1
UBC Mechanical Engineering CFD Modeling Group Dr. Martha Salcudean Weyerhaeuser Industrial Research Chair Fellow C.S.M.E., F.C.A.A., F.R.S.C. Dr. Ian Gartshore Fellow C.A.S.I. FLUID - FIBER INTERACTION IN HYDRO-CYCLONES FUNDING FUNDING - FRBC - Network for Mechanical Pulping - Weyerhaeuser Paper Company Zhengbing Bian Paul Nowak Eric Bibeau Mohammad Shariati Suqin Dong Emil Statie Xioasi Feng David Stropky Mike Georgallis Zhu Zhi Xiao Pingfan He Jerry Yuan Lu Hua Kegang Zhang OBJECTIVES Compute 3D flow in hydro-cyclones Improve mathematical models of swirling flows Develop mathematical models to compute fiber trajectories in complex flows Model separation and fractionation according to fiber properties in hydro-cyclones MODEL Modified k- model for highly curved turbulent flows Finite volume discretization using a generalized curvilinear system Particle tracking through explicit time marching based on force balance END-USERS Pulp mills requiring high efficiency for fiber cleaning and fractionation Hydro-cyclone manufacturers Increase operating efficiency for hydro-cyclones Optimize the hydro-cyclones design Evaluate the influence on fractionation of fiber wet density, fiber diameter, fiber length, and fiber specific surface Evaluate the influence of the fluid temperature on fractionation Predict the fractionation performance of a hydro-cyclone for given fiber properties diameter(microns) carriedover(% ) 10 10 20 20 30 30 40 40 50 50 60 60 70 70 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 A diameter B diameter FiberA * * FiberB 10 20 30 40 50 60 70 0 20 40 60 80 100 carriedover(% ) 5 0 20 40 60 80 100 carriedover(% ) 5 10 20 30 40 50 60 70 cov 89.625 77.675 65.725 53.775 41.825 29.875 17.925 5.975 density rel =1.04 density rel =1.14 density rel =1.42 20 40 60 0 50 100 carriedover(% ) 1.2 1.4 0 50 100 carriedover(% ) 1.2 1.4 20 40 60 cov 22.2 20.3857 18.5714 16.7571 14.9429 13.1286 11.3143 9.5 7.68571 5.87143 4.05714 2.24286 0.428571 -1.38571 -3.2 10 20 30 40 50 60 70 diameter(microns) 10 20 30 40 50 60 70 diameter(microns) 1.1 1.2 1.3 1.4 density rel 1.1 1.2 1.3 1.4 density rel 1.1 1.2 1.3 1.4 density rel 10 20 30 40 50 60 70 diameter(microns) The difference between particles carried over at t = 20°C and t = 45°C. The yellow grid represents particles carried over at t = 20°C x r 0 0.1 0.2 0.3 0.4 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 (a) x r 0 0.1 0.2 0.3 0.4 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 p 1.52431E+07 1.42361E+07 1.32292E+07 1.22222E+07 1.12153E+07 1.02083E+07 9.20135E+06 8.1944E +06 7.18745E+06 6.1805E +06 5.17355E+06 4.1666E +06 3.15965E+06 2.1527E +06 1.14575E+06 (b) x r 0 0.1 0.2 0.3 0.4 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 sw 2.84531 2.65563 2.46594 2.27625 2.08656 1.89688 1.70719 1.5175 1.32781 1.13813 0.948438 0.75875 0.569063 0.379375 0.189688 (c) (a) Velocity vectors, (b) pressure contours, and (c) swirl velocity contours in a hydrocyclone length(m m ) carriedover(% ) 1 1 2 2 3 3 4 4 5 5 6 6 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 Alength Blength FiberA * * Fiber B Influence of the particle length on fractionation density rel carriedover(% ) 1 1 1.1 1.1 1.2 1.2 1.3 1.3 1.4 1.4 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 Adensity rel Bdensity rel * * FiberB FiberA Influence of the particle density on fractionation Separation on diameter and length as function of the particle density Influence of the particle diameter on fractionation Other Institutions Government Industry TECHNOLOGY TECHNOLOGY TRANSFER License agreement Service agreements Consulting agreements Custom agreements License agreements PSL BENEFITS 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Feed 36 50 59.1 67.1 73.1 Feed Flow rate (kg/m in.) A ccepts Rejects Fibre C oarseness (m m) C oarseness vs.flow rate forsynthetic fibres forBauercleaner

UBC Mechanical Engineering CFD Modeling Group

Embed Size (px)

DESCRIPTION

MODEL. OBJECTIVES. Modified k - model for highly curved turbulent flows Finite volume discretization using a generalized curvilinear system Particle tracking through explicit time marching based on force balance. Compute 3D flow in hydro-cyclones - PowerPoint PPT Presentation

Citation preview

Page 1: UBC Mechanical Engineering CFD Modeling Group

UBC Mechanical Engineering CFD Modeling Group

Dr. Martha SalcudeanWeyerhaeuser Industrial Research ChairFellow C.S.M.E., F.C.A.A., F.R.S.C.

Dr. Ian GartshoreFellow C.A.S.I.

FLUID - FIBER INTERACTION IN HYDRO-CYCLONES

FUNDINGFUNDING

- FRBC- Network for Mechanical Pulping- Weyerhaeuser Paper Company

Zhengbing Bian Paul Nowak

Eric Bibeau Mohammad Shariati

Suqin Dong Emil Statie

Xioasi Feng David Stropky

Mike Georgallis Zhu Zhi Xiao

Pingfan He Jerry Yuan

Lu Hua Kegang Zhang

OBJECTIVES

• Compute 3D flow in hydro-cyclones

• Improve mathematical models of swirling flows

• Develop mathematical models to compute fiber trajectories in complex flows

• Model separation and fractionation according to fiber properties in hydro-cyclones

MODEL• Modified k- model for highly curved turbulent flows

• Finite volume discretization using a generalized curvilinear system

• Particle tracking through explicit time marching based on force balance

END-USERS

• Pulp mills requiring high efficiency for fiber cleaning and fractionation

• Hydro-cyclone manufacturers

• Increase operating efficiency for hydro-cyclones

• Optimize the hydro-cyclones design

• Evaluate the influence on fractionation of fiber wet density, fiber diameter, fiber length, and fiber specific surface

• Evaluate the influence of the fluid temperature on fractionation

• Predict the fractionation performance of a hydro-cyclone for given fiber properties

diameter (microns)

carriedover(%)

10

10

20

20

30

30

40

40

50

50

60

60

70

70

0 0

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

90 90

100 100

A diameterB diameter

Fiber A

*

*

Fiber B

10

20

30

40

50

60

70

0

20

40

60

80

100

carriedover(%)

5

0

20

40

60

80

100

carrie

dover(%)

5

10

20

30

40

50

60

70

cov89.62577.67565.72553.77541.82529.87517.9255.975

densityrel = 1.04

densityrel = 1.14

densityrel = 1.4220

40

60

0

50

100

carriedover(%)

1.2

1.4

0

50

100

carrie

dover(%)

1.2

1.4

20

40

60

cov22.220.385718.571416.757114.942913.128611.31439.57.685715.871434.057142.242860.428571-1.38571-3.2

10 20 30 40 50 60 70

diameter (microns)

10 20 30 40 50 60 70

diameter (microns)

1.1

1.2

1.3

1.4

density

rel

1.1

1.2

1.3

1.4

density

rel

1.1

1.2

1.3

1.4

density

rel

10 20 30 40 50 60 70

diameter (microns)

The difference between particles carried over at t = 20°C and t = 45°C.The yellow grid represents particles carried over at t = 20°C

x

r

0 0.1 0.2 0.3 0.40

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(a)

x

r

0 0.1 0.2 0.3 0.40

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

p1.52431E+071.42361E+071.32292E+071.22222E+071.12153E+071.02083E+079.20135E+068.1944E+067.18745E+066.1805E+065.17355E+064.1666E+063.15965E+062.1527E+061.14575E+06

(b)

x

r

0 0.1 0.2 0.3 0.40

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04sw

2.845312.655632.465942.276252.086561.896881.707191.51751.327811.138130.9484380.758750.5690630.3793750.189688

(c)

(a) Velocity vectors, (b) pressure contours, and (c) swirl velocity contours in a hydrocyclone

length (mm)

carriedover(%)

1

1

2

2

3

3

4

4

5

5

6

6

0 0

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

90 90

100 100

A lengthB length

Fiber A

*

*

Fiber B

Influence of the particle length on fractionation

densityrel

carriedover(%)

1

1

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.4

0 0

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

90 90

100 100

A densityrelB densityrel

*

*

Fiber B

Fiber A

Influence of the particle density on fractionation

Separation on diameter and length as function of the particle density

Influence of the particle diameter on fractionation

Other Institutions

Government Industry

TECHNOLOGY TECHNOLOGY TRANSFER

License agreement

Serviceagreements

Consultingagreements

Customagreements

Licenseagreements

PSL

BENEFITS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Feed 36 50 59.1 67.1 73.1

Feed Flowrate (kg/min.)

AcceptsRejects

Fibre Coarseness (mm)

Coarseness vs. flow rate for synthetic fibres for Bauer cleaner