summaryofcommonadvancedwatermeteringcommunicationstechnologies.

CommunicationsTechnology Description Functionality

MeterRegister

1

Translatesmechanicalorsolid‐statemetersignalsintovolumetricreading.Displaysthisinformationvisually,storesitforcollection,ortransmitsittoanMeterInterfaceUnit(MIU)orMeterTransmissionUnit(MTU).

Dependsgreatlyontheregistertype.Minimumresolutionsaslowas1gallon.

MeterInterfaceUnit(MIU)orMeterTransmissionUnit(MTU)

2

Collectsreadingsfromindividualmeterregistersandcommunicatesthem,alongwithtimestampinformation,toaDataCollectionUnit(DCU).SomecanalsoacceptssignalsfromAMInetwork.

Typicallycollectsdataatintervalsbetween15minutesand1day.*

DataCollectionUnit(DCU)

3

CollectsandtransmitsdatafrommultipleMIU/MTUs.Technologyandusecasesvarygreatly.Infixednetworksystems,theyareoftenmountedontelephonepoles,andcommunicateviaradio.In“handheld”AMRsystemsDCUsaresmallhandhelddevicesthatcommunicatewithmetersviatouchorradio.

SomeDCUsstorecollecteddata(28daysor600,000transmissions4),butmanysimplyrelaydatafromMIU/MTUstocentralstorageandprocessingservers.

*Mostadvancedmeterscancollectandtransmitreadingsoncommand,andthereforethefrequencyatwhichconsumptionismeasuredisdictatedbytheutility’sneedsanddatamanagementandanalyticscapabilities.1BadgerMeter,“Recordall®TransmitterRegister”2BadgerMeter,“ORION®CellularEndpoint”

3Sensus,“StandardFlexNet®BaseStations”4Aclara,“STARNetworkDCUII”

Page 16: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

15

Inadditiontocustomer‐levelmeteringtechnology,allwaterutilitiesimplementsomelevelofSupervisoryControlAndDataAcquisition(SCADA)systems.SCADAisaremotemonitoringandcontrolsystemthatoperatesinreal‐timetoautomateandassistthemanagementoftreatmentandpumpingprocesses.SCADAsystemsmonitorandcontrolwaterandwastewatertreatmentplants,measuringanumberofimportantprocesscharacteristics,includinginflowsandoutflows,treatmentstatus,andwatertemperature.SCADAsystemsdonotinherentlystoreandanalyzepastdata,howeversomenewersystemsarecapableofbeingintegratedwithmoreadvancedanalyticaltools(Cherchietal.2015).

Figure2:High‐leveldiagramofadvancedwatermeteringsystem(Sensus2016).BasicAMIsystemsincludeasubsetoftheshownfunctionality,andinclude,ataminimum,smartwatermeters,acustomerportal,andcentralizeddatacollectionandprocessing.

ThewaterindustryistrendingtowardsAMIandmoreadvancedSCADAinfrastructure(Laughlin2003;Turner2005).Figure2showsadiagramofanadvancedmetering,sensors,andcontrolssystemanditsmanycomponentsandcapabilities.Thiswiderangeofdata

Page 17: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

16

collection,controls,andanalyticscapabilitiesallowwaterutilitiestoutilizeadvancedmeteringsystemstoreducewaterlossthroughimprovedleakdetection(Brittonetal.2013),reduceoperatingcoststhroughstreamlinedbilling(BealandFlynn2015),implementvolumetricratestructurestoincentivizewaterconservation(Borisovaetal.2014),andutilizehigh‐frequency,nearreal‐timedataforavariousstrategicsystemmanagementefforts(Stewartetal.2013).Endusersbenefitfrombehind‐the‐meterleakdetectionanddetailedinformationabouttheirwaterconsumption,bothofwhichcanleadtomoreefficientwateruseandlowerwaterbills(Brittonetal.2013).Moregenerally,advancedwatermeteringprovidesmoretransparentinformationaboutwhere,when,andhowwaterisconsumed,whichcanenableconservationandgreaterefficiency(PacificInstitute2014).Finally,whilewaterAMIsystemshavedemonstratedsignificantwaterconservation(Ritchie2015),theirvalueasanenergy‐savingtoolhasnotyetbeenthoroughlyexplored.

Page 18: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

17

Energy Benefits of Advanced Water Metering 

Inthissection,wewillreportonthecurrentstateofwaterAMIinthemunicipalandagriculturalsectors,itsmarketpenetration,anditscurrentapplicationsforenergysavingsandbenefits.Itisimportanttonotethatquantifying,comparing,andprioritizingtheseenergyopportunitiesmustbedoneonacase‐by‐casebasisasapartofthecost‐benefitanalysisforanadvancedwatermeteringsystemsuchasAMI.

2.1 Embedded Energy Savings 

2.1.1 Water Conservation Through Altered Behavior 

Studieshavedemonstratedthatinformationprovidedbyadvancedmeteringofenergyandwatercanencouragebehavioralreductionsinconsumptionbyincreasingconsumerknowledgeabouttheirresourceuse.Webportals,textmessagealerts,andIn‐HomeDisplays(IHDs)areexamplesofcommunicationsplatformsusedtomakeresourceconsumptionmoretransparenttoconsumers.Intheenergysector,Faruquietal.foundthatIHDsthatdisplaythenear‐real‐timeinformationabouthomeenergyusecollectedbysmartmeterscanreduceenergyuseby7%(2010).Barissetal.foundthatasmartelectricitymeterrolloutto1,000customersinLatviaresultedinanaverage19%decreaseinelectricityconsumptioncomparedtoacontrolgroup(2014).Finally,ameta‐analysisofresearchon“feedback”mechanisms,whichincludesimprovedbilling,advice,andreal‐timeusagedata,andtheirimpactsonresidentialelectricityusagefoundthatfeedbackcanprovidesavingsbetween4and12%(Ehrhardt‐Martinezetal.2010).

Asimilaropportunityispresentinthewatersector.Implementingadvancedwatermeteringsystemsandprovidinguserswithmuchmoregranular,real‐timedataonwaterconsumptioncanresultinwaterconservation.Forexample,a2013paperbyFieldingetal.exploretheimpactofcustomer‐specificwateruseinformationonconsumptionpatterns,andfindthatdailyconsumptiondatafromsmartwatermeterscanreducewaterconsumptionbyanaverageof9%.Additionally,a2014pilotstudyatEastBayMunicipalUtilityDistrict(EBMUD),whichsupplieswaterthroughouttheSanFranciscoEastBay,installedwaterAMIsystemsthatprovidedhourlywaterconsumptiondata(inunitsoftenthsofagallonperhour)tocustomersthroughanonlinewebportal.EBMUDfoundwatersavingsbetween5‐50%,withanaverageof15%,amongresidentialcustomersaftertheinstallationofthesavings,whilenotingthatsomeofthesesavingsarelikelyduetocustomer‐sideleakrepair(EBMUD2014).Whenconsumersuselesswater,theembeddedenergynecessarytoprovidethatwaterisavoided,asthewaterutilityneedstoextract,treat,anddistributelesswater,reducingtheenergydemandsofthewaterutility.Unfortunately,veryfewstudiesquantifytheembeddedenergyreductionsattributabletothesewaterreductions.

Page 19: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

18

2.1.2 Leak Detection and Repair 

Aswaterinfrastructureistypicallylocatedunderground,watermaindegradationanddamagefromsoilpressure,excavationandconstructionthreats,treerootgrowth,freeze‐thawcycles,andearthquakesarecommonoccurrences.Theresultingwaterleakagefromwatermainsintothesurroundingsoilarecalled“physicallosses”andarenotonlydifficulttodetect,butalsorepresentamajorsourceofwaterloss,knownasnon‐revenuewater(NRW),thatutilitiescannotfinanciallyrecoverorbilltocustomers.AnothersourceofNRWare“commerciallosses”,whichconsistofwaterthatflowsintoawatersystembutisnotcorrectlyaccountedforflowingoutofthesystem.Commerciallossesaretheresultoffaultyorinaccuratemeters,datahandlingerrors,orwatertheft.NRWiscalculatedusingEquation(1).

(1) %

100%

Whilecommerciallossesdonothaveassociatedenergyimpacts,physicallossesrepresentrealwastedenergyintheformofembeddedenergyandassociatedGHGemissions.Atypicalruleofthumbestimateforphysicalwaterlossesis10‐15%intheU.S.andcanbehigherindifferentpartsofthecountryandtheworld(Heringetal2013).Figure3showsthedistributionofNRW,asafractionoftotalwaterinputs,forutilitiesinTheInternationalBenchmarkingNetworkforWaterandSanitationUtilities(IBNET)database,whichcompileswaterutilitydatafromaroundtheworld.Onecanseethatover15%ofutilitiesintheIBNETdatabasehadNRWfractionsover50%in2006.

Figure3:Non‐RevenueWaterperformanceofutilitiesinTheInternationalBenchmarkingNetworkforWaterandSanitationUtilities(IBNET)database(Kingdometal.2006).

Page 20: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

19

IntheUnitedStates,itwasestimatedthat5‐10billionkWh/yearofelectricityisassociatedwithNRW,whichisapproximately6‐13%ofallelectricityusedbywateragenciesannually(AWWAWaterLossControlCommittee2003).TheWorldBankestimatesthat80%ofNRWindevelopedcountriesisduetoreallosses,whichmeansapproximately4‐8billionkWh/yearofelectricityiswastedthroughleaksintheU.S.Forperspective,thatisenoughelectricitytopower360,000‐720,000householdsannually(EIA2015).Theseleaksoccuron“bothsidesofthemeter,”meaningonthecustomer’sside(e.g.inhomes)andontheutility’sside(e.g.inwaterdistributioninfrastructure).Onthewhole,thefollowingdiscussionoftheavailableliteraturesuggeststhatasubstantialfractionofthewastedelectricityassociatedwithleakscouldbesavedthroughleakdetectionenabledbyadvancedmunicipalwatermetering.

Customer‐Side Leak Detection 

TherecentDeOreoetal.report,“ResidentialEndUsesofWater,Version2”,foundthatleaksaccountfor13%ofallresidentialindoorwaterconsumptionacrosstheU.S.(2016).Customer‐sideleakscanbedetectedthroughanumberofmethods,includingwaterauditsandanalysisofwaterconsumptiondatathatrangeincomplexitybutaregreatlyimprovedwhencoupledwithanAMIsystem.OnewaterproviderinQueensland,Australiaanalyzedhourlyconsumptiondataforall22,000oftheirresidentialcustomersandidentifiedapproximately800householdsthathadcontinuouslyusedwaterfor48straighthours,indicatingahighlylikelihoodofleaks.Afterprovidingasubsetofthesecustomerswithextensiveanalysisoftheirminimumnighttimeflow(MNF)valuestocommunicatethepresenceofleaks,thewaterprovidersawan89%reductioninMNFwithinthesubset(Brittonetal.2013).TheCityofSacramento,California,beganimplementingawaterAMIsystemin2009.Afterinstalling17,600smartwatermeters,theymonitoredtheirperformancefrom2010‐2011.Throughanalysisofthevolumetricconsumptiondatacollected,1,076leakswereidentified,75%ofwhichwereverifiedinthefield.TheCityestimatedthatfixingtheseleakssavedanestimated236milliongallonsofwateroverthetwo‐yearperiod,orapproximately12.6gallonspercapitaperday(CaliforniaDWR2013).EBMUDhascompletedeightwaterAMIpilotprojectsthroughouttheirresidentialservicearea,includinganacousticleakdetectionsystem.TheAMIsystemscommunicatehourlyconsumptiondatawithresidentialcustomersviaawebportal,whichsendscustomersnotificationswhenconsumptionpatternsindicateasuspectedleak.Preliminaryresultsfromthesepilotprojectsindicatethatthesesystemshavebeeneffectiveatidentifying“asurprisingnumberofleaks”(EMBUD2014),andEBMUDhassincerequestedfurtherinformationfromvendorsregardingcurrentAMIsystemcapabilities(EBMUD2015).

Page 21: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

20

Utility Infrastructure Leak Detection 

Expertshaveidentifiedthatdailywatersystemoperationscouldbedrasticallyimprovedwithbetterdata(Tarrojaetal.2016).Byaugmentingcurrentoperationalmodelsandprocedures,largelybasedonSCADAsystemdata,withwaterAMIdata,expertssuggestedthatthedevelopmentandapplicationofadvancedalgorithmstoquicklyandaccuratelydetectleakscouldrealizesubstantialoperationalcostsavings.Theseanalyticalcapabilitiescouldenablewaterutilitiestotakepreventativemeasuresbyidentifyingminorleaksbeforetheybecomeexpensivecatastrophicpipefailures.However,utility‐sideleakdetectionistypicallymorecomplexthancustomer‐sidedetection,primarilyduetothenumberofinputsandoutputspresentinwaterdistributionnetworks.Anumberofstudieshaveproposedsolutionstothistechnicalproblem.Zanetal.discusshowdatafromflow,pressure,andacousticsensorscanbeanalyzedwithjointtime‐frequencyanalysistodiagnoseleaksinamunicipaldistributionsystem(2014).Gouletetal.(2013)andColomboetal.(2009)showdifferentmethodsusingflowandpressuredatarecordedathighfrequencythatcouldbeadequateinprovidingleakdetection.Loureiroetal.demonstratehowtoleveragesmartwatermeterdatatoperformwaterbalancesondistrictmeteredareas(discreteanddistinctsectionsofwaterdistributioninfrastructure)inordertodetectleaks(Loureiroetal.2014).Inthefield,citiesofLeesburg,VirginiaandMonaca,PennsylvaniareducedtheirNRWfrom15%to7%and50%to15%,respectively,afterinstallingAMItodiagnoseandreducedistributionleaks(Richie2015).

OneoftherarestudiesthatestimatesembeddedenergysavingsassociatedwithwaterefficiencyprojectsisECONorthwest’s2011study,“EmbeddedEnergyinWaterPilotProgramsImpactEvaluation”,whichanalyzes9pilotprogramsimplementedbyCalifornia’sthreeenergyIOUsincollaborationwithlocalwaterutilities.Oneofthereport’skeyfindingscamefromaSouthernCaliforniaEdison(SCE)leakdetectionprogramthatutilizedwateraudits,supportedbyvolumetricwatermeterdata,toidentifyleaksinwaterdistributioninfrastructureforthreewateragencies:

“SCE’sLeakDetectionprogramappearstoofferthegreatestenergysavingspotential(atrelativelylowcost)amongallthePilotprograms.Inparticular,theenergysavingsdocumentedinthisreportarebasedonleaksthatwereactuallyrepairedduringtheprogramperiod;potentialachievablewater(andenergy)savingswereestimatedtobemuchhigherbytheprogramimplementationcontractor.”

Whilethispilotprogramwasnotutilizinga“smart”watermetersystem,butratherperforminganalysisonhistoricaldata,itdiddemonstratethatthemagnitudeofenergysavingsassociatedwithleakrepairissignificant.TheestimatedannualwaterandenergysavingsforthisprogramarereportedinTable3.

Page 22: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

21

Table3:Estimatedwaterandembeddedenergysavingsfromprogram‐relatedleakrepairs,andpotentialuntappedsavings(ECONorthwest2011).

Water(MG)Energy–Agency

(kWh)Energy‐All

Sources(kWh)

SavedfromRepairs

83 178,143 497,788

PotentialSavings 263 583,277 1,662,621

Energysavingsareshownforboththewateragency(Energy–Agency),andfromallsources(Energy–AllSources),whichtypicallyincludesextractionorconveyanceofwaterforwhichtheagencyisnotresponsible.

Identifyingleaksindistributioninfrastructurebeforecatastrophicpipefailuresoccurcansavetheutilitytime,money,andlaborwhilealsoreducingtheembeddedenergyrequiredtoprovidewaterthroughoutthesystem.AlthoughfurtherresearchisneededtobetterquantifyandcomparethecostsandbenefitsofusingAMI,acousticleakdetectionsensors,SCADA,oracombination,manytechnologiesthatcanperformleakdetectioncurrentlyexist.Additionalpilottestsonalargerscalecouldfurtherimproveourunderstandingofthebarrierstoadoptionandoptimaldeploymentstrategies.

2.1.3 Energy Efficient Infrastructure Design and Operation 

Currently,waterinfrastructureisdesignedtomeettheflowrequirementsneededatabsolutepeakdemand,andtheabsolutepeakdemandiscomputedusingengineeringestimatesofmaximumdailyconsumptionandnotnecessarilyontheanalysisofhistoricalconsumptiondata.Pumpsareselectedtomeetpeakdemandandarenotoperatedintheiroptimalefficiencyattypicaldemandflows.Ineffect,thismeanswaterinfrastructureisoverdesignedforthemajorityofdemands,whichmayleadtoinefficientoperationandthushigherembeddedenergyofthewaterdeliveredbythesystem.Thisrelianceonengineeringbestestimatesofpeakflows,ratherthanaconsumption‐databaseddesignapproach,couldalsobeincreasingthecosttobuildandmaintainwaterinfrastructure.FurtherresearchisneededonhowbesttointegratethewealthofhighlygranularwaterAMIdataintosystemandinfrastructuredesignpractices.

WaterinfrastructureintheUnitedStatesandthroughoutmuchoftheworldisquiteold,andisthereforeconstantlybeingmaintained,replaced,improved,andexpandedtomeetthegrowingneedsofindustry,rapidlyurbanizingdemographics,andagrowingpopulation.Aswaterinfrastructureistypicallyunderground,repairingandreplacingpipesisexpensive.Thissituationpresentsopportunitiestoleveragethehigh‐quality,high‐resolutiondatafromAMIsystemstoprioritizetherepairandreplacementofsystem

Page 23: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

22

components.Sincewaterutilitiesareoftenbudgetconstrainedandpipereplacementisdonebasedonbest‐guesspipe“lifetime”schedules,itisnotuncommonforutilitiestospendhundredsofthousandsormillionsofdollarstoexcavateandreplacepipesthatareingoodcondition.Thisinefficiencycouldbereduced,andtheembeddedenergyofthewatersystemloweredduetolowerwaterlossrates,ifutilitieshadadvancedwatermeteringdatatoidentifyandprioritizeleakingpipesforreplacementratherthanusingtraditionalrule‐of‐thumbreplacementperiods.

Dataaboutchangesinwaterdemandpatterns,providedbyAMI,couldinformimprovedmedium‐tolong‐termwaterforecastingmodels.TheimprovedaccuracyoftheseAMI‐supportedmodelscouldprovideutilityoperationalmanagersthecontrol,feedback,andmonitoringcapabilitiestomorereadilyalterconveyanceanddistributionpumpingpatterns.Thesemodelscouldalsoimproveinfrastructureredesignbyidentifyingareaswherethedistributionnetworkisover‐orunder‐designed,ideallyleadingtomoreoptimalsizingofpipesandpumpsaswellasimprovedsitingofpumping,storage,andmonitoringresources.Moregranularandreal‐timedataaboutwaterconsumptionthroughoutawaterdistrictcouldalsobebetterlinkedtothedistrict’senergyuse,andhelptoquantifypumpshiftingopportunitiesfordemandresponseorsupportthesitingprocessforadditionalwaterstorageinfrastructure.

Additionally,pressuremanagementofwaterdistributionssystemshasbeenshowntoloweroverallleakageratesandenergyuse.Xuetal.found thatreducinginletpressuretoadistributionsystemby14%ledtoan83%reductioninminimumnightflow(MNF)andanassociatedsavingsof62,633cubicmetersofwater,1.1x106MJofenergy,and68tonsofCO2equivalentgreenhousegasemissionsperyearperkilometerofpipe(2014).However,duetothevariablenatureofdistributionsystemstructure,operation,andwaterqualityrequirements,theauthorsobservethattheseresultscannotbedirectlyextrapolatedtoothersystems.Pressuremanagementapproachescanbesupportedbyimprovedwatermetering,throughbothSCADAandAMIsystems,whichmayallowforloweroperatingpressures,thoughfurtherresearchanddemonstrationworkisneededbeforeconclusionscanbedrawn.

2.2 Electric Load Management and Demand Response 

Waterinfrastructureisasignificantcontributortopeakelectricaldemandsonthegrid,andthereforepresentsanopportunityforpermanentloadmanagementanddemandresponse(DR).Forexample,theCaliforniawatersupplyaloneisestimatedtorequire2‐3GW,or3‐5%ofthestate’stotalelectricitydemand,onpeakdays(Fujitaetal.2012;CEC2005).Opportunitiestoshiftorreducethepeakdemandfromthewatersectorcouldaddresspeaksystemdemandissues,potentiallyresultinginlowerelectricitypricesandreducingthelikelihoodofdemandexceedingcapacity.Additionally,waterisreadilystorable,andwater

Page 24: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

23

systemsfacedifferentconstraintsthanelectricalsystems,makingwater‐relatedenergyapotentiallyflexibleandreliableDRresource.Improvedwaterdemandforecasting,enabledbyadvancedwatermetering,couldsupportsystemoperatorsandencouragecustomerstoshifttheirwaterdemandsoutofpeakelectricitydemandperiods.

2.2.1 The Municipal Sector 

Olsenetal.estimateanaverageofapproximately1.1GWofmunicipalpumpingdemand,whichdoesnotincludelargewaterconveyancesystems,duringsummermonthsintheWesternInterconnection,ofwhichapproximately15MWisreadilyavailableforDR(Olsenetal.2013).Whileindividualcustomersarefarremovedfromthepeak‐electricityimpactsoftheirwateruse,waterutilitiesresponsibleforconveying,treating,anddistributingwateroftenfacetime‐of‐use(TOU)energyprices,whichincentivizesthemtominimizethecostsassociatedwithusingenergyduringpeakhours.Ourinterviewswithwaterandenergyutilityexperts,aswellasobservationsfromtheliterature,indicatethatsomeutilitieshaveimplementedadvancedwatermeteringandwaterstoragetohelpthemshiftsomepumpingandtreatmenttooff‐peakhourstoreducetheirenergycosts(Fujitaetal.2012;Cherchietal.2015),whileothersparticipateinelectricdemandresponseprograms(EPRI2013).However,therearestillveryfewreportsthatdemonstrateandquantifyexamplesofwater‐AMI‐supportedresponsiveloadmanagement.

Onthecustomersideofthemeter,increasingconnectivity,epitomizedbytheInternetofThings(IoT)concept,willlikelyaffectwater‐relatedenergyconsumptionthroughbehaviorchangeandadvancedhomeautomation.A2010CECstudyonresidentialpeakelectricaldemandfoundthatcustomerswhowereaskedtominimizetheirwaterconsumptionduringtheelectricalutility’son‐peakperiodusedapproximately50%lesswaterduringpeakelectricityhoursascomparedtoacontrolgroupwhowasnotprovidedthismessaging(House2010).Ifimplementedacrossthewateragency’stotalresidentialpopulation,thestudyestimatedtheregionalwaterdistrictcouldreducetheirpeakelectricloadby3MW.Thestudyproposedthatalikelyexplanationofthisreductionisconsumersshiftinglawnirrigationtoeveningornighttimehours.Otherexamplesofthissortofdemandshiftingflexibilityinclude“smart”appliances,suchasclotheswashersanddriers,connectedthroughtheIoTtoahomeenergymanagement(HEM)system.SuchHEMsystemsarecapableofshiftingapplianceloadstooff‐peakhourswithminimaleffectsonlevelofservice.Thesetypesofhomemanagementsystemscanbeexpensive,butitispossiblethatintegratingwatermanagementintoahomeenergyandwatermanagementplatformwouldprovideco‐benefits.Forexample,AMI‐enabledpricingstructures,suchastime‐of‐usewaterprices,couldincreasetheabilityofthesehomemanagementsystemstocapturevaluefortheconsumer.

Page 25: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

24

2.2.2 The Agricultural Sector 

Theconceptofjointenergyandwatermanagementisbecomingincreasinglyimportantintheagriculturalsector,asgrowersmaketheswitchfromwaterinefficientfloodirrigationtoadvancedwater‐efficientprecisionirrigationsystems.Althoughmodernizedirrigationmethodsusemuchlesswater,theyaretypicallymoreenergyintensiveduetotheneedtopressurizeextensivepipingsystems.OnestudyestimatesthatthemodernizationofSpain’sirrigationsystemsfrom1950to2007reducedthewaterperhectareoffarmingby21%,butincreasedtheenergyperhectareby657%(Corominas2010).AnotherstudyoftwoirrigationdistrictsinAustraliafoundthatswitchingfromgravityfedirrigationtopressurizedirrigationcouldincreaseelectricityintensities,intermsofenergyperunitare(MJ/hectare),by8‐179%dependingoncroptype(Jackson2009).Asthreatstowatersecuritygrow,includingashiftingclimateanddwindlinggroundwaterreserves,theyacceleratethetransitiontowaterefficientirrigationsystems,andtheagriculturalsector’senergydemandsarelikelytoincrease.Olsenetal.estimateagriculturalwaterpumpingcurrentlycontributes2.7GWofloadduringsummermonthsintheWesternInterconnection,ofwhichapproximately400MWisreasonablyavailableforDR(Olsenetal.2013).Giventhisenergy‐watertradeoff,developingsystemsthatimprovetheflexibilityofagriculturalwaterandenergydemandsareanticipatedtobegrowingareasforbothR&Dandadvancedwatermeteringapplications.

Onemethodcurrentlyusedintheagriculturalsectoristhepracticeofshiftingwaterpumpingtooff‐peakperiods,whenthedemandontheelectricitygridislowest.Factorsthatlimittheeffectivenessofthisdemandmanagementstrategyarethetotalvolumeofwaterstorageavailableinasystem,themaximumcapacityofpumpsabletomovewaterintoasystemafterpeakhours,waterdeliveryschedules,andtheuncertaintyinwaterdemandforecasting(Marksetal.2013).Thisstrategycanbeusedbyindividualfarmsthathaveon‐sitestorage,butisoftenmostcost‐effectiveforirrigationdistricts.Forexample,theElDoradoIrrigationDistrictlowereditsminimumstoragetanklevelsandinstalledanadditional5‐million‐gallonstoragetank,whichreduceditson‐peakelectricityusagebymorethan60percent(CEC2005).Third‐partyDRaggregatorshavealsobegunfocusingontheagriculturalcommunity,andmanualDRparticipationhasincreasedamonggrowersrecently.

Inourinterviewswithexpertsfromtheagriculturalsector,theyindicatedthat,inordertoimproveoperationalflexibilityonafarm,growersneedtheconfidencetobewillingtochangeirrigationscheduleswithrelativelylittleadvancenotice.TheseassertionsaresimilartothosemadebyOlsenetal.,whoindicatethattheremainingissuesstilllimitingtheparticipationofagriculturalcustomersinDRinclude(1)insufficientoperationalflexibilityand(2)insufficientcommunicationandcontrolinfrastructure(2015).Sincemaximizingcropyieldswhileminimizingcroprisksisthegrowers’primarygoal,theyoften

Page 26: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

25

seeimpromptuchangestoirrigationashigh‐riskpropositions.ThisexplainswhymostDRintheagriculturalsectoriscurrentlycontrolledmanually;growersreceiveadvancednoticeofDReventsanddecidewhethertomanuallyshutoffpumpsandotherprocesses.Withoutcommunicationandcontrolinfrastructureinplace,participationinDRinvolveshightransactioncosts,makingitdifficulttosecurelargequantitiesofreliableDRfromtheagriculturalsector.

Automateddemandresponse(ADR)isatechnologyandcommunicationsstrategythatallowsirrigationcontrolsystemstoautomaticallyandrapidlyrespondtoDRsignalsfromthegrid,whilestillleavingthegrowertheabilitytooverrideaDReventcalliftheydeemitnecessary.EnablinganirrigationsystemforADRcanfaceresistance,however,duetotheneedforinstallingvariablefrequencydrives(VFDs)and/orautomaticpumpcontrols,thepossibilityofchanginggrowers’irrigationhabits(Marksetal.2013),andtheaddeduncertaintythatanirrigationscheduleoptimizedforpeakloadshiftingmayharmcrophealth(Olsenetal.2015).Oneoutstandingtechnologicalgapisdevelopingamethodforestimatingrisktocropusingdata‐drivenalgorithmsandforecasting.However,growerstypicallydon’thaveaccesstoreal‐timedataonplantandsoilmoisturelevels;only12%ofgrowersintheUnitedStatesuseeithersoilorplantmoisture‐sensingdevicestohelpdeterminewhentowatercrops(USDA2013).Expertsalsoproposedthaton‐farmadvancedwatermeteringcouldhelpalleviatethisconcernbyquantifyingwatervolumesdispensedand,throughdata‐drivenalgorithms,estimatingriskofcropdamage.Thesealgorithmshavenotyetbeendeveloped,butpresentanopportunityforlesseningthepotentialriskfromoperationalchangessuchasdailyloadshiftingorfast‐responseDR.DemonstrationprojectscouldbeinstrumentalinquantifyingtheDRpotentialandinprovidingtheevidenceneededtoameliorateconcernsofcroprisk,resultinginasubstantialincreaseintheamountofDRpotentialrealizedintheagriculturalsector.

Lookingtoafutureelectricgridwithgreaterintegrationofintermittentrenewableenergyresources,therearelikelytobelargeancillaryservices(AS)marketstosupportgridreliabilityandefficiency.CurrentmanualagriculturalDRresourcescanprovidepeakloadshedding,seenastraditionalDR,butarenotcapableofsupplyingthehighlycontrollable,rapidresponseresourcenecessarytoprovideAS.However,agriculturalsystemscomposedofmechanicalpumps,waterstorageintheformofstoragetanksandpotentiallyin‐soilstorage,representahighlyflexibleresourcethatcouldtheoreticallybecapableofprovidinglargequantitiesofAS.Furtherresearchintoirrigationpumps’controllability,responsetime,andpracticalityisstillnecessarytoquantifythemarketpotentialforprovidingsuchenergyservices.

Inourinterviewswithexperts,theyseeagenerallyslowrateofadoptionofAMItechnologiesinthissector.Wehaveheardmanyanecdotalexplanationsforthis,including:concernsoflosingcontrolofanirrigationschedule;anincreasedrisktocrops;anda

Page 27: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

26

generaldisinterestinhavingwaterusemonitored,recorded,andmadeavailabletoothers.However,furtherresearchisneededtobetterunderstandthesebarrierstoadoptionandtheassociatedopportunitycosts.

2.3 Supporting Energy, Water, and Climate Policy Goals 

Withincreasingconcernsaboutgreenhousegasemissions,waterscarcity,andnaturalresourcemanagement,municipalitiesworldwidearefacingstricterregulationsregardingwaterandenergyefficiencyaswellaspressuretoprovideevidencethataresourcemanagementprogramisachievingthosegoals.Anumberofstudieshavesuggestedthatenvironmentalgoalscanbemetmoreefficientlyandeconomicallybyapproachingenergyconservationthroughwaterusage;forexample,in2005,theCECreportedthatCalifornia’sstateenergyefficiencygoalscouldbemetbyfocusingsolelyonwateruse,athalfthecostoftraditionalenergyefficiencytargets,astheenergysavingsassociatedwithwaterefficiencyare,onaverage,lessexpensivetoachieve(CEC2005).However,thereisstillconsiderableuncertaintyabouthowtoaccuratelymeasuretheembeddedenergyinwater,quantifycostsavings,allocateenergyreductions,anddevelopatransparentmetricforjointwater‐energyprograms(CooleyandDonnelly2013;YoungandMackres2013).ThewealthofdatageneratedbywaterandenergyAMIsystemscouldprovidecrucialevidence,andnotonlyimproveourunderstandingofwaterandenergyconsumption,butalsoidentifyareaswiththegreatestpotentialforimprovedstrategicresourcemanagement.

2.3.1 Measurement and Verification 

Measurementandverification(M&V)iscommonlyundertakentoquantifythebenefitsofanenergyorwaterefficiencymeasure,andiscrucialtoestablishingitsvaluetofacilityowners,operators,customers,andutilityprograms.M&Vinvolvesfirstdocumentingtheenergyand/orwateruseofafacilitybeforeandafteranefficiencymeasureisinstalled,thenquantifyingandattributingchangesinusagetothemeasures.Intheenergysector,M&Veffortscancomprise1‐5%ofportfoliocosts(Jayaweeraetal.2013).ImprovedandautomatedM&VmethodsthattypicallyrelyonAMIdatacangeneratemorereliablebaselinestopredictwhattheenergyusemighthavebeenifameasurewasnotimplemented(Grandersonetal.2011).TheseAMI‐basedM&Vmethodscanbefasterandmoreaccurate,whichenablesmorecosteffectiveenergyefficiencyprograms(Grandersonetal.2015).RecentresearchsuggeststhatcoordinatedAMIsystemscanreducetheuncertaintyincostandbenefitvaluation,allowformoretransparentcomputations,andimprovetheattributionofcostsandbenefits(YoungandMackres2013).

2.3.2 Program Design and Prioritization 

InadditiontotheM&Vofjointwater‐energyprograms,waterAMIdatacancontributesubstantiallytosupportingtheprioritizationofthemosteffectivewaterandenergy

Page 28: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

27

conservationstrategies.ThisishighlightedinStewartetal.’s2010paper,“Web‐basedknowledgemanagementsystem:linkingsmartmeteringtothefutureofurbanwaterplanning”.Australiafacedsignificantsustaineddroughtduring2002‐2012,whilewaterdemandgrowthforecastsindicateda37%growthbetween2001and2031(Birrelletal.2005).Stewartetal.observedthat,whiletherewerenumerousstrategiesbeingimplementedforresourcemanagementduringthisseveredrought,therewasofteninadequatedatatosupportwhichsolutionshadthemostprofoundorimmediateimpactsonwaterdemand.Stewartetal.proposedaweb‐basedknowledgemanagementsystemtoleveragetheinstalledwatermeteringtechnologytoimproveinfrastructureplanningandmanagement,waterdemandmanagement,andcommunicationofwaterconsumptionmetricstocustomers.Finally,Stewartetal.arguedthatdatafromwaterAMIisimperativetomanagetheincreasingstressonAustralia’sever‐shrinkingwatersupply.

Intheagriculturalsector,irrigationdistrictsandfarmstypicallycollectverylittledataaboutwaterconsumption(surfaceorgroundwater),whichcanbealostopportunityforimprovedon‐farmwatermanagement.AwaterAMIsystemthatalsohassoilmoisturesensors,forinstance,couldaidinlinkingwaterandenergyuseinwaysthatallowgrowerstooptimizetheseresourcesjointly(Riversetal.2015;ShuklaandHolt2014).Further,thedearthofoperationaldataaboutwhereirrigationwatercomesfrom,howandwhenitisappliedtofields,andtheenergyassociatedwithconveyingwateranddeliveringthroughanirrigationsystemleadstogreatuncertaintiesabouthowtobestdesignandimplementutilityandregulatoryprogramsthattargetenergyandwatersavings.Asasubstantialknowledgegap,werecommendstudiesfocusedoncollectingthisinformationinordertoconductareliablescopingstudyexaminingthepotentialcostsandbenefitsoffurtherworkinthisarea.However,nopilotstudiesorquantitativeinformationexistsonthevalueofwater‐energyinformationinagriculture.

Page 29: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

28

Challenges and Barriers 

Inordertoachievewidespreadadoptionofadvancedwatermeteringanditsjointutilizationbyboththewaterandenergysectors,anumberofchallengesandbarriersneedtobeaddressedandovercome.Weidentifiedthreeprimarychallengesandbarrierstotheutilizationofadvancedwatermeteringtorealizeenergybenefits:(1)howwaterutilitiescapturevaluefromtheenergyservicesprovidedbywatermetering;(2)theimpactofwaterrights,especiallyappropriationdoctrineintheAmericanWest,onincentivestoinstallwatermetersandsharethemeterdatawiththepublic,regulatorybodies,orutilities;and(3)effectivecoordinationandcooperationbetweenwaterandenergyutilities.

3.1 Value Capture 

Advancedwatermeteringsystemscanbeexpensivewhencomparedtotraditionalmeteringdevices.Projectcostsrangewidelybasedonthenumberofcustomers,thespecificmeteringandcommunicationstechnologiesselected,thelevelofsoftwareintegration,andthestateofmeteringsystempriortoAMI/AMRimplementation.AsurveyofwaterAMIandAMRprojectsinAustraliaandNewZealandfoundprojectcostsrangingfromaslowas$45,000tosimplyupgrade5,000watermeterstosmartwatermeters;toashighas$36MtoinstallafullAMRsystemfornearly60,000residentialandnon‐residentialmeters(BealandFlynn2015).Additionally,Bealetal.foundthat,of16fundedadvancedwatermeteringprojectssurveyedinAustraliaandNewZealand,9(56%)werewhollyfundedbythewaterutilityand15(94%)wereatleastpartiallyfundedbythewaterutility,withfundingpartnersincludingfederalandstategovernments,schools,andfarmers.Thesamestudyfoundthatutilitiesmostoftenidentifiedreducingnon‐revenuewaterastheirtoppriority,withimproveddemandforecastingasanotherpopularmotivation.Whilebothoftheseprioritieshavedirecttiestoenergybenefits,asreducingnon‐revenuewaterreducesembeddedenergylostinthesystemandimprovingdemandforecastingimprovesawaterutility’sabilitytoprovideelectricDRservicesbyreducingtheriskthatdeferringpumpingwillresultininsufficientsupply,noneofthesebenefitswerequantifiedbythestudy.

Manywaterdistrictshaveobservedthat,duetohighcapitalcosts,makingthebusinesscaseforwaterAMIiscurrentlydifficult(Zunino2015).WhilepilotstudiesarebeginningtodemonstrateandquantifytheassociatedenergybenefitsofwaterAMI,thequestionoftenremainsastohowwaterutilitiescaptureandfullymonetizethesebenefits.Howthisquestionisresolveddependsonstateandlocalpolicies,whichareoftendeterminedbystatePublicUtilitiesCommissions.Forexample,theCaliforniaPublicUtilitiesCommission(CPUC)iscurrentlyintheprocessofimplementinganembeddedenergycostcalculatorintoitsenergyandwaterefficiencyprogramevaluations.TheoveralllackofvaluationanalysisoftheenergyandGHGbenefitsofwaterAMIremainsasignificantgapintheopen

Page 30: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

29

literature.AmorethoroughunderstandingoftheenergybenefitsandclearerpathwaystocapturingthesebenefitsforthewaterutilitycouldimproveAMI’sbusinesscase,andpossiblyspurmorewidespreadadoption.

3.2 Water Rights 

Inorderforadvancedwatermeteringdatatobecollectedandutilized,regulatory,operational,andlegaldisincentivesneedtobelessenedorremovedentirely.AmajordisincentivetothecollectionandsharingofwaterdataintheAmericanWestishowwaterrightsaredetermined.WaterrightsintheAmericanWestaregenerallyprior‐appropriationrights(USArmyCorpsofEngineersandConsensusBuildingInstitute2012).Theserightsarebasedonfourprinciples:(1)intent,whichtypicallyconsistsoftheapplicationforapermit;(2)diversion,whichdefinesthephysicallocation;(3)beneficialuse,whichdefinestheintendedpurposeofawaterallocation(e.g.agriculture);and(4)priority,whichisthedateofthefirstwithdrawalmadeundertheright,witholderrightshavingpriorityovernewerrights.Akeyelementoftheprior‐appropriationdoctrineistheconceptofabandonmentorforfeiture,whichiswhenallorafractionofanallocationiseithernotusedaccordingtoabeneficialuse,orisnotusedatall.Thismeansthatifrightsownersarefoundtouselessthantheyhaveanallocationfor,theymayloseaportionoftheirallocationpermanently.Thissystem,pairedwithdatedreportinglaws,incentivizesrightsholderstoobscure,ornotevenreport,theirwateruse,asfulldisclosurecouldjeopardizeanowner’sallocation.

WhilewaterAMIisapowerfultechnologyformanagingwaterconsumption,manyrightsholdersarehesitanttoparticipateinutilityprograms(e.g.demandresponse)thatwoulddisclosethedetailsoftheirwaterconsumptiontopublicutilitiesorthreatenprofits(DinarandMody2003).Asaresultoftheselegalandregulatoryfactors,farmsthatembraceadvancedresourcemanagementstrategies,includingnetworkedadvancedwatermeteringsystems,typicallyinstallindependentandinternalsystemsthatdonotsharewaterdatawithwaterdistrictsorregulatoryagencies.Whiletheseinternaladvancedmeteringsystemscanprovidefarmerswiththesamelevelofinformationconcerningtheirwaterconsumption(alongwithsoilmoisture,temperature,weatherpatterns,etc.),theselocalinstallationslackthetwo‐waycommunicationbetweengrowersandtheutilityorirrigationdistrictthatiscommoninafullAMIsystem.Thetwo‐waycommunicationanddata‐sharingattributesofAMIenablemoreaccuratewaterusetrackingandM&Vtosupportjointwater‐energyprogramsandpoliciesintheagriculturalsector.Thisfindingisimportant,andshouldbeconsideredwhensettingpoliciesanddevelopingprogramstoensurewaterrightsholdersarenotdeterredfromparticipationbyrisktotheirwaterrightsandallocations.

Page 31: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

30

3.3 Utility Coordination and Conflicting Priorities 

ToachievethemostenergybenefitswithexistingandfuturewaterAMIsystems,waterandenergyutilitieswouldneedtocollaborateonindividualprojectsandstrategicplanning.However,inourdiscussionswithexperts,theycommunicatedthatcoordinationacrosswaterandenergyentitiestoimplementjointwater‐energyprogramsisaverycomplextask.Anumberofelementsarecrucialtothesuccessofaproject,including:(1)determiningappropriateallocationofresourcesbetweenthetwoentities;(2)parallelprojectgoalsthatencouragecooperation;(3)streamlinedcommunications,legalreview,andinter‐agencyprocedures;and(4)standardizationofAMIdata.Expertsalsoindicatedthat,evenwithinmunicipalutilitiesthatprovidebothenergyandwaterservices,cross‐departmentcollaborationandcoordinationcanbedifficultandisrelativelyuncommon.

A2013surveybyCooleyetal.foundthat30%ofenergyandwaterexpertssurveyeddescribedtheinabilitytosharecustomerdataduetoprivacyconcernsasasignificantbarriertothesuccessofwater‐energyprograms.Thisinabilitytosharedataisoftenduetolegalandbureaucratichurdlesthatcanpreventthesuccessoftheproject,butcanalsobecausedbythefactthatutilitiesusedifferentsoftwareanddatamanagementarchitectures.SomeoftheseissuescouldbesolvedwithmorewidespreadstandardizationofAMIdata.

Figure4:Left,California’sInvestorOwnedUtilities’serviceterritories(CEC).Right,locationandsizeofCalifornia’sregulatedwaterutilities(CaliforniaWaterAssociation).

Page 32: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

31

Itisalsocommonforsignificantmismatchestoexistbetweentheserviceterritoriesofenergyandwaterutilities.Forexample,Figure4showshowitisnotuncommonforCalifornia’senergyutilities’serviceterritoriestooverlapwithdozensofwaterutilities.Thismismatchbetweenwaterandenergyutilities’serviceterritories,aswellastherelativenumberofwaterutilitieswithinasingleenergyutility’sserviceterritory,hasbeencitedasaslight‐to‐moderatebarriertoimprovedwater‐energyprogramcoordination(CooleyandDonnelly2013).

 

Page 33: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

32

Case Study: California 

4.1 Background 

ThestateofCaliforniaisaleaderinthecollectionofenergyusedata,withover12millionsmartmetersinstalledacrossthestate(IEI2014).However,thedeploymentofadvancedwatermetersandwaterAMIintegrationinCalifornialagsbehindthatofenergyAMI,mainlyduetooperationalneedsthatonlyenergyutilitiesface,suchastheneedtoaccuratelymeterdistributedenergyresourcesandtheneedtoenableTOU‐basedelectricityprices.In2004,California’sLegislaturepassedAssemblyBill(AB)2572,whichrequiresallmunicipalwaterconnectionstobemeteredandcapableofenablingvolumetricbillingforcustomersby2025(CaliforniaStateAssembly2004).Ineffect,theresolutionwillincreasethemeteringofwaterusestatewide.Althoughthisisapromisingstep,theresolutiondoesnotmandatetheperformancerequirementsofthemeteringorcommunicationsinfrastructure.ThismeansthedeploymentofadvancedwatermetersandAMIisdependentonutilityinvestmentcapabilities,incentives,andpriorities.Additionally,CaliforniarecentlypassedSenateBill555,which:(1)requiresurbanretailwatersupplierstocompleteandsubmitawaterlossauditreportannuallybeginninginlate2017;and(2)dictatesthattheStateLegislaturetoadoptrulesregardingthestandardizationoftheseauditsbyJanuary1,2017(CaliforniaStateSenate2015).ItremainsunclearexactlyhowtheseBillswillimpactthestateofadvancedwatermeteringinCalifornia.However,Californiaisoneofthefewstatesthathasinvestigatedandtakenstepstobetterquantifytheembeddedenergyofwaterconsumptionandtheenergydemandsofthewatersystemasawhole.

4.2 Embedded Energy of Water in California 

Howweathervariationandlong‐termclimatechangeimpactthewater‐relatedenergyneedsofthemunicipal,industrial,andagriculturalsectorsarenotwellunderstood,thoughthereareassumedtobesignificantdifferencesasCalifornia’ssurfacewateravailabilitydecreases,groundwaterdepthsincrease,andseveredroughtcontinuestoimpactthestate.TodeterminethescaleoftheopportunitiesforimprovingresourceuseinCalifornia,theCEC,Maupinetal.,andtheCaliforniaDepartmentofWaterResources(CDWR)performedassessmentsofwaterandwater‐relatedenergyuseinCalifornia.Theagricultural,industrial,andmunicipalsectors’estimatedannualwaterconsumptionandwater‐relatedenergyconsumptionareshowninTable4.ItisimportanttonotethatthevaluesinTable4arenotforidenticalcalendaryears,however;thoughthesestudiesrepresentsomeofthemostcomprehensiveassessmentscurrentlyavailableforCalifornia,datacollectioninthisfieldisinfrequentanduncoordinated,whichhasposedanotheranalyticalchallenge.

Page 34: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

33

Table4showsthattheagriculturalsectoristhelargestconsumerofwater,accountingfor75%ofallwaterconsumedinthestate;municipaluseaccountsforapproximately24%,andindustrytheremaining1%.Table4alsoshowsthatthemunicipalsectorusesthemostwater‐relatedenergy,at64%,agricultureusesanadditional22%,andindustrialusestheremaining14%.ThelastcolumninTable4isanestimateofeachsector’senergyintensityofwater,orembeddedenergy,calculatedfromthetwoothercolumnsaccordingtoEquation2.Thiscalculation,shownintheWater‐RelatedEnergycolumn,isconsistentwiththisreport’sdefinitionofembeddedenergy,whichdoesnotincludeend‐useassociatedenergy.

Equation2

Table4:WaterandEnergyConsumptionbySectorinCalifornia

Sector

Water‐RelatedEnergyConsumption

(GWh/year)

WaterConsumption

(BG/year)

EmbeddedEnergyofWater(kWh/MG)

Agriculture 10,5601 8,5002 1240

Industry ~68001 1603 42,500

Municipal ~30,6001 2,7003 11,300

1(CEC2005);2(Maupinetal.2014);3(CDWR2013);Shadingindicatesmagnitudeofvalue,darker=larger.

Despiteusingtheleastwaterandwater‐relatedenergyofthesectors,theindustrialsectorhasthehighestembeddedenergy,at42,500kWh/MG.Thisresultisnotsurprising,asindustrialprocessesoftenpressurize,heat,and/ortreatwater,allofwhichareenergyintensive.Additionally,industriesthatreusewaterwillhavedrasticallylargerenergyintensities,asthesamevolumeofwatermaybeputthroughaprocessmultipletimes.Municipalwateruseisthenextmostenergyintensive,at11,300kWh/MG.Agriculturalwateruseistheleastenergyintensive,atapproximately1240kWh/MG,howeverthesevaluescanbehighlyvariableastheenergyuseisattributabletomanyfactorssuchasgeographiclocation,climate,andwatersource.Forexample,intheir2003report,Burtetal.indicatethattheembeddedenergyofagriculturalwaterinthecoastalregionsofthestateisapproximatelyfourtimesthatofwaterintheCentralValley,owinginparttotheenergycostofconveyingwatertothecoast.

Forcomparison,Table5showsbottom‐upestimatesoftheenergyintensityrangesforanumberofsegmentsofthewatercycle.Watertreatmenthasthelargestrangeofenergy

Page 35: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

34

intensity,withthelowendrepresentingagriculturalorindustrialwaterthatdoesnotneedtobepotableandthehighendrepresentingdesalinatedwatertreatment.Watersupplyandconveyancehavethesecondlargestrangeofenergyintensity,withthelowendrepresentinggravity‐fedsupplysystemsforwhichnopumpingisnecessaryandthehighendrepresentinglargeinter‐basintransferprojectssuchastheStateWaterProject(SWP).

Table5:RangeofEnergyIntensitiesWaterUseCycleSegment(CEC2005)

Water‐UseCycleSegments

RangeofEnergyIntensity(kWh/MG)

Low High

WaterSupplyandConveyance  0 14,000

WaterTreatment  100 16,000

WaterDistribution  700 1,200

WastewaterCollectionandTreatment  1,100 4,600

WastewaterDischarge  0 400

RecycledWaterTreatmentandDistribution

400 1,200

Theonemajorwater‐usecyclesegmentnotincludedinTable5istheend‐useitself.Forexample,theenergyintensityofheatingwaterforresidentialclotheswashingorpressurizingindustrialwaterisnotincludedinTable5.Theseend‐use‐relatedenergyintensityfactorscanbeasignificantfractionoftheoverallenergyintensityofwater,especiallyintheindustrialsector.

Page 36: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

35

Figure5:EnergyintensityrangebycomponentforCalifornia’sthreeIOUs(GEIConsultantsandNavigantConsulting2010).

Figure5,reproducedfromthe2010report,“EmbeddedEnergyinWaterStudiesStudy2:WaterAgencyandFunctionComponentStudyandEmbeddedEnergy‐WaterLoadProfiles”,showstherangesinenergyintensityofvariouscomponentsofthewatercycleforCalifornia’sthreeInvestorOwnedUtilities(IOUs).Whilethesevaluesarenotfromarepresentativestatisticalsample,theyareusefulforscopingandunderstandingvariabilityandembeddedenergysavingsopportunities.

ThevaluesfromTable4,Table5,andFigure5willbeusedtoscopethepossibleenergyimpactsofAMIacrossCalifornia.

4.3 Potential for Energy Efficiency 

TheinformationandcontrolsprovidedbyAMItocustomersandutilitiescanhavelargeenergyefficiencyimpacts.Suchopportunitiesincludemoreefficientsystemoperational

Page 37: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

36

strategies,energysavingsthroughwaterconservationandleakdetection,andchangesinconsumerbehavior.ThefollowingsubsectionsdiscussthescaleoftheseopportunitiesinthemunicipalandagriculturalsectorsinCalifornia.

4.3.1 The Municipal Sector 

DeOreoetal.foundthatcustomer‐sideleakswaste31gallonsofwaterperhouseholdperdayinCaliforniaresidences,whichisapproximately17%ofallindoorconsumption(2011).AnEBMUDpilotstudythatinstalledAMIandutilizedanonlinecustomerportalwherecustomerscouldexaminetheirhourlywateruseobservedsubsequentwaterconservationbetween5%and50%,withanoverallaverageofapproximately15%afterinstallation(EBMUD2014).Giventhat2.9trilliongallonsofwaterareconsumedintheurbansectorannuallyinCalifornia(CDWR2013),andassumingaconservative10%savingsfrombehavioralandcustomer‐sideleakfixes,implementingwaterAMIstatewidecouldreducestatewidewaterconsumptionby290billiongallonsannually.UsingtheembeddedenergyestimatesfromTable4,thesewatersavingscouldresultinapproximately3.3TWhofembeddedenergysavings1throughconsumerbehaviorchangeandcustomer‐sideofthemeterleakfixesalone.

Regardingutility‐sideleaks,areportpreparedforSouthernCaliforniaEdisoncalculatedthatthephysicallossesinCalifornia’swaterdistributioninfrastructureaccountforapproximately11%oftheurbanwaterconsumedinthestate(WaterSystemsOptimization2009).Theauthorsfurtherestimatedthat40%oftheselossesarerecoverableeconomically,assumingthelostwaterisvaluedatretailprices,whilenotingthatvaluetobe“reasonableandratherconservative.”Thisassumptionisbasedonthestandardpracticeof“reactivemanagement,”whichmeansfixingleakswhentheyarereportedtotheutilitybycustomersorthegeneralpublic.IfAMItechnologiescouldreducethecostofrecoveringtheselossesthroughrapid,automatedleakidentificationandpreemptivepipereplacement(replacingwatermainsbeforetheyburst),wesuggest75%ofthesereallossesmaybeeconomicallyrecoverable.Thiswouldimply8%ofurbanwaterconsumedinthestate,equivalentto230BG/year,couldbeconservedwithAMI.UsingtheestimatesofembeddedenergyfromTable4,thesewatersavingscouldresultinapproximately2.6TWhofembeddedenergysavings2throughavoidedproduction,treatment,anddistributionofwater.

13.3TWhwascalculatedbymultiplying290BG/yearbythemunicipalembeddedenergyvalue,11,300kWh/MG,foundinTable4.22.6TWhwascalculatedbymultiplying230BG/yearbythemunicipalembeddedenergyvalue,11,300kWh/MG,foundinTable4.

Page 38: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

37

Together,utility‐sideandcustomer‐sideleakrepaircouldhavesignificantenergy‐savingpotentialinthemunicipalsector.Theimportantoutstandingquestionishow,ifatall,waterutilitiescancapturethevalueoftheseenergysavingsasanaddedincentiveforupgradingandinstallingwaterAMIsystems.TheCPUC’snewWaterEnergyCostEffectivenessCalculatoraimstogiveutilitiespropercreditforenergysavingsattributabletowaterefficiencyprograms(CPUC2016),howeverweareunawareofademonstratedprojectwherebehavioralorAMI‐drivenwatersavingsweregivencreditforembeddedenergysavings.

4.3.2 The Agricultural Sector 

Arecentstudyreportsthatmorethan10TWhofelectricityisconsumedannuallyforpumpingagriculturalirrigationwaterinCalifornia(Marksetal.2013).Researchershavefoundthatimproveddatacollectionofbothwaterandenergyuseonfarmsiscrucialtoimprovingirrigationenergyefficiency,especiallywhenintegratedwithon‐farmenergymanagementsystems(Rocamoraetal.2013).Acasestudyofapressurizedirrigationpumpingsystemfoundthatbasicelectricalandhydraulicmeasurementsatthepumpingstationcouldachievemoreoptimalpumpoperation,resultinginenergysavingsofupto14%(Morenoetal.2007).Applyingaconservativeestimateofa10%energyefficiencysavingsfromimplementationofon‐farmAMIandimprovedcontrolstrategiesforthe10TWhofwater‐relatedenergyuse,theagriculturalsectorcouldcertainlyrealize1TWhofsavingsannually.

On‐farmleakswastebothwaterandenergy,butcanalsopresentathreattocrophealth,asundetectedleakscansaturateandkillwater‐sensitivecrops.Whiletherearesomecompanies(e.g.PowWowEnergy)marketingleakdetectionalgorithmstotheagriculturalsector,thereisnodataorwell‐supportedestimatesavailableforthemagnitudeofon‐farmleaks.California’sSustainableGroundwaterManagementAct,whichcameintoeffectin2016,giveswateragenciesthemandatetodevelopsustainablewatermanagementstrategies,includingenhanceddatacollectionongroundwaterwithdrawalsandwaterlossesduetoleaks(StateofCalifornia).Whileitisstillunclearhowmostagencieswillchoosetodevelopandimplementtheirplans,werecommendtheyexplorethepotentialofAMIsystemstoaddresssustainablewater‐energymanagementatboththecustomer‐andagency‐level.

4.4 Potential for Peak Load Reduction 

Peakelectricloadhoursaretypicallyinwarmsummermonthsandoccurduringthemidtolateafternoon.Thesepeakdemandhoursrequireelectricutilitycompaniestoprocureexpensivegenerationportfolioscapableofsupplyingpowerduringthesehours.Demandresponseandpermanentloadshiftingaretwosolutionstothisissue.TheCaliforniaEnergy

Page 39: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

38

Commissionhasfundedanumberofstudiesexaminingthepeakelectricitydemandimpactsofwater.Intheseminal2005report,California’sWater–EnergyRelationship,theCECestimatedthatpeakelectricaldemandcouldbereducedbyapproximately250MWif“wateragenciesstatewideviewedtheir[water]storageasanenergyassetaswellasawaterasset.”Forcontext,asof2014,therewasapproximately2000MWofDRinCalifornia(Jarred2014).Additionally,itwasestimatedthatCalifornia’swater‐supplyrelateddemandexceeds2000MW(House2007).WesuggestthatfurtherpeakloadreductionsandloadshiftingthroughDRcouldbeenabledbymorewidespreadAMIandimprovedco‐optimizedwater‐energymodeling.Wediscussthispotentialforthemunicipalandagriculturalsectorsinthefollowingsubsections.

4.4.1 The Municipal Sector 

Ina2007follow‐onstudytotheCEC’sCalifornia’sWater–EnergyRelationshipreport,Houseetal.foundthat500MWofwateragencyelectricaldemandisusedtoprovidewaterandsewerservicestoresidentialwatercustomersthroughoutCalifornia.Thisestimatedoesnotincludethedemandneededtosupplywatertootherurbancustomers,includingcommercialandindustrialcustomers.Thesefindingsshowthatasignificantamountofpeakloadispresentthat,withproperinfrastructureinvestment(e.g.waterstorageandAMI)andimprovedoperations,couldbepartiallyshiftedtooff‐peakhours.

Unfortunately,thereisverylittlequantitativeinformationaboutthespecificoperationalchangesthatAMIenablesinthemunicipalsector.Inourinterviewswiththem,expertsindicatedthatthedataprovidedbyAMIwouldenablemoreflexibleandreliableoperationofwatersystems.Additionally,waterAMIsystemsthatmeasurehourlycustomerconsumptionwouldallowwaterutilitiestouseTOUwaterpricingtariffstoencourageoff‐peakwaterconsumption.

4.4.2 The Agricultural Sector 

Ina2007reportfortheCEC,Houseetal.estimatedthatroughly60%ofthestate’swater‐relatedpeakelectricaldemandisattributabletopumpingagriculturalirrigationwater.Furtherresearchhasexaminedtheshapeofagriculturalloadprofilesoverbothdailyandseasonaltimescales.FromarecentreportbyOlsenetal.,Figure6showsthedailyaveragedemandprofileforapproximately35,000agriculturalcustomersfromPacificGasandElectric’sserviceterritoryfortheyears2003‐2012.Itshowsthatthepercentofenergyusedduringpeakhours(between12and6PM),increasedfrom2003until2006,whenpeakdemandwas120%oftheannualaverage,andhassincedecreased,withpeakdemandatapproximately105%ofannualaveragedemandin2012.Thisshowsthat,whilethecurrenttrendismovingtowardsreducingtheintra‐dayvariationinhourlyload,thereisstillalargeamountofirrigationoccurringduringpeakhours.

Page 40: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

39

Californiacurrentlyhasapproximately65MWofagriculturalpeak‐sheddingDRcapabilities,whichrepresentsapproximately6.5%ofthe1GWofestimatedloadshedpotentialinthestate(Olsenetal.2015).ThisDRismostlymanuallyoperated,andiseligiblefortheenergymarketand,moreimportantly,capacitycredit,whichiscurrentlytheprinciplevaluestreamforpeak‐shavingDR.ArecentinterimreportfromLBNL’s2015CaliforniaDemandResponsePotentialStudyfound68MWofagriculturalpeak‐sheddingDRcapabilitiestobecosteffectiveby2025(Alstoneetal.2016).However,thisinitialstudydidnotexplorechangestotheunderlyingtechnologystrategiesemployedintheagriculturalsector,andreliedonpastcustomerenrollmentratestoestimatethefractionofgrowersparticipatinginDR,whichmightbesignificantlyimpactedbyarolloutofadvancedwatermeteringsystems.

Figure6:Averagedailydemandprofilesforapproximately35,000agriculturalcustomers’intervalmetersfromPG&E’sserviceterritory,2003‐2012.Figureshowshowdailyagriculturalloadprofileshaveflattenedsince2006,butstillpeakduringmid‐dayhours.ReproducedfromOlsenetal.(2015).

AnadditionalareaofinterestforfutureresearchanddemonstrationprojectsisthatofagriculturalloadsprovidingAS,whichincludegridproductssuchasfrequencyregulationandcontingencyreserves.California’sambitiousRenewablesPortfolioStandardmandatesthat33%oftheelectricityusedinthestatecomefromrenewableenergysourcesby2020.Asrenewablesaremoredifficulttoforecast,havehighvariability,andcannotbecontrolled

Page 41: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

40

inthesamewayastraditionalgenerators,itispredictedthatthedemandforASwillgrowwithhigherrenewablepenetration.Figure6suggeststhat,sinceagriculturalloadsarepresentatalltimesofday,theycouldbeavailabletomeetASneedsatthemostopportunetimesofday,suchasduringmulti‐houreveningramps.WerecommendfurtherscopinganalysisforthispotentialopportunitytomeetthefuturegridneedsinCalifornia,aswellasotherstatesandcountrieswithambitiousrenewableenergygoalsandsizeableagriculturalsectors.Asco‐authorsontheAlstoneetal.DemandResponsePotentialStudy,weareawareofongoingworkthatwillexploreandquantifythevalueofagriculturalDRresourcestoASmarketsand,moregenerally,gridoperationsinCalifornia.

4.5 Summary 

Table6summarizesthewaterandenergyimpactpotentialforanumberofhigh‐levelanalysesdiscussedearlierinSection4.Wedonotbelievethistobeanexhaustivelistoftheopportunitiesforadvancedwatermeteringtohaveassociatedenergybenefits,howeverinmanycasesdatadoesnotexisttomakeevenhigh‐levelestimatesofpotential.Werecognizethatotheropportunitiesexist,including:

EnablingincreasedDRparticipationfrommunicipalwaterutilitiesandagriculturalcustomersthroughimprovedwaterforecastingandmanagementandreducedrisk.

Leakdetectionandrepairintheagriculturalsector.

Improvedpressuremonitoringandmanagementinmunicipalwatersystems.

Table6:Summaryofestimatedwaterandenergyimpactpotentialforvariouswater‐relatedadvancedmeteringstrategiesinCalifornia.

AdvancedMeteringStrategyWaterSavingsPotential

EnergyImpactPotential

WaterAMIforMunicipalCustomer‐sideLeakDetection

290BG/year3.3TWhofembeddedenergysavings

WaterAMIforMunicipalUtility‐sideLeakDetection

230BG/year2.6TWhofembeddedenergysavings

On‐FarmWater‐EnergyMeteringforPumpOperationOptimization

N/A1TWhofenergyefficiencysavings

Energy‐CentricOperationofExistingWaterStorage

N/A 250MWofpeakDR

Page 42: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

41

Concluding Remarks 

Thisreportisafirstattemptatcompilinganddocumentingthevariousopportunitiesforadvancedwatermeteringtechnologies,includingAMI,toprovideenergybenefits.Themarketforsuchtechnologiesisexpanding,andthesensingandnetworkcommunicationstechnologiesareimproving.OurbroadfindinginreviewingtheenergylandscapeforwaterAMIisthatthesetechnologicaladvancesarelargelyvaluedforpurposesofimprovedwatermanagementorconservation.Apartfromelectricitydemandresponseprograms,wefoundverylittlediscussionorconsiderationofthedirectbenefitstotheenergysectorfromwaterAMI.ThisisanimportantgapinmeasuringthebenefitsofwaterAMI,asanemergingtechnology,tomeettheelectricalneedsforpresentandfuturegridneeds.

Throughareviewoftheopenliteratureandinterviewswithnineexpertsfromthewaterandenergysectors,wedocumenthowdataprovidedbyadvancedwatermeteringsystemshasthepotentialtorealizeenergyefficienciesandprovideenergyservicestothegrid.Currently,stakeholdersconsistentlyagreethatthedearthofwaterandwater‐relatedenergy‐usedatahinderseffortsinthewater‐energynexus,andthatwaterAMIsystemscouldhavefar‐reachingco‐benefitswiththeenergysector,policy,programdesign,customereducation,andoverallresourceefficiency.

Thetwosectorsofmostinteresttouswerethemunicipalandagriculturalsectors.Inthemunicipalsector,opportunitiesincludemorerapidandaccurateleakdetectiononbothsidesofthemeter,improvedinfrastructuredesign,andmoreefficientsystemoperation.Intheagriculturalsector,opportunitiesincludeimprovedwaterandenergyefficientirrigation,cropriskquantification,andahighlyflexibledemandresponseresourceforbothpeakloadsheddingandancillaryservices.Wealsodiscusshowadvancedwatermeteringmayhelpovercomebarrierstoimprovedwater‐energypolicy,jointwater‐energyutilityprogramdesign,andmoreefficientresourceusebyconsumers.

Alimitationofthisreportisthelackofavailableinformationforquantifyingtherealizedenergyandenergy‐relatedmonetarybenefitsofwaterAMI.Asaresult,thefindingsdiscussedinthereportareoftenanecdotalowingtotheabsenceofthisinformation.Acontinuationofthisworkistoquantify,analyze,andprioritizethepotentialbenefitsofwaterAMIinindividualsectorsthroughdeeper,data‐drivenstudies.

Page 43: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

42

Future Work 

Throughourreviewoftheopenliteratureandinterviewswithwater‐energyexperts,weconfirmedthatthereisverylittledataabouttheinterconnectionofwaterandenergysystems.Thislackofdatamakesassessingtheenergybenefitsofadvancedwatermeteringdifficult,andthereforeimpairstheirprioritizationcomparedtootheremergingenergytechnologies.ThisreportdocumentstheanecdotalevidencethatwaterAMIhasthepotentialtoaddressfuturegridneedsandimprovetheenergyefficiencyofthewatersystem.However,theanecdotalevidence,andlimitedquantitativeinformation,isinsufficienttodevelopactionablepolicies,technologyadoptiongoals,incentiveprograms,orgridintegrationstrategies.Werecommendandsupportfurtherdatagatheringefforts.Asfollow‐onworktothisscopingstudy,weseetheneedfordatagatheringanddeeperanalysisoftheopportunitiespresentedinthisreport.Inadditiontodatagatheringefforts,futureresearchinthisareashouldfocusonthefollowingkeyissues:

WhataretheperformancerequirementsofwaterAMItomeetspecificgridneeds?Forexample,describethetechnologiesandinfrastructurerequirementsnecessarytosupportautomatedDRforancillaryservicesintheagriculturalsector.

WhatdataandassociatedanalyticaltechniquesarenecessarytoconfirmandanalyzethebenefitsofwaterAMIprojects?Themeasurementandverificationofbenefitsiscrucialforutilities,theDOE,andotherstojustifysupportinginvestmentsinthem.

WhatcharacteristicsofwaterAMIsystemsarecrucialtorealizingtheenergy

benefitsidentifiedinthisreport?Forexample:o Howimportantiswaterflowmeterprecision,andwhatlevelofprecisionis

sufficienttostillbecost‐effective?o Whatsensors,analytics,andcontrolsarenecessarytosufficientlyquantify

andforecastcroprisksthatcouldattractgreaterfarmerparticipationin

ADR?

AcostsurveyofwaterAMIprojectsdetailingthecostsandcapabilitiesofAMI

systemsaswellasexploringhowcostsscalewithutilityserviceterritoryand/or

numberofcustomers,andhowtheydifferacrosssectors.

Casestudiesofcurrentandpastadvancedmeteringprojectsthatidentifyvalue

pathwaysforwatermeterdatatorealizeenergybenefitsandhavemadeeffortstomonetizethem.

WhatregulatoryopportunitiesexistforpolicymakerstoencouragewaterAMI,

especiallytorealizeenergybenefits?

Page 44: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

43

WhatarethebestpracticesforimplementingandoperatingwaterAMIsystems,and

howdotheydifferifenergyservices(suchasDR)areincorporated?

Theabovemattersareperhapsbestexploredthroughcasestudiesacrossdifferentregionsandsectors,inordertodeveloporder‐of‐magnitudeestimatesofmarketbenefits.

Wealsosuggestthedevelopmentanddesignofapublicly‐availabletoolforpolicymakers,utilities,businesses,homeowners,andresearcherstoestimatetheembeddedenergyintheirwaterbasedonparameters,includingbutnotlimitedto,enduse,location,timeofday,season,andelevation.TheCaliforniaPublicUtilitiesCommissionrecentlyproducedaversionofsuchatoolforCalifornia,withthegoalofincreasingvaluecaptureforwaterandenergyutilities,aswellasincentivizingprogramcooperation(CPUC2016).SuchatoolwouldbeusefulforotherregionsoftheU.S.,particularlythosethatfacewaterscarcityandwatervaluationchallenges.Avaluabledatagatheringandanalysistaskthatremainsisanationwidestudyoftheembeddedenergyofwateracrosstheagriculturalandurbansectors.Nationalleveldatabasessuchasthiswouldbepowerfulassetsforimprovingregionalresourcemanagementandfurtheringresearchinthewater‐energynexus.

Finally,demonstrationprojectsfocusedonthefeasibilityandcostofintegratingwaterAMIsystemsexplicitlyforenergybenefitsareneeded.ThesecouldincludeprojectstodemonstratehowwaterAMIdataenableselectricDRparticipation,howin‐homedisplayscanbebestimplementedtorealizejointwater‐energybenefits,orwhatthecost‐optimaldistributionofflowmeters,aswellaslevelofprecision,isfordetectingbefore‐the‐meterleaks.

Page 45: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

44

References 

Aclara.“STAR®NetworkDCUII.”Availableonlineat:http://www.aclara.com/wp‐content/uploads/2014/11/STAR_DCUII.pdf[AccessedMay15,2016]

Alstone,P. J.Potter,M.A.Piette,P.Schwartz,M.A.Berger,L.N.Dunn,S.J.Smith,M.D.Sohn,A.Aghajanzadeh,S.Stensson,J.Szinai.“InterimReportonPhase1Results‐2015CaliforniaDemandResponsePotentialStudy:ChartingCalifornia’sDemandResponseFuture.”April1,2016.

AmericanWaterWorksAssociationWaterLossControlCommittee.“CommitteeReport:ApplyingworldwideBMPsinwaterlosscontrol.”JournalAWWA,Vol.95,No.8,pp.65‐79.August2003.

BadgerMeter.“Recordall®CompoundSeriesMeters.”Availableonlineat:https://www.badgermeter.com/business‐lines/utility/compound‐series‐meters/

BadgerMeter.“Recordall®DiscSeriesMeters.”Availableonlineat:https://www.badgermeter.com/business‐lines/utility/recordall‐disc‐series‐meters/

BadgerMeter.“ORION®CellularEndpoint.”Availableonlineat:https://www.badgermeter.com/business‐lines/utility/orion‐cellular‐endpoint/

BadgerMeter.“Recordall®TransmitterRegister.”Availableonlineat:https://www.badgermeter.com/business‐lines/flow‐instrumentation/transmitter‐register‐rtr/

Bariss,U.,I.Laicane,D.Blumberga.“AnalysisoffactorsinfluencingenergyefficiencyinaSmartMeteringPilot.”Energetika,T.60.No.2.pp.125–135.2014.

Beal,C.D.,J.Flynn.“Towardthedigitalwaterage:SurveyandcasestudiesofAustralianwaterutilitysmart‐meteringprograms.”UtilitiesPolicy,Vol.32,pp.29‐37.March2015.

Borisova,T.,S.Asci,B.Unel,C.Rawls.“ConservationPricingforResidentialWaterSupply.”UniversityofFloridaInstituteofFoodandAgriculturalScience.ReportNumberFE756.April2014.

Birrell,B.,V.Rapson,F.Smith.“Impactofdemographicchangeandurbanconsolidationondomesticwateruse.”WaterServicesAssociationofAustralia.2005.

Page 46: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

45

Britton,T.,R.A.Stewart,K.O’Halloran.“Smartmetering:enablerforrapidandeffectivepostmeterleakageidentificationandwaterlossmanagement.”JournalofCleanerProduction,Vol.54,pp.166‐176.2013.

Burt,C.,D.Howes,G.Wilson.“CaliforniaAgriculturalWaterElectricalEnergyRequirements.”ITRCR03‐006.December2003.

CaliforniaDepartmentofWaterResources.“Chapter3:UrbanWaterUseEfficiency.”CaliforniaWaterPlan,Update2013.Vol3.2013.

CaliforniaEnergyCommission.“California'sElectricInvestorOwnedUtilities(IOUs).”UpdatedMarch2,2015.Availableonlineat:http://www.energy.ca.gov/maps/serviceareas/CA_Electric_Investor_Owned_Utilities_IOUs.html[AccessedDecember12,2015]

CaliforniaEnergyCommission.“California’sWater‐EnergyRelationship.”CaliforniaEnergyCommissionReport#700‐2005‐011‐SF.November2005.

CaliforniaPublicUtilitiesCommission.“WaterEnergyCostEffectivenessCalculator.”Availableonlineat:http://www.cpuc.ca.gov/General.aspx?id=4139[AccessedonFebruary,2,2016]

CaliforniaStateAssembly.“AssemblyBillNo.2572.”September29,2004.

CaliforniaStateSenate.“SenateBillNo.555.”October9,2015.

CaliforniaWaterAssociation.“RegulatedWaterUtilitiesinCalifornia.”Availableonlineat:http://www.calwaterassn.com/about‐cwa/regulated‐water‐utilities‐in‐california/[AccessedDecember2,2015]

Cherchi,C.,M.Badruzzaman,J.Oppenheimer,C.M.Bros,J.G.Jacangelo.“Energyandwaterqualitymanagementsystemsforwaterutility'soperations:Areview.”JournalofEnvironmentalManagement,Vol.153,pp.108‐120.2015.

Christian‐Smith,J.,K.Abhold.“MeasuringWhatMatters:SettingMeasurableObjectivestoAchieveSustainableGroundwaterManagementinCalifornia.”UnionofConcernedScientists.September2015.

Colombo,A.F.,P.Lee,B.W.Karney.“Aselectiveliteraturereviewoftransient‐basedleakdetectionmethods.”JournalofHydro‐environmentResearch,Vol.2,No.4,pp.212‐227.April2009

Cooley,H.,K.Donnelly.“Water‐EnergySynergies:CoordinatingEfficiencyProgramsinCalifornia.”PacificInstitute.September2013

Page 47: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

46

Corominas,J.“Aguayenergíaenelriego,enlaépocadelasostenibilidad.”Ingenieríadelagua,17(3),pp.219–233.2010.(InSpanish).

Dinar,A.,J.Mody.“IrrigationWaterManagementPolicies:AllocationandPricingPrinciplesandImplementationExperiences.”NaturalResourcesForum.June2004.

deMonsabert,S.,A.Bakhshi,C.Maas,B.Liner.“IncorporatingEnergyImpactsintoWaterSupplyandWastewaterManagement.”AmericanCouncilforanEnergy‐EfficiencyEconomySummerStudyonEnergyEfficiencyinIndustry,No.6,pp.13‐21.2009

DeOreo,W.B.,P.Mayer,B.Dziegielewski,J.Kiefer.“ResidentialEndUsesofWater,Version2:ExecutiveReport.”WaterResearchFoundation.April2016.

DeOreo,W.B.,P.W.Mayer,L.Martien,M.Hayden,A.Funk,M.Kramer‐Duffield,R.Davis,J.Henderson,B.Raucher,P.Gleick,M.Heberger.“CaliforniaSingle‐FamilyWaterUseEfficiencyStudy.”July20,2011.

EastBayMunicipalUtilityDistrict.“AdvancedMeteringInfrastructure(AMI)PilotStudiesUpdate.”November25,2014

EastBayMunicipalUtilityDistrict.“RequestforInformation:AdvancedMeteringInfrastructureTechnology.”September2015.

ECONorthwest.“EmbeddedEnergyinWaterPilotProgramsImpactEvaluation.”CaliforniaPublicUtilitiesCommission,EnergyDivision.March2011.

Ehrhardt‐Martinez,K.,K.A.Donnelly,J.A.Laitner.“AdvancedMeteringInitiativesandResidentialFeedbackPrograms:AMeta‐ReviewforHouseholdElectricity‐SavingOpportunities.”AmericanCouncilforanEnergy‐EfficiencyEconomyResearchReportE105.June26,2010

Faruqui,A.,S.Sergici,A.Sharif.“Theimpactofinformationalfeedbackonenergyconsumption‐Asurveyoftheexperimentalevidence.”Energy,Vol.35,pp.1598‐1608.2010.

Fielding,K.S.,A.Spinks,S.Russell,R.McCrea,R.Stewart,J.Gardner.“Anexperimentaltestofvoluntarystrategiestopromoteurbanwaterdemandmanagement.”JournalofEnvironmentalManagement,Vol.114,pp.343–351.January2013.

Fujita,K.S.,G.Fitts,L.Dale.“PeakElectricityImpactsofResidentialWaterUse.”LawrenceBerkeleyNationalLaboratoryReport#5736E.July2012.

Page 48: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

47

GEIConsultants,NavigantConsulting.“EmbeddedEnergyinWaterStudiesStudy2:WaterAgencyandFunctionComponentStudyandEmbeddedEnergy‐WaterLoadProfiles.”August2010.

Goulet,J.A.,S.Coutu,I.F.C.Smith.“Modelfalsificationdiagnosisandsensorplacementforleakdetectioninpressurizedpipenetworks.”AdvancedEngineeringInformatics,Vol.27,No.2,pp.261–269.April2013

Granderson,J.,M.A.Piette,B.Rosenblum,L.Hu,D.Harris,P.Mathew,P.Price,G.Bell,S.Katipamula,M.Brambley.“EnergyInformationHandbook:Applicationsforenergy‐efficientbuildingoperations.LawrenceBerkeleyNationalLaboratory.ReportNumber5272E.2011.

Granderson,J.,P.N.Price,D.Jump,N.Addy,M.D.Sohn.“Automatedmeasurementandverification:Performanceofpublicdomainwhole‐buildingelectricbaselinemodels.”AppliedEnergy,Vol.144,pp.106–113.2015.

Hering,J.G.,T.D.Waite,R.G.Luthy,J.E.Drewes,D.L.Sedlak.“AChangingFrameworkforUrbanWaterSystems.”EnvironmentalScience&Technology,47,10721−10726,May2013.

House,L.“WaterSupply‐RelatedElectricityDemandInCalifornia.”CaliforniaEnergyCommissionReport#500‐2007‐114.November2007.

House,L.“TimeofUseWaterMeterImpactsonCustomerWaterUse.”CaliforniaEnergyCommissionReport#500‐2013‐146.October2010.

InstituteforElectricInnovation.“Utility‐ScaleSmartMeterDeployments:BuildingBlockoftheEvolvingPowerGrid.”September2014.

IrrigationTrainingandResearchCenter.“CECAgriculturalPeakLoadReductionProgram–WaterAgencies.”IrrigationTrainingandResearchCenterReport#R05‐003.February2005.

Jackson,T.“Energyanalysisofcropirrigation:roleofwaterreclamationandwaterexportation.”DissertationinSchoolofEnvironmentalSciences,CharlesSturtUniversity.March2009.

Janković‐Nišić,B.,Č.Maksimović,D.Butler,N.Graham.“UseofFlowMetersforManagingWaterSupplyNetworks.”JournalofWaterResourcesPlanningandManagement,Vol.130,No.2,pp.171‐179.March2004

Page 49: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

48

Jarred,M.W.“DeliveringonthePromiseofCalifornia’sDemandResponsePrograms:AnOpportunityfortheStatetoMaximizetheFlexibilityandEfficiencyofItsElectricalGrid.”CaliforniaSenateOfficeofResearch,PolicyMatters.June2014.

Jayaweera,T.,H.Haeri,C.Kurnik.TheUniformMethodsProject:MethodsforDeterminingEnergyEfficiencySavingsforSpecificMeasures.NationalRenewableEnergyLaboratory.NRELReport#NREL/SR‐7A30‐53827.April2013

Jentgen,L.A.,H.Kidder,R.Hill,S.Conrad,A.Papalexopoulos.“WaterConsumptionForecastingtoImproveEnergyEfficiencyofPumpingOperations.”AWWAResearchFoundationandCaliforniaEnergyCommission.2007

Kingdom,B.,R.Liemberger,P.Marin.“TheChallengeofReducingNon‐RevenueWater(NRW)inDevelopingCountriesHowthePrivateSectorCanHelp:ALookatPerformance‐BasedServiceContracting.”TheWorldBank.ReportNumber39505.December2006.

Koo,D.,K.Piratla,J.Matthews.“TowardsSustainableWaterSupply:SchematicDevelopmentofBigDataCollectionUsingInternetofThings(IoT).”ProcediaEngineering,Vol.118,pp.489‐497.2015.

Kummer,J.,O.Nix,K.Drees.“MeasurementandVerificationofEnergySavings.”InstituteforBuildingEfficiency.November2011.

Laughlin,J.“SurveyRevealsTrendsinWaterIndustryConstruction.”WaterWorld,Vol.19.No.12.December2003.

Marks,G.,E.Wilcox,D.Olsen,S.Goli.“OpportunitiesforDemandResponseinCaliforniaAgriculturalIrrigation:AScopingStudy.”LawrenceBerkeleyNationalLaboratory.ReportNumber6108E.January2013.

Maupin,M.A.,J.F.Kenny,S.S.Hutson,J.K.Lovelace,N.L.Barber,K.S.Linsey.“EstimatedUseofWaterintheUnitedStatesin2010.”UnitedStatesGeologicalSurvey.Circular1405.2014.

Moreno,M.A.,P.A.Carrión,P.Planells,J.F.Ortega,J.M.Tarjuelo.“Measurementandimprovementoftheenergyefficiencyatpumpingstations.BiosystemsEngineering,Vol.98,No.4,pp.479‐486.December2007.

NiagraMeters.“NutatingDisc.”Availableonlineat:http://www.semrad.com.au/pdf/flow_measurement/Niagara_Meters_Nutating_Disc_Flow_Meter.pdf[AccessedonMay15,2016]

Page 50: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

49

Olsen,D.,A.Aghajanzadeh,A.McKane.“OpportunitiesforAutomatedDemandResponseinCaliforniaAgriculturalIrrigation.”LawrenceBerkeleyNationalLaboratory.ReportNumber1003786.August2015.

Olsen,D.J.,N.Matson,M.D.Sohn,C.Rose,J.Dudley,S.Goli,S.Kiliccote,M.Hummon,D.Palchak,P.Denholm,J.Jorgenson,O.Ma.“GridIntegrationofAggregatedDemandResponse,PartI:LoadAvailabilityProfilesandConstraintsfortheWesternInterconnection.”LawrenceBerkeleyNationalLaboratory.ReportNumber6417E.September2013.

PacificInstitute.“NeedToKnow:MeteringInCalifornia.”September2014.

Pulwarty,R.S.“U.S.SenateCommitteeonEnergyandNaturalResources:OnDroughtandTheEffectonEnergyandWaterManagementDecisions.”April25,2013

Quilumba,F.L.,W.J.Lee,H.Huang,D.Y.Wang,R.L.Szabados.“UsingSmartMeterDatatoImprovetheAccuracyofIntradayLoadForecastingConsideringCustomerBehaviorSimilarities.”IEEETransactionsonSmartGrid,Vol.6,No.2,pp.911‐918.March2015

RG3Meters.“Multi‐Jet–BottomLoad–Meters.”Availableonlineat:https://rg3meter.com/wp‐content/uploads/2015/03/MJB‐Spec.pdf

Ritchie,E.“AMISuccessStories:Leveragingtechnologyforsavingsandefficiency.”WaterEfficiency,Vol.10,No.4,pp.13‐21.June2015.

Rivers,M.,N.Coles,H.Zia,N.R.Harris,R.Yates.“Howcouldsensornetworkshelpwithagriculturalwatermanagementissues?Optimizingirrigationschedulingthroughnetworkedsoil‐moisturesensors.”SensorsApplicationsSymposium(SAS),2015IEEE,pp.1‐6.April2015.

Rocamora,C.,J.Vera,R.Abadía.“StrategyforEfficientEnergyManagementtosolveenergyproblemsinmodernizedirrigation:analysisoftheSpanishcase.”IrrigationScience,Vol.31,No.5,pp.1139‐1158.September2013.

Roche,J,“AMRvsAMI.”POWERGRIDInternational,Vol.13,No.10.October2008.Availableonlineat:http://www.elp.com/articles/powergrid_international/print/volume‐13/issue‐10/features/amr‐vs‐ami.html

Sensus.“accuMAGTMMetersSpecifications.”Availableonlineat:https://distributor.sensus.com/documents/10157/31640/SP‐W‐ACM‐00‐00‐0611[AccessedMay15,2016]

Page 51: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

50

Sensus.“accuSTREAMTMMetersSpecifications.”Availableonlineat:http://pacificpipeline.com/wp‐content/uploads/2015/04/Accustream‐Water‐Meter.pdf[AccessedMay15,2016]

Sensus.“Permalog+AcousticMonitoringSensor.”Availableonlineat:http://sensus.com/products/permalog‐plus/[AccessedonMay17,2016]

Sensus.“SmartWaterNetwork.”Availableonlineat:http://sensus.com/smart‐water‐network/[AccessedDecember15,2015]

Sensus.“StandardFlexNet®BaseStations.”Availableonlineat:http://sensus.com/products/standard‐flexnet‐base‐stations/

Shukla,S.,N.Holt.“UsingMulti‐SensorSoilMoistureProbestoDecideWhenandHowLongtoRunDripIrrigation.”UniversityofFloridaInstituteofFoodandAgriculturalScience.ReportNumberAE505.July2014.

Stambouli,T.,J.M.Faci,N.Zapata.“Waterandenergymanagementinanautomatedirrigationdistrict.”AgriculturalWaterManagement,Vol.142,pp.66‐76.2014.

StateofCalifornia.“SustainableGroundwaterManagementAct.”Availableonlineat:http://groundwater.ca.gov/[Accessed1/15/16]

Stewart,R.A.,R.Willis,D.Giurco,K.Panuwatwanich,G.Capati.“Web‐basedknowledgemanagementsystem:linkingsmartmeteringtothefutureofurbanwaterplanning.”AustralianPlanner,Vol.47,No.2,pp.66‐74.June2010.

Stewart,R.,D.Giurco,C.Beal.“Ageofintelligentmeteringandbigdata:Hydroinformaticschallengesandopportunities.”HydroLink,Vol.4,No.4,pp.107‐110.March2013.

Stokes,J.R.,A.Horvath.“EnergyandAirEmissionEffectsofWaterSupply.”EnvironmentalScience&Technology,Vol.43,pp.2680–2687.April2009.

Tarroja,B.,S.Jenkins,M.A.Berger,L.Chiang.“CapturingtheBenefitsofIntegratedResourceManagementforWater&ElectricityUtilitiesandtheirPartners.”UnitedStatesDepartmentofEnergyandtheUniversityofCaliforniaIrvine.May2016.

TheAspenInstitute,NicholasInstituteforEnvironmentalPolicySolutions.“DataIntelligencefor21stCenturyWaterManagement:AReportfromthe2015Aspen‐NicholasWaterForum.”2015.

Turner,J.“IndustryTrendsDriveNeedforIncreasedAutomation,InformationTechnology.”WaterWorld,Vol.21,No.12.December2005.

Page 52: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

51

UnitedStatesArmyCorpsofEngineers,ConsensusBuildingInstitute.“WaterintheU.S.AmericanWest150YearsofAdaptiveStrategies.”PolicyReportforthe6thWorldWaterForum.March2012.

UnitedStatesDepartmentofAgriculture.“FarmandRanchIrrigationSurvey2013.”2013.Availableonlineat:www.agcensus.usda.gov/Publications/2012/Online_Resources/Farm_and_Ranch_Irrigation_Survey/

UnitedStatesDepartmentofEnergy.“M&VGuidelines:MeasurementandVerificationforPerformance‐BasedContractsVersion4.0”November,2015.

UnitedStatesDepartmentofEnergy.“SmartMeterInvestmentsYieldPositiveResultsinMaine.”January2014.

UnitedStatesDepartmentofEnergy.“TheWater‐EnergyNexus:ChallengesandOpportunities.”June2014.

UnitedStatesEnergyInformationAdministration.“HowmuchelectricitydoesanAmericanhomeuse?”Availableonlineat:https://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3[AccessedonApril25,2016]

UnitedStatesEnergyInformationAdministration.“TodayinEnergy:Smartmeterdeploymentscontinuetorise.”Availableonlineat:https://www.eia.gov/todayinenergy/detail.cfm?id=8590#[PublishedonNovember1,2012]

Walski,T.M.“Ahistoryofwaterdistribution.”JournalAWWA,Vol.98,No.3,pp.110‐121.March2006.

WaterSystemsOptimization,Inc.“SecondaryResearchforWaterLeakDetectionProgramandWaterSystemLossControlStudy.”SouthernCaliforniaEdison.FinalReport.December2009.

Xu,Q.,Q.Chen,J.Ma,K.Blanckaert,Z.Wan.“WaterSavingandEnergyReductionthroughPressureManagementinUrbanWaterDistributionNetworks.”WaterResourcesManagement,Vol.28,pp.3715–3726.2014.

Young,R.,E.Mackres.“TacklingtheNexus:ExemplaryProgramsthatSaveBothEnergyandWater.”AmericanCouncilforanEnergy‐EfficiencyEconomyReport#E131.January2013.

Page 53: UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence Berkeley National Laboratory MG Million gallons MIU Meter interface unit MNF Minimum

52

Zan,T.T.T,H.B.Lim,K.J.Wong,A.J.Whittle,B.S.Lee.“EventDetectionandLocalizationinUrbanWaterDistributionNetwork.”IEEESensorsJournal,Vol.14,No.12,pp.4134‐4142.December2014.

ZennerPerformance.“CompoundMeters.”Availableonlineat:http://www.zennerusa.com/tl_files/content/ZENNER_USA/Downloads/ZPM_Compound_Water‐Meters.pdf

Zunino,K.“AdvancedMeteringInfrastructure:Feasibility&BusinessCase.”CaliforniaUrbanWaterConservationCouncilAMISymposium.February26,2015.