9
1 Prof. Pinaki Mazumder Dept. of EECS Univ. of Michigan Ann Arbor, MI 48109 [email protected] Memristor Technology in Ultra-Dense Neuromorphic and Non-Volatile Memory Architectures Collaborator: Prof. Wei Lu U of M CSE Building, EECS Dept. MNF: Nano Fab @ UM Prof. Pinaki Mazumder U of Michigan – NDR Group Outline of the Talk What is Memristor? and Memristor Technology Memristor in Neuromorphic Systems Verilog Modeling of Position Detector Memristor Based Terabit Memories Prof. Pinaki Mazumder U of Michigan – NDR Group M q vdt d idt dq L i C i q R i v ) , ( Law) s (Faraday' ) , ( ) , ( , 6 1 2 3 4 2 4 Prof. Leon Chua ‘71 ) ( ); ( ); ( ); ( : Variables State ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( : Circuit RLC Series a for Law s Kirchoff' t t q t v t i t v C t q dt t d t Ri t v t V t V t V C L R The 4 th Circuit Element found in 1971 by Prof. Chua who called it Memristor 2008 Nanoscale 1870 1971 Conservation of Energy Principle Applied to Electrical Components 1870 Kirchoff’s Law For R, L and C i v idt vdt dq d q M ) ( Prof. Pinaki Mazumder U of Michigan – NDR Group Twenty First Century’s Gold Rush for Discovery of Memristors REF- ERENCE Structure OFF/ON Ratio Retention time (s) Endurance Cycles Energy Consump tion (J)* Che05 Cu/CuO x /TiN >10 3 >1 >600 6.3E-12 Sak03 Cu/Cu 2 S/Au >10 6 >10 3 >1 7.0E-8 Gua07 Si/ZrO 2 /Au >10 3 >10 3 >10 2 No data Lee07 Cu/Mo x /Pb >10 >10 5 >10 6 1.0E-8 Don08 Si/a-Si/Ag >10 4 >10 6 >10 4 4E-12 Gua08 Ti/ZrO 2 /Cu >10 6 >10 4 >10 4 8.75E-10 Bec00 SrRuO 3 /SrZrO 3 /Au >20 >10 7 No data 1.38E-07 Gre07 Si/Rotaxanes/Ti ~10 ~ 10 4 ~10 No data JoLu08 Ag/a-Si/p-Si >10 4 >10 7 >10 6 1E-15 These are academic research findings, industry is secretive Prof. Pinaki Mazumder U of Michigan – NDR Group University of Michigan Memristor Structure p-Si p-Si a-Si a-Si Metal Metal Low Resistance High Resistance Vapp > Vth1 Vapp < Vth2 <Vth1 The device consists of Ag/a-Si/p-Si materials Fabrication by: Prof. Wei Lu Thin-film Metal-Insulator-Metal (MIM) nanostructures Ag/a-Si/p-Si gives highly controllable and reliable switching behavior Prof. Pinaki Mazumder U of Michigan – NDR Group Resistance Switching Characteristics Low Resistance High Resistance Ag electrode a-Si p-Si electrode Single filament formed by a chain of ions – digital switching (memory) • Exponential conductance change Approximated by Sinh Function Fabricated by Prof. Wei Lu @ UM Ag electrode p-Si electrode a-Si I = Sinh (v)

University of Michigan Outline of the Talk Memristor Structure

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

1

Prof. Pinaki Mazumder Dept. of EECS

Univ. of MichiganAnn Arbor, MI [email protected]

Memristor Technology inUltra-Dense Neuromorphic and

Non-Volatile Memory Architectures

Collaborator: Prof. Wei Lu U of M

CSE Building, EECS Dept.

MNF: Nano Fab @ UM

Prof. Pinaki Mazumder U of Michigan – NDR Group

Outline of the Talk

What is Memristor?and Memristor Technology

Memristor in Neuromorphic SystemsVerilog Modeling of Position DetectorMemristor Based Terabit Memories

Prof. Pinaki Mazumder U of Michigan – NDR Group

Mq

vdtd

idtdq

Li

Ciq

Riv

),(

Law) s(Faraday'

),(

),(

,

612

34

2

4

Prof. Leon Chua ‘71

)();();();( :Variables State

)()()(

)(

)()()()(

:Circuit RLC Series afor Law sKirchoff'

ttqtvti

tvC

tq

dt

tdtRi

tvtVtVtV CLR

The 4th Circuit Element found in 1971 by Prof. Chuawho called itMemristor

2008 Nanoscale

1870

1971

Conservation of Energy PrincipleApplied to ElectricalComponents

1870 Kirchoff’s LawFor R, L and C

i

v

idt

vdt

dq

dqM

)(

Prof. Pinaki Mazumder U of Michigan – NDR Group

Twenty First Century’s Gold Rush for Discovery of Memristors

REF-ERENCE Structure OFF/ON

RatioRetention

time (s)Endurance

CyclesEnergy

Consumption (J)*

Che05 Cu/CuOx/TiN >103 >1 >600 6.3E-12Sak03 Cu/Cu2S/Au >106 >103 >1 7.0E-8Gua07 Si/ZrO2/Au >103 >103 >102 No dataLee07 Cu/Mox/Pb >10 >105 >106 1.0E-8Don08 Si/a-Si/Ag >104 >106 >104 4E-12Gua08 Ti/ZrO2/Cu >106 >104 >104 8.75E-10Bec00 SrRuO3/SrZrO3

/Au>20 >107 No data 1.38E-07

Gre07 Si/Rotaxanes/Ti ~10 ~ 104 ~10 No dataJoLu08 Ag/a-Si/p-Si >104 >107 >106 1E-15

These are academic research findings, industry is secretive

Prof. Pinaki Mazumder U of Michigan – NDR Group

University of MichiganMemristor Structure

p-Si p-Si

a-Si a-Si

MetalMetal

Low Resistance High Resistance

Vapp > Vth1 Vapp < Vth2 <Vth1

The device consists of Ag/a-Si/p-Si materials

Fabrication by: Prof. Wei Lu

Thin-film Metal-Insulator-Metal(MIM) nanostructures

Ag/a-Si/p-Si gives highly controllable and reliable switching behavior

Prof. Pinaki Mazumder U of Michigan – NDR Group

Resistance Switching Characteristics

Low Resistance High Resistance

Ag electrode

a-Si

p-Si electrode

Single filament formed by a chain of ions –digital switching (memory) • Exponential conductance change

Approximated by Sinh Function

Fabricated by Prof. Wei Lu @ UM

Ag electrode

p-Si electrode

a-Si

I = Sinh (v)

2

Prof. Pinaki Mazumder U of Michigan – NDR Group

Ag

Poly

∆d1

∆d2

∆d3

RR

R

Ag

Ag

Ag

0 1 2 31 0 -1 1

1 0 -9

1 0 -7

1 0 -5

1 0 -3

Cu

rre

nt (

A)

V o lta g e (V )

I jump

Waiting

)(2)/*2( 12

jump)first (before

jump)first after ( ddEmeJ

J

]/)exp(1

/)exp(1ln[)(.)..(

)()]()([2

*)(

)(

032

)/*22(2

kTqVEE

kTEEETSOD

ETdEqVEfEfqm

VJ

eeET

F

F

dEm

UNRAVELLING THE IONIC TRANSPORT AT NANOSCALE

I = Sinh (V)

Transmission Coefficient

R. M. Hill 1969

Prof. Pinaki Mazumder U of Michigan – NDR Group

Biological Neuron ModelIonic Transport in Biological Neuron & its Silicon Implementation

Hodgkin-Huxley Model

Axon

Dendrite

Neuro-transmitter

U of M Memristor Model

Prof. Pinaki Mazumder U of Michigan – NDR Group

The Holy Grail of Computing --Can we spill human brain on Silicon?

Facets of Neuromorphic or Brain-like Computing:

Self-Healing (Robust) Spike LearningCognition (Visual,

Auditory, Tactile) Huge Memory

Current Capability

The ExponentialGrowth Drivesthe SocietalEconomics

1 GW digital computer

< 50 W Brain

Prof. Pinaki Mazumder U of Michigan – NDR Group

Outline of the Talk

What is Memristor?Memristor TechnologyIonic Transport ModelingMemristor in Self-Healing of CrossbarMemristor in Cognition (Position Detector)Memristor Based Terabit (Gargantuan) Memories

Prof. Pinaki Mazumder U of Michigan – NDR Group

High Density a-Si Based Nano-Crossbar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201234567891011121314151617181920

Agp-Si

< 50 k

50 ~ 150 k

150 ~ 300 k

300 k ~ 1 M

Not Written

1kb crossbar array

Jo et al. Nano Lett., 9, 870 (2009). From Prof. Wei Lu’sResearch Group

Fabricated by Prof. Wei Lu @ UM

It is Scalable and CMOS Compatible.

Defects ! & More Defects!!400 cells & 31 defects=8%

Prof. Pinaki Mazumder U of Michigan – NDR Group

NeuromorphicSelf-Healing

Memory Designusing Memristor Array

Product Code (SEC), Augmented PC (DEC) Requires Muxes (~8%)Hamming Code (SEC) Higher Overhead Projective Geometry Code (DEC/TED) Galois Field Decoding, … BCH & Reed Solomon (DEC) Decoding complexity is high

3

Prof. Pinaki Mazumder U of Michigan – NDR Group

Compaction of Faulty Array &Find Vertex Cover in Bipartite Graph

[R2, R4; C1, C4]

Find Vertex Cover:

Unrestricted Vertex Cover Problem canBe solved in PolynomialTime by Bipartite GraphMatching Algorithm.However, Restricted Vertex Cover Problem isNP-complete.

R2

R4

C1

C4

Defective Cells areEdges in Bipartite Graph

Prof. Pinaki Mazumder U of Michigan – NDR Group

Neuromorphic Self-Healing

[R2, C4; R4, C1]

Vertex Cover:

R2, C4

R4, C1

Prof. Pinaki Mazumder U of Michigan – NDR Group

Reset & Write Phase

Prof. Pinaki Mazumder U of Michigan – NDR Group

Reparability & Robustness

Prof. Pinaki Mazumder U of Michigan – NDR Group

Excitatory synapse

Dendritic Tree

Axon Hillock

Figure from Principles of Neural Science [2] p.22

Inhibitory Synapse

EVOLUTION OFNEUROMORPHICCOMPUTING:

Perceptron (’60)(10 E 1 neurons)

Neural Net (’80)(10 E 3 Neurons)

NeuromporphicHardware (’90)(10 E 6 neurons)

Nanocrossbar (10 E 10 neurons)

Prof. Pinaki Mazumder U of Michigan – NDR Group

•Uniform motion of the conducting front – analog switching (memristor) •Creation of uniform conducting front by co-sputtering of a-Si & metal

-2 -1 0 1 2 3-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

V lt (V)

Successive writing

Successive erase processes

Voltage (V)

I (

A)

•Incremental conductance change•Conductance total charge through the device

Analog a-Si Memristors

Top Electrode

Bottom Electrode

sputtered a-Si only

sputtered a-Si onlyco-sputtered Si & Ag (~ 20nm)mixture ratio (rough # of atoms), gradual changei.e. Si : Ag = 20: 1 (bottom) 10: 1 (top)

•Highest process temperature < 260°C

DARPA SyNAPSE PROJECTWITH HRL LABORATORIES

All Credits Go to Prof. Wei Lu’s OutstandingResearch Group

4

Prof. Pinaki Mazumder U of Michigan – NDR Group

Memristor: A New Paradigm Circuit Design

Conductance controlled by the pulse width, and can be changed incrementally.

Programming pulses with different pulse widths

Conductance change after each pulse

100 s

1. Digitally Controlled

2. Constant Amplitude

3. Temporal Correlation

Prof. Pinaki Mazumder U of Michigan – NDR Group

Time Division Multiplexing Events occur at proper

timeslots Long Term Potentiation can

only occur in the 2nd timeslot Long Term Depression can only

occur in the 1st timeslot Inputs are considered only in

the 0th timeslot

Each pulse of amplitude V is not enough to make a significant change to memristance

When there’s a net difference with amplitude 2V, memristance changes

Neuron spikes in first frame20

Neuron Spiking Signals and STDP Control

|| if )().(

exp.exp..

postpreLTPijpostpre

b

postb

a

prea

LTPLTPij

ttwttuttu

ttd

ttdw

dt

d

Hebbian-Type STDP Learning ModelNeurons that “FIRE” together.also “WIRE” together. – D. Hebb

Prof. Pinaki Mazumder U of Michigan – NDR Group

Neuron Pulse Width Curves (across a synapse)For LTP case: The Post neuron is at –V while the Pre neuron at +V

For LTD case: The Pre neuron is at –V while the Post neuron at +V

LTP case is taken as positive while the LTD case negative

21

Pulse Width vs. Pre and Post Neuron Spike Times

SPDT with MemristorSTDP obtained

using memristor synapse

LTP

LTD

tPRE – tPOST > 0tPRE – tPOST < 0

Pulse Width vs tPRE - tPOST

Prof. Pinaki Mazumder U of Michigan – NDR Group

Outline of the Talk

What is Memristor?Memristor TechnologyIonic Transport ModelingMemristor in Neuromorphic SystemsVerilog Modeling of Position DetectorMemristor Based Terabit Memories

Prof. Pinaki Mazumder U of Michigan – NDR Group

STDP-Based Position Detector

University of Michigan

+ +

Noise‐free Noisy

‐ ‐

‐‐‐

+ ++ ++

+++

n21

‐v

m11

m25m22

m26

m24m23

m21

m15m14m13m12

n11

n12

n13

n14

n15

n22

n23

n24

n25

VERILOG SIMULATION

Period:1746

Period:1746

Period:786

Period:786

Period:636

Prof. Pinaki Mazumder U of Michigan – NDR Group

Position Detector

University of Michigan

‐ Noise‐free Noisy

‐ ‐

‐‐‐

+ ++ ++

+++

n21

‐v

m11

m25m22

m26

m24m23

m21

m15m14m13m12

n11

n12

n13

n14

n15

n22

n23

n24

n25

+ +

VERILOG SIMULATION

Period:2046

Period:642Period:684

Period:3030 Period:7242

5

Prof. Pinaki Mazumder U of Michigan – NDR Group

STDP Based Position Detector

University of Michigan

Noise‐free Noisy‐ ‐

‐‐‐

+ ++ ++

+++

n21

‐v

m11

m25m22

m26

m24m23

m21

m15m14m13m12

n11

n12

n13

n14

n15

n22

n23

n24

n25

+ +

VERILOG SIMULATION

Period:1014

Period:7266

Period:660 Period:660

Period:1506

Prof. Pinaki Mazumder U of Michigan – NDR Group

STDP Neural Circuit for Position Detector

Bases Memristor Design

CMOS Design

Synaptic area < (0.5μm x 0.5μm)

17μm x 16μm

Synaptic Density 4 devices/μm2

x10000.0037

devices/μm2

Neuron area 20μm x 10μm 8μm x 12μm

Neuron Density 0.005 devices/μm2

x2

0.0104 devices/μm2

Volatility Nonvolatile Volatile

Prof. Pinaki Mazumder U of Michigan – NDR Group

Outline of the Talk

What is Memristor?Memristor TechnologyIonic Transport ModelingMemristor in Neuromorphic SystemsSimulink & Verilog ModelingMemristor Based Flash Memories

Prof. Pinaki Mazumder U of Michigan – NDR Group

Improved Memory Array

•Improved memory to reduce series resistance associated with p-Si electrodes.•Random programming of the array achieved.

Prof. Pinaki Mazumder U of Michigan – NDR Group

Yield Map of 1kb Crossbar Array

•Results from 100 bits tested using automated write/erase pulses•On/Off > 103 for all devices that can be written•> 92% yield. Excellent reproducibility and reliability

Jo et al. Nano Lett., 9, 870 (2009).

Prof. Pinaki Mazumder U of Michigan – NDR Group

Data Retention TimeMore than 150 days without noticeable degradation at room temperatureA-Si is superior to many complex oxides for data retention

0 20 40 60 80 100 120 140 1601E7

1E8

1E9

1E10

1E11

1E12

Res

ista

nce

[O

hm

]

Time [Day]

Ron

Roff

10-3 10-2 10-1 100 101 102 1030

1x103

2x103

3x103

Rof

f/Ron

Active Area [um2]

100 101 102 103

10

20

30

40

Rof

f/R

on

Active Area [um2]

6

Prof. Pinaki Mazumder U of Michigan – NDR Group

Top Level Layout

Row Decoders

Control & Predecs

Column Mux

IO

64 K bitCrossbarMemory

Designed byProf. Mazumder’sResearch Group

Prof. Pinaki Mazumder U of Michigan – NDR Group

Simulation Results

SPICE simulation waveforms

Temperature = 25C

First Row, First Col

First Row,

Last Col

Last Row, First Col

Last Row, Last Col

Read Access

Time

1.00422 ns

1.00753 ns

1.03404 ns

1.03515 ns

Read 0 (QOUT Falling) Read 1 (QOUT Rising)

Dynamic Current

162.9 uA 175.25 uA

LeakageCurrent

1.113 uA

Peak Current

2.28 mA

Temperature = 125C

First Row,

First Col

First Row,

Last Col

Last Row,

First Col

Last Row, Last Col

Read Access Time

1.248 ns

1.265 ns

1.318 ns

1.322 ns

Read 0 (QOUT Falling)

Read 1 (QOUT Rising)

Dynamic Current

191.79 uA 201.68 uA

Leakage Current

13.655 uA

Peak Current 2.045 mA

Prof. Pinaki Mazumder U of Michigan – NDR Group

A Case for Gargantuan Memory Cell Size 200 n x 200

n100 n x 100 n

10 n x 10 n

2-D technolog

y

~ 1.3 G ~ 4 G ~ 350 G

3-D technolog

y

~ 5.2 G ~ 16 G ~ 1.4 TCourtesy: Unity Semiconductor

R&D Work Needed for Memristor NV Memory:Fault Modeling, Test Algorithms, Testable Design, Diagnosis, Repair, Reconfiguration, Error Correction & Detection, Soft Error Modeling, Yield Modeling, Noise Modeling, Power Dissipation, Macro Modeling, Q&A

Prof. Pinaki Mazumder U of Michigan – NDR Group

Mazumder’s Research in Semiconductor Memories

Prof. Pinaki Mazumder U of Michigan – NDR Group

Mercel Proust: Remembrance of the Things Past

7

Prof. Pinaki Mazumder U of Michigan – NDR Group

NSF had sponsored the First Memristor Workshop in Nov 2008 soon after the wide scale media coverageand then this workshop with the followingobjectives:

To spur research activities – Can we fabricate memristor based circuits without the crossbar architecture?

What new applications? How do they compare with others?Demonstration of fabricated chips

To promote Education – How memristors, memcapacitors,and meminductors will influence teachingof circuit theory, VLSI design, …? How memristors can be adopted in CMOS chip design projects?

Resistive Memories – where things stand in industry? what are defect densities?what sort of scattering of delays?

Prof. Pinaki Mazumder U of Michigan – NDR Group

Mercel Proust: Remembrance of the Things Past

Prof. Pinaki MazumderUniv. of Michigan

Program DirectorEmerging Models & Technologies

CISE DirectorateNational Science Foundation

NRI Workshop onNano Architectures

Friday

Tuesday

4 Days 3 Days

Prof. Pinaki Mazumder U of Michigan – NDR Group

San Jose

Atlanta

Washington DC

Dr. Sanjay GuptaMedical CorrespondentOf CNN, a student ofUniversty of Michigan

CNN @ UC-Berkeley

Cellular Nonlinear networksCellular Neural Networks

Prof. Pinaki Mazumder U of Michigan – NDR Group

CNN vs. CNNInvented by: Prof. Leon N. Chua Mr. Ted Turner

Intellectual Giant Business Giant

Started: Ideas conceived in 80’s Started in 1980

Major Milestone: IEEE TCAS 1988 Challenger Disaster, 1986

Subscriber: 90 Million

World Popularity: Europe, Japan Asia and Europe

US Competitor Intel Chips Fox News

Prof. Pinaki Mazumder U of Michigan – NDR Group

Where Does CNN Belong: ANN, MPP, SPN?

Does it belong to Artificial Neural Network Hierarchy?

Perceptron, Feed Forward Network, Hopfield Network, Boltzmann Machine, Kohonen Self Organizing Map, Recurrent Network, etc.

Features: Learning capability, Back propagation, …

Is CNN (1988) an Artificial Neural Network?

CNN uses ANN terminologies like neurons and neural network that induce people to consider itas an ANN, but CNN does not allow ANN learning mechanisms like backpropagation.

8

Prof. Pinaki Mazumder U of Michigan – NDR Group

Does CNN Belong to Massively Parallel Processor Hierarchy?

1. Shared Memory Architecture – Sequent and Balance2. Hypercube – Intel, N-Cube3. Mesh Architecture like ILLIAC (UIUC), Torus (Japan) , Paragon (Intel)4. Loosely Coupled Architectures like C.mmp and Cm* (CMU)5. Systolic architectures like iWARP of Intel and CMU6. Bit Serial Parallel Processor like STARAN and MPP of NASA

7. CNN does not belong here since all of them use Binary Computing.

CNN is a crossbreed between ANN and MPP that can be easily implemented in VLSI as well as Nanoscale.

CNN uses local computation paradigm of cellular network, it is regular And can be replicated and scaled easily to emulate massively parallel computation, and it’s model of computation can be extended to Nanoscale.

Prof. Pinaki Mazumder U of Michigan – NDR Group

Nanoscale CNN Model of Computation

The salient characteristics of CLAN are:

Limited fan-out and fan-in requirements No long interconnection for global data movement is needed No bus structure for sharing information by multiple modules is present No module addresses are required because of adjacency charge transferNo global clock for data synchronization is necessaryTessellation property of the architecture leads to scalability of designMassively parallel input capability –Massively parallel output capability

Sn, mSn,m-1

Xn, m

R

R R

R Sn, m+1

On, mOn,m-1 On,m+1

r

C IRTD

R

Input node

QD

CLAN: Cellular Logic Array Network

Prof. Pinaki Mazumder U of Michigan – NDR Group

0 1 2 3 4 5 60.0

0.5

1.0

1.5

2.0

2.5

(z)

z (nm)

0.0 0.5 1.0 1.5 2.00.000

0.002

0.004

0.006

0.008

0.010

0.012

Cu

rren

t (

A)

Applied Voltage (V)

Analytical Tunneling Current in z-direction

Measured Values of Current and ParasiticOf Fabricated Quantum Dot Array

QUANTUM DOT ARRAY FOR IMAGE PROCESSING

University ofMichigan

Prof. Pinaki Mazumder U of Michigan – NDR Group

R12=5*R C12=C0 R12=2*R C12=C0

R12=R C12=C0 R12=0.5*R C12=C0

Phasor Diagram of a Q-dot Pair

Phasor Diagram

Bnmnmnmnm

nmnmnm

IvvvvR

vR

vfdt

dvC

,1,11,1,12

,12

,,

0

1

4)(

Prof. Pinaki Mazumder U of Michigan – NDR Group

Quantum Dot Array

0.10.2

0.3

0.4

0.50.1

0.2

0.3

0.40.5

0.0

0.5

1.0

V(f

m,f

n)/

I BR

f mfn

nm ff

RInzmzV

21221212

coscos

),(

0.10.2

0.3

0.4

0.50.1

0.2

0.3

0.40.5

0.0

0.5

1.0

V(f

m,f

n)/

I BR

fmfn

Edge Detection

Vertical LineDetection

Prof. Pinaki Mazumder U of Michigan – NDR GroupInput images Filtered Output

VIDEO MOTION DETECTION BY

QUANTUM DOTS

9

Prof. Pinaki Mazumder U of Michigan – NDR Group

Motion Detection Using Quantum Dots

Quantum Dot basedCellular NonlinearNetworks with Motion Estimation Capability

Univ. of Michigan ‘05

Prof. Pinaki Mazumder U of Michigan – NDR Group

Biological Neuron ModelIonic Transport in Biological Neuron & its Silicon Implementation

Hodgkin-Huxley Model

Axon

Dendrite

Neuro-transmitter

U of M Memristor Model

Prof. Pinaki Mazumder U of Michigan – NDR Group

Using Memristor one can implement Hebbian and Reinforcement Learning using SPIKE mode of operation

Using nanoscale CNN one can implement biological organsof sensing actuation network similar to eye, muscles, etc.

Current Capability

The ExponentialGrowth Drivesthe SocietalEconomics

1 GW digital computer

< 50 W Brain

Impacts of Prof. Chua’s Pioneering Inventions of CNN and Memristor

Nanoscale Architectures, Nonlinear Circuits & Brain-like Computing