16
Two decades of the AMOC: Its structure, variability, and predictability Patrick Heimbach 1 @ MIT: G. Forget, P. Heimbch, C. Wunsch @ AER: M. Buckley, C. Piecuch, R.M. Ponte @ JPL: I. Fukumori, T. Lee 1 MIT, EAPS, Cambridge, MA, USA Estimating the Circulation and Climate of the Ocean http://ecco-group.org

Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

Two  decades  of  the  AMOC:    Its  structure,  variability,  and  predictability  

Patrick Heimbach1 @ MIT: G. Forget, P. Heimbch, C. Wunsch @ AER: M. Buckley, C. Piecuch, R.M. Ponte @ JPL: I. Fukumori, T. Lee

1 MIT, EAPS, Cambridge, MA, USA

Estimating the Circulation and Climate of the Ocean http://ecco-group.org

Page 2: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

Outline  

 •  Preliminary  solution  of  new-­‐generation  decadal  ocean  

climate  state  estimate  –  ECCO-­‐SP  (Sustained  Production)  

•  Basic  statistical  properties  of  meridional  volume  transports    

•  Linear  prediction  approaches  –  AR  model  prediction  –  transient  non-­‐normal  amplification  

Page 3: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

ECCO-­‐SP  version  4  grid:  Lat/Lon/PolarCap  (LLC_90)  Decadal  ocean  climate  state  estimate  

Forget et al., in prep.

Atlantic  top-­‐bottom  volume  transport    reflects:  •  Bering  Strait  transport  •  local  freshwater  input  

Page 4: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

New  features  in  forthcoming  ECCO-­‐SP  “version  4”  (1992-­‐2010)  

•  new  global  grid  LLC_90  –  includes  the  Arctic  –  telescopic  resolution  to  1/3o  near  the  Equator  –  meridionally  isotropic  in  mid-­‐latitudes  

•  shift  from  23  to  50  vertical  levels  with  partial  cells  •  forcing  using  ERA-­‐Interim  •  state-­‐of-­‐the-­‐art  dynamic/thermodynamic  sea  ice  model  •  nonlinear  free  surface  +  real  freshwater  flux  B.C.s  •  third-­‐order  advection  scheme  •  removal  of  C-­‐D  scheme  for  Coriolis  terms  •  use  of  diffusion  operator  (Weaver  &  Courtier,  2001)  for  in-­‐situ  obs.  •  all  satellite  data  are  daily  along-­‐track  •  internal  model  parameters  are  part  of  the  control  space  

Page 5: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

observation instrument product/source area period dT

Mean dynamic topography (MDT)

•  GRACE SM004-GRACE3 •  GRACE GGM02 •  EGM2008/DNSC07

CLS/GFZ (A.M. Rio) CSR/U. Texas (B. Tapley) N. Pavlis

global

time-mean mean

Sea level anomaly (SLA) •  TOPEX/POSEIDON • Jason-1/2 •  ERS-1/2, ENVISAT •  GFO

NOAA/RADS & PO.DAAC NOAA/RADS & PO.DAAC NOAA/RADS & PO.DAAC NOAA/RADS & PO.DAAC

65oN/S 65oN/S 82oN/S 65oN/S

1993 – 2002 2002 – 2011 1992 – 2011 2001 - 2008

daily daily daily daily

bottom pressure •  EIGEN-GRACE05 GFZ Potsdam global 2002 – 2011 weekly

SST •  blended, AVHRR (O/I) •  TRMM/TMI •  AMSR-E (MODIS/Aqua)

Reynolds & Smith GHRSST GHRSST

Global 40oN/S Global

1992 - 2011 1998 - 2004 2001 - 2011

monthly daily daily

SSS Various in-situ WOA09 surface Global climatology monthly

In-situ T, S (floats, sections,…)

•  Argo, P-Alace •  XBT •  CTD •  SEaOS

Ifremer M. Baringer (NCEP) various SMRU & BAS (UK)

“global” “gobal” sections SO

1992 – 2011 1992 – 2011 1992 – 2011 2004 – 2010

daily daily daily daily

Mooring arrays • TOGA/TAO, Pirata •  Florida Straits [WITHELD]

PMEL/NOAA NOAA/AOML

Tropics N. Atl.

1992 – 2011 1992 – 2011

daily daily

Climatological T,S •  WOA09 •  OCCA

WOA09 Forget, 2010

“global” “global”

1950 - 2008 1950 - 2002

mean mean

sea ice cover •  satellite brightness temp. (passive microwave)

•  NSIDC-0079 (Bootstrap) •  NSIDC-0051 (NASA Team)

Arctic, SO 1992 - 2011 daily

Wind stress QuickSCAT •  NASA (Bourassa) •  SCOW (Risien & Chelton)

global 1999 – 2009 climatology

daily monthly

Tide gauge SSH Tide gauges NBDC/NOAA sparse 1992 - 2006 monthly

Flux constraints from ERA-Interim, JRA-25, NCEP, CORE-2 variances

Various global 1992 - 2011 2-day to 14-day

Balance constraints heat & freshwater (E-P-R) global 1992 - 2011 mean

bathymetry Smith & Sandwell, ETOPO5 global - -

Page 6: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

ECCO-­‐SP  v4:    Preliminary  AMOC  transport  estimates  at  selected  latitudes  

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 20120

10

2055o

Sv

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 20120

10

20 45o

Sv

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 20120

10

20

25o

Sv

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 20120

10

20

10o

Sv

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 20120

10

20

25o

Sv

YEAR

55oN

45oN

25oN

10oN

25oS

Page 7: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

ECCO-­‐SP  v4:  Preliminary  AMOC  transport  estimates  at  selected  latitudes    

•  ECCO-­‐SP,  using  global  observing  system:  o  provides  a  basin-­‐wide  or  global  perspective  o  perspective  back  to  1992  (beginning  of  satellite  altimetry)  o  considerable  interannual  variability  o  no  discernable  trends  o  2010  transport  minimum  not  unprecedented  in  20-­‐year  context  ?    

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

10

15

20

Sv24.7671

25oN

Page 8: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

ECCO-­‐SP  v4:  Perspective  at  16N  –  partial  vs.  basin-­‐wide  sums  

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 201225

20

15

10

5

Sv

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

20

10

0

Sv

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 20120

10

20

Sv

YEAR

the partial sum w/o seasonal cycle

the basin-wide sum

the partial sum with seasonal cycle

Partial  sums  are  hard  to  interpret  

Page 9: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

AMOC  as  Gaussian  red  noise  process:  Power  spectra  &  autocorrelation  at  five  latitudes  

Wunsch and Heimbach, submitted, 2012

Autocorrelation  function  suggests    •  essentially  white-­‐noise,  with  slight  reddening  toward  higher  latitudes    •  but  too  short  time  series  to  resolve  multi-­‐decadal  adjustment  timescales)  

Page 10: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

Meridional  AMOC  correlation  matrix  

Wunsch and Heimbach, submitted, 2012 see also Bingham et al., GRL, 2007

•  Confirms  findings  of  meridional  decorrelation  across  ~40oN  –  different  circulation  regimes  vs.  masking  by  noise  –  issues  of  lumping  together  of  dynamical  regimes  into  zonal  integrals  –  a  limitation:  no  separation  of  time  scales  of  variability  

 

Page 11: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

ECCO-­‐SP  v4:  Coherence  amplitude  &  phase  between  neighboring  latitudes  

0 0.1 0.2 0.3 0.40

0.5

1AM

PLITUD

E

0 0.1 0.2 0.3 0.4

1000

100

CYCLES/MONTH

DEGRE

ES

25oS 10oN

0 0.1 0.2 0.3 0.40

0.5

1

0 0.1 0.2 0.3 0.4

1000

100

CYCLES/MONTH

16oN 25oN

0 0.1 0.2 0.3 0.40

0.5

1

AMPLITUD

E

0 0.1 0.2 0.3 0.4

1000

100

CYCLES/MONTH

DEGRE

ES

25oN 45oN

0 0.1 0.2 0.3 0.40

0.5

1

0 0.1 0.2 0.3 0.4

1000

100

CYCLES/MONTH

45oN 55oN

Page 12: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

Exploring  linear  predictability  via  autoregressive  (AR)  models  Wunsch,  DSR,  2012  

•  Assume  system  to  be  linear  •  Represent  SST  (w/o  annual  

seasonal  cycle)  as  AR(N)  process  •  Separately  consider  seasonal  and  

interannual  prediction  

max. prediction error: 0.7 oC2

max. prediction error: 0.78 oC2

month-­‐ahead  prediction  from  monthly  means  

year-­‐ahead  prediction  from  yearly  means  

Page 13: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

•  Singular  vectors  (SVs):  fastest  (or  optimal)  growing  perturbations  for  a  chosen  norm  (Lorenz,  1965),  e.g.  AMOC  anomalies  

–  Non-­‐orthogonal  superposition  of  modes,  both  of  which  decay,  but  with  very  different  time  scales  

–  Leads  to  transient  amplification  on  the  fast  decaying  time  scale  Farrell  (1988,  1989),  Trefethen  et  al.  (1993),  Trefethen  (1997)  

 

Transient  growth  &  non-­‐normal  amplification  of  linear  decaying  modes  Zanna  et  al.,  2011/12  

Page 14: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

Here  we  consider  an  idealized  basin  configuration:  –  the  MIT  general  circulation  model  @  1o  horizontal  resolution  –  with  tangent  linear  and  adjoint  model  capabilities  

How  to  calculate  SVs  in  an  ocean  general  circulation  model  (GCM)?  Zanna  et  al.,  2011/12  

MITgcm  ocean  basin  (Marshall  et  al.,  1997)  http://mitgcm.org  

An  IPCC  AR4  model:  GFDL  CM2.1  @  1o  horizontal  resolution  (Delworth  et  al.  2006)  

Page 15: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

Results:  SV’s  for  upper-­‐ocean  vs.  full-­‐depth  perturbations  Zanna  et  al.,  2011/12  

•  Singular  vectors  constrained  to  upper  300  m  (SST  /  mixed-­‐layer)    vs.  full  depth  3D  perturbations  

0 10 20 30 400

10

20

30

40

50

60

70

80

90

! [yrs]

Lead

ing

Sing

ular

Val

ue "

Maximum Amplification Curve

full depth i.c.upper ocean i.c.

Time scales & amplitudes:

!

! P 0

' = 0.1C " MOC'(19yrs) =1.8Sv (9% mean)

!

! P 0

' = 0.1C " MOC'(7.5yrs) = 2.4Sv (12% mean)Full  3D  singular  vectors:  

Upper  300  m  singular  vectors:  

predictability horizon (uncertainty growth)

7 yr 19 yr Impact  of  upper  ocean  perturba:ons  on  MOC:    1.  not  as  efficient    2.  not  as  fast  as  the  deep  perturba:ons    à  an  overes:mate  predictability  :me  

Page 16: Two$decades$of$the$AMOC:$ Its$structure,variability,and ... · CSR/U. Texas (B. Tapley ) N. Pavlis global time-mean mean Sea level anomaly (SLA) • TOPEX/POSEIDON •Jason-1/2 •

Conclusions  

•  State  estimation  indispensible  for    –  data  synthesis  (see  R.  Ponte  talk  on  Thu.)  –  obtaining  basin-­‐wide  (&  global)  perspective  –  process  partitioning/budgets  (see  M.  Buckley  talk;    C.  Piecuch  poster)  

•  Preliminary  solution  from  new-­‐generation  ECCO-­‐SP  estimate  suggests  little  discernable  AMOC  trends  at  various  latitudes  for  1992-­‐2010  

•  white  to  weakly  red  spectral  character  suggests  that  AMOC  index  –  integrates  various  (high-­‐frequency)  processes  –  perhaps  of  limited  use  for  deeper  understanding  

•  Predictability  horizon,  applying  several  linear  methods,  appears  to  be  limited;  much  less  than  a  decade  

•  For  some  of  these  analyses,  available  time  series  remain  too  short  to  provide  robust  results