27
« Uncalibrate « Uncalibrate d Vision d Vision based on based on Structured Structured Light » Light » Joaquim Salvi 2 David Fofi 1 El Mustapha Mouaddib 3 3 CREA EA 3299 Université de Picardie Jules Verne Amiens, France [email protected] 2 VICOROB - IIiA Universitat de Girona Girona, España [email protected] 1 Le2i UMR CNRS 5158 Université de Bourgogne Le Creusot, France [email protected] bourgogne.fr

« Uncalibrated Vision based on Structured Light »

  • Upload
    butch

  • View
    47

  • Download
    0

Embed Size (px)

DESCRIPTION

David Fofi 1. « Uncalibrated Vision based on Structured Light ». Joaquim Salvi 2. El Mustapha Mouaddib 3. 1 Le2i UMR CNRS 5158 Université de Bourgogne Le Creusot, France [email protected]. 2 VICOROB - IIiA Universitat de Girona Girona, España [email protected]. - PowerPoint PPT Presentation

Citation preview

Page 1: « Uncalibrated Vision based on Structured Light »

« Uncalibrated « Uncalibrated Vision based on Vision based on Structured Structured Light »Light »

Joaquim Salvi2

David Fofi1

El Mustapha Mouaddib3

3CREA EA 3299Université de Picardie Jules VerneAmiens, [email protected]

2VICOROB - IIiAUniversitat de GironaGirona, Españ[email protected]

1Le2i UMR CNRS 5158 Université de BourgogneLe Creusot, [email protected]

Page 2: « Uncalibrated Vision based on Structured Light »

0. Outline0. Outline

1. Introduction

2. Tools for uncalibrated vision

3. Uncalibrated reconstruction

4. Experimental results

5. Conclusion

……………………………

Page 3: « Uncalibrated Vision based on Structured Light »

I. IntroductionI. Introduction

1. Structured light vision

2. Calibration vs uncalibration

……………………………

Page 4: « Uncalibrated Vision based on Structured Light »

IMAGE PLANEIMAGE PLANE PATTERN FRAMEPATTERN FRAME

« Structured light vision »« Structured light vision »

………………..J. Salvi, J. Batlle, E. Mouaddib, "A robust-coded pattern projection for dynamic measurement of moving scenes", Pattern Recognition Letters, 19, pp. 1055-1065, 1998.

J. Batlle, E. Mouaddib, J. Salvi, "Recent progress in coded structured light to solve the correspondence problem. A survey", Pattern Recognition, 31(7), pp. 963-982, 1998.

……………………...……………………………

Page 5: « Uncalibrated Vision based on Structured Light »

DRAWBACKS OF HARD-CALIBRATION:

•Off-line process (calibration pattern, etc.)

•Has to be repeated each time one of the parameters is modified

Working with a camera with automatic focus and aperture is NOT possible.

Visual adaptation to the environment is not allowed!

A slide or LCD projector needs to be focused.

RECONSTRUCTION FROM RECONSTRUCTION FROM UNCALIBRATED SENSOR...UNCALIBRATED SENSOR...

« Calibration vs uncalibration »« Calibration vs uncalibration » ……………………...……………………………

Page 6: « Uncalibrated Vision based on Structured Light »

II. Tools for II. Tools for uncalibrated visionuncalibrated vision

1. Test of spatial colinearity

2. Test of coplanarity

3. Stability of the cross-ratio

4. Validity of the affine model

……………………………

Page 7: « Uncalibrated Vision based on Structured Light »

« Test of spatial colinearity »« Test of spatial colinearity »

SRQP

',',',',,,,,, srqpsrqpSRQPk

Cross-ratio within the pattern and cross-ratio within the image are equals if the points are colinear.

……………………...……………………………

Page 8: « Uncalibrated Vision based on Structured Light »

« Test of coplanarity »« Test of coplanarity »

po' p'

q'r'

s'

o

qr

s

{o;p,q,r,s}={o';p',q',r'}

Cross-ratio within the pattern and cross-ratio within the image are equals if the point are colinear.

……………………...……………………………

Page 9: « Uncalibrated Vision based on Structured Light »

« Stability of the cross-ratio »« Stability of the cross-ratio »

0 5 10 15 20 25 30 35 40 45 500

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Noise

ErroronCross-Ratios

0 5 10 15 20 25 30 35 40 45 500

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Noise

ErroronCross-Ratios

Error on cross-ratios with a noise from 0 to 0.5d (d is the distance between two successive points)

Nota: to compare cross-ratios a projective distance is necessary. Method of the random cross-ratios.

………………..K. Aström, L. Morin, "Random cross-ratios", Research Report n°rt 88 imag-14, LIFIA, 1992.

……………………...……………………………

Page 10: « Uncalibrated Vision based on Structured Light »

« Validity of the affine model »« Validity of the affine model » ……………………...……………………………

2'2

'

2'

2'

2'

2'

22

2''

2''

22

nnmm

nnmmnnmm

nmnm

nmnmnmnm

vvuu

vvuuvvuu

vvuu

vvuuvvuu

affine projection

mn

m'n'

Valid if 0

Page 11: « Uncalibrated Vision based on Structured Light »

III. Uncalibrated III. Uncalibrated reconstructionreconstruction

1. Projective reconstruction

2. Structured light limitations

3. Euclidean constraints through structured lighting

……………………………

Page 12: « Uncalibrated Vision based on Structured Light »

Recover the scene structure from n images and m points and...

Intrinsic parameters

Extrinsic parameters

Scene geometry

Points matching

PROJECTIVE PROJECTIVE RECONSTRUCTIONRECONSTRUCTION

« Projective reconstruction »« Projective reconstruction »

……………………...……………………………

Page 13: « Uncalibrated Vision based on Structured Light »

PARAMETERS ESTIMATION APPROACH, CANONICAL REPRESENTATIONPARAMETERS ESTIMATION APPROACH, CANONICAL REPRESENTATION

« Structured light limitations »« Structured light limitations »

………………..R. Mohr, B. Boufama, P. Brand, “Accurate projective reconstruction”, Proc. of the 2nd ESPRIT-ARPA-NSF Workshop on Invariance, Azores, pp. 257-276, 1993.

Q.-T. Luong, T. Viéville, "Canonical representations for the geometries of multiple projective views", Proc. of the 3 rd Euro. Conf. on Computer Vision, Stockholm (Sweden), 1994

+

=

MOVEMENT OF THE PROJECTOR

MOVEMENT OF THE 3-D POINTS

THE PATTERN SLIDES ALONG THE OBJECTS

RECONSTRUCTION FROM TWO VIEWS (i.e. one view and one

pattern projection)

CAMERA + PROJECTOR

HETEROGENEITY OF THE SENSOR

INTRINSIC PARAMETERS CANNOT BE ASSUMED

CONSTANT

……………………...……………………………

Page 14: « Uncalibrated Vision based on Structured Light »

n images composed by m points... njmiijij ,...,1 ,...,1 , PAp

2

)(34

)(33

)(32

)(31

)(24

)(23

)(22

)(21

2

)(34

)(33

)(32

)(31

)(14

)(13

)(12

)(11

)(34

)(33

)(32

)(31

)(24

)(23

)(22

)(21

)(34

)(33

)(32

)(31

)(14

)(13

)(12

)(11

ij ij ij

ij

ij

ij

ij

ij

ij

ij

iji

ji

ji

ji

ji

ji

ji

ji

j

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

tazayaxa

tazayaxaV

tazayaxa

tazayaxaUd

tazayaxa

tazayaxaV

tazayaxa

tazayaxaU

pij : image point

Aj : projection matrix

Pj : object point

(Uij, Vij) : pixel co-ordinates

« The parameters estimation approach »« The parameters estimation approach » ……………………...……………………………

Page 15: « Uncalibrated Vision based on Structured Light »

WPAWpPAp 1

A unique solution cannot be performed because...

W is a 4x4 invertible matrix… a collineation of the 3-D space4x4 - 1 (scale factor) = 15 degrees of freedom, thus...

5 co-ordinates object points assigned to AN ARBITRARY PROJECTIVE BASIS.

A RECONSTRUCTION WITH RESPECT TO A RECONSTRUCTION WITH RESPECT TO A PROJECTIVE FRAME A PROJECTIVE FRAME

(distances, angles, parallelism are not preserved)

« The parameters estimation approach »« The parameters estimation approach » ……………………...……………………………

Page 16: « Uncalibrated Vision based on Structured Light »

Euclidean transformations form a sub-group of projective transformations...

A collineation W upgrades projective reconstruction to Euclidean one.

TRANSLATING EUCLIDEAN KNOWLEDGE OF THE TRANSLATING EUCLIDEAN KNOWLEDGE OF THE SCENE INTO MATHEMATICAL CONSTRAINTS ON THE SCENE INTO MATHEMATICAL CONSTRAINTS ON THE ENTRIES OF W.ENTRIES OF W.

Matching projective points with their corresponding Euclidean points ? YES, BUT ...

Euclidean co-ordinates of points are barely available…

… if they are: pattern cross-points have to be projected exactly onto these object points.

projeucl PWP

« From projective to Euclidean »« From projective to Euclidean »

………………..B. Boufama, R. Mohr, F. Veillon, "Euclidean constraints for uncalibrated reconstruction", Proc. of the 4th Int. Conf. on Computer Vision, Berlin (Germany), pp. 466-470, 1993.

……………………...……………………………

Page 17: « Uncalibrated Vision based on Structured Light »

PROJECTED PROJECTED SQUARESQUARE

ONTO A ONTO A PLANAR PLANAR SURFACESURFACE

IMAGE IMAGE CAPTURECAPTURE

A  B 

C  D 

The sensor behaviour is assumed to be affine...

BDACCDAB , BDACCDAB // ,//

« Parallelogram constraints »« Parallelogram constraints » ……………………...……………………………

Page 18: « Uncalibrated Vision based on Structured Light »

Pattern

Vert. plane

Horiz. plane

•Points belonging to horizontal or vertical plane...

•Arbitrary distance between two planes...

•Cross-point as origin…

« Alignment constraints »« Alignment constraints » ……………………...……………………………

Page 19: « Uncalibrated Vision based on Structured Light »

'''' or '''' CABA zzzzCABA

otherwise… reduced orthogonality constraint:

« Orthogonality constraints »« Orthogonality constraints » ……………………...……………………………

A'B' ·A'C' = (xA' - xB')(xA' - xC')+ (yA' - yB')(yA' - yC')+ (zA' - zB')(zA' -zC') = 0

(xA' - xB')(xA' - xC')+ (yA' - yB')(yA' - yC') = 0

Light stripes

Light planes

Projected lines

Planar surfaces

A

C

B

A' B'

C'

Page 20: « Uncalibrated Vision based on Structured Light »

« Example »« Example » ……………………...……………………………

An alignment constraint : xA' = xB' (relation between unknown Euclidean

points)

We have: [xA' ; yA' ; zA' ; tA']T = W· [xA ; yA ; zA ; tA]T [xB' ; yB' ; zB' ; tB']T = W· [xB ; yB ; zB ; tB]T

Then: W1i·xA = W1i·xB (relation between known projective points)

… same way for the other constraints…

The set of equations is solved by a non-linear optimisation method as Levenberg-Marquardt.

15 independent constraints are necessary (W is a 44 matrix defined up to a scale factor)

Page 21: « Uncalibrated Vision based on Structured Light »

IV. Experimental IV. Experimental resultsresults

1. Colinearity

2. Coplanarity

3. Euclidean reconstruction

……………………………

Page 22: « Uncalibrated Vision based on Structured Light »

« Colinearity »« Colinearity »

Theoretical (pattern) cross-ratio = 1.3333Measured (image) cross-ratio = 1.3287Projective error =6.910-4

Decision = the points are colinear

Theoretical cross-ratio = 1.3333Measured cross-ratio = 1.3782Projective error =6.210-3

Decision = the points are not colinear

……………………...……………………………

Page 23: « Uncalibrated Vision based on Structured Light »

« Coplanarity »« Coplanarity »

Theoretical cross-ratio = 2Measured cross-ratio = 1.96Projective error =2.210-3

Decision = the points are coplanar

Theoretical cross-ratio = 2Measured cross-ratio = 2.186Projective error =5.910-3

Decision = the points are not coplanar

……………………...……………………………

Page 24: « Uncalibrated Vision based on Structured Light »

« Euclidean reconstruction: synthetic data »« Euclidean reconstruction: synthetic data »

Real co-ordinates Errors on estimate co-ordinates

X Y Z X Y Z 100 -50 4000 0.518 -0.267 3.95 300 -50 2000 -0.65 -0.242 -1.5 700 -50 4000 0.614 -0.33 6.43 500 -400 4020 -1.132 -1.768 -4.332 300 50 4000 0.091 0.397 2.597 500 50 2000 0.076 -0.119 0.449 900 50 4000 0.13 0.171 2.007 300 -430 3000 0.505 -0.911 5.079 450 75 2500 0.76 -1.154 4.016 705 -120 1000 0.603 -0.827 0.829 Mean relative error (%) 0.518 1.539 0.169

re-projection of 3D points onto the image planes (circles: synthetic points, crosses:

re-projections)

……………………...……………………………

Page 25: « Uncalibrated Vision based on Structured Light »

-200

-150

-100

-50

-150

-100

-50

00

20

40

60

80

xy

z

0 20 40 60 80 100 1200

10

20

30

40

50

60

70

80

90

x

y

0

50

100

150

0

50

1000

20

40

60

80

xy

z

« Euclidean reconstructions »« Euclidean reconstructions »

-180 -160 -140 -120 -100 -80 -60-140

-120

-100

-80

-60

-40

-20

x

y

……………………...……………………………

Page 26: « Uncalibrated Vision based on Structured Light »

V. ConclusionV. Conclusion

……………………………

Page 27: « Uncalibrated Vision based on Structured Light »

•Projective reconstruction from a single pattern projection and a single image capture.

•Pattern projection used to retrieve geometrical knowledge of the scene: uncalibrated Euclidean reconstruction.

•Structured lighting ensures there is known scene structure.

•Structured light provides numerous contraints.

•Tests of colinearity and coplanarity can be used to retrieve projective basis (5 points, no 4 of them being coplanar, no 3 of them being colinear).