166
Today’s Outline - September 19, 2016 C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 1 / 18

Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Embed Size (px)

Citation preview

Page 1: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Today’s Outline - September 19, 2016

• Reflection from a thin slab

• Kiessig fringes

• Kinematical approximation for a thin slab

• Multilayers in the kinematical regime

• Parratt’s exact recursive calculation

Homework Assignment #02:Problems on Blackboarddue Monday, September 26, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 1 / 18

Page 2: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Today’s Outline - September 19, 2016

• Reflection from a thin slab

• Kiessig fringes

• Kinematical approximation for a thin slab

• Multilayers in the kinematical regime

• Parratt’s exact recursive calculation

Homework Assignment #02:Problems on Blackboarddue Monday, September 26, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 1 / 18

Page 3: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Today’s Outline - September 19, 2016

• Reflection from a thin slab

• Kiessig fringes

• Kinematical approximation for a thin slab

• Multilayers in the kinematical regime

• Parratt’s exact recursive calculation

Homework Assignment #02:Problems on Blackboarddue Monday, September 26, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 1 / 18

Page 4: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Today’s Outline - September 19, 2016

• Reflection from a thin slab

• Kiessig fringes

• Kinematical approximation for a thin slab

• Multilayers in the kinematical regime

• Parratt’s exact recursive calculation

Homework Assignment #02:Problems on Blackboarddue Monday, September 26, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 1 / 18

Page 5: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Today’s Outline - September 19, 2016

• Reflection from a thin slab

• Kiessig fringes

• Kinematical approximation for a thin slab

• Multilayers in the kinematical regime

• Parratt’s exact recursive calculation

Homework Assignment #02:Problems on Blackboarddue Monday, September 26, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 1 / 18

Page 6: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Today’s Outline - September 19, 2016

• Reflection from a thin slab

• Kiessig fringes

• Kinematical approximation for a thin slab

• Multilayers in the kinematical regime

• Parratt’s exact recursive calculation

Homework Assignment #02:Problems on Blackboarddue Monday, September 26, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 1 / 18

Page 7: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Today’s Outline - September 19, 2016

• Reflection from a thin slab

• Kiessig fringes

• Kinematical approximation for a thin slab

• Multilayers in the kinematical regime

• Parratt’s exact recursive calculation

Homework Assignment #02:Problems on Blackboarddue Monday, September 26, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 1 / 18

Page 8: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 9: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα

= 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 10: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 11: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 12: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 13: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 14: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc

≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 15: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 16: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc

≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 17: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα,

q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 18: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 19: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 20: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 21: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 22: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 23: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′,

t =2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 24: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation review

The scattering vector (or momen-tum transfer) is given by

and for small angles

similarly for the critical angle we de-fine

defining a reduced scattering vector

Q =4π

λsinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =Q

Qc≈ 2k

Qcα, q′ ≈ 2k

Qcα′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =2k

Q2c

µ

r =q − q′

q + q′, t =

2q

q + q′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 2 / 18

Page 25: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Law

and since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 26: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Law

and since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 27: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 28: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 29: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q,

while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 30: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 31: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 32: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 33: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2

(1 + 2i

Im(q′)

q

)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 34: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 35: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 36: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ

→ Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 37: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 38: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 39: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)

=q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 40: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2

≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 41: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2

, t =2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 42: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1

, Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 43: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 44: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

Start by rearranging Snell’s Lawand since q is real by definition,when q � 1

this implies Re(q′) ≈ q, while theimaginary part can be computed byassuming

Comparing to the equation abovegives

The reflection and transmission co-efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµq

r =(q − q′)(q + q′)

(q + q′)(q + q′)=

q2 − q′ 2

(q + q′)2≈ 1

(2q)2, t =

2q

q + q′≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmissionC. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 3 / 18

Page 45: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1

, q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 46: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1

, q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 47: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 48: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 49: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 50: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)

≈ −q′

+q′= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 51: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′

= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 52: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 53: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′

≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 54: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′≈ 2q

q′

= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 55: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 56: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 57: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q � 1

When q � 1 , q′ is mostly imagi-nary with magnitude 1 since bµ isvery small

Thus the reflection and transmis-sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=(q − q′)

(q + q′)≈ −q

+q′= −1

t=2q

q + q′≈ 2q

q′= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is onlysmall transmission in the form of an evanescent wave, and the penetrationdepth is very short.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 4 / 18

Page 58: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1,

adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√

bµ � 1, the reflection andtransmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√

bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 59: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1,

adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√

bµ � 1, the reflection andtransmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√

bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 60: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1,

adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√

bµ � 1, the reflection andtransmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ

= bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√

bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 61: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ,

yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√

bµ � 1, the reflection andtransmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√

bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 62: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√

bµ � 1, the reflection andtransmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√

bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 63: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√

bµ � 1, the reflection andtransmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√

bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 64: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√

bµ � 1, the reflection andtransmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 65: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√bµ � 1, the reflection and

transmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 66: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√bµ � 1, the reflection and

transmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√bµ(1 + i)

r=(q − q′)

(q + q′)

≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 67: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√bµ � 1, the reflection and

transmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 68: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√bµ � 1, the reflection and

transmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q

= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 69: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√bµ � 1, the reflection and

transmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 70: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√bµ � 1, the reflection and

transmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 71: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Limiting cases - q ∼ 1

If q ∼ 1, adding and subtractingbµ, yields that q′ is complex withreal and imaginary parts of equalmagnitude.

Since√bµ � 1, the reflection and

transmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈√bµ(1 + i)

r=(q − q′)

(q + q′)≈ q

q≈ 1

t=2q

q + q′≈ 2q

q= 2

Λ ≈ 1

Qc Im(q′)≈ 1

Qc

√bµ

The reflected wave is in phase with the incident, there is significant (largeramplitude than the reflection) transmission with a large penetration depth.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 5 / 18

Page 72: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Review of interface effects

We have covered the interface boundary conditions which govern thetransmission and reflection of waves at a change in medium.

These resultin the Fresnel equations which we rewrite here in terms of the momentumtransfer.

n0

n1

r=Q − Q ′

Q + Q ′

t=2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zeroin all cases due to absorption. We now consider what happens if there is asecond interface encountered by the transmitted wave before it dies away.That is, a thin slab of material on top of an infinite substrate

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 6 / 18

Page 73: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Review of interface effects

We have covered the interface boundary conditions which govern thetransmission and reflection of waves at a change in medium.

These resultin the Fresnel equations which we rewrite here in terms of the momentumtransfer.

n0

n1

r=Q − Q ′

Q + Q ′

t=2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zeroin all cases due to absorption. We now consider what happens if there is asecond interface encountered by the transmitted wave before it dies away.That is, a thin slab of material on top of an infinite substrate

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 6 / 18

Page 74: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Review of interface effects

We have covered the interface boundary conditions which govern thetransmission and reflection of waves at a change in medium. These resultin the Fresnel equations which we rewrite here in terms of the momentumtransfer.

n0

n1

r=Q − Q ′

Q + Q ′

t=2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zeroin all cases due to absorption. We now consider what happens if there is asecond interface encountered by the transmitted wave before it dies away.That is, a thin slab of material on top of an infinite substrate

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 6 / 18

Page 75: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Review of interface effects

We have covered the interface boundary conditions which govern thetransmission and reflection of waves at a change in medium. These resultin the Fresnel equations which we rewrite here in terms of the momentumtransfer.

n0

n1

r=Q − Q ′

Q + Q ′

t=2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zeroin all cases due to absorption. We now consider what happens if there is asecond interface encountered by the transmitted wave before it dies away.That is, a thin slab of material on top of an infinite substrate

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 6 / 18

Page 76: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Review of interface effects

We have covered the interface boundary conditions which govern thetransmission and reflection of waves at a change in medium. These resultin the Fresnel equations which we rewrite here in terms of the momentumtransfer.

n0

n1

r=Q − Q ′

Q + Q ′

t=2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zeroin all cases due to absorption. We now consider what happens if there is asecond interface encountered by the transmitted wave before it dies away.That is, a thin slab of material on top of an infinite substrate

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 6 / 18

Page 77: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Review of interface effects

We have covered the interface boundary conditions which govern thetransmission and reflection of waves at a change in medium. These resultin the Fresnel equations which we rewrite here in terms of the momentumtransfer.

n0

n1

r=Q − Q ′

Q + Q ′

t=2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zeroin all cases due to absorption.

We now consider what happens if there is asecond interface encountered by the transmitted wave before it dies away.That is, a thin slab of material on top of an infinite substrate

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 6 / 18

Page 78: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Review of interface effects

We have covered the interface boundary conditions which govern thetransmission and reflection of waves at a change in medium. These resultin the Fresnel equations which we rewrite here in terms of the momentumtransfer.

n0

n1

r=Q − Q ′

Q + Q ′

t=2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zeroin all cases due to absorption. We now consider what happens if there is asecond interface encountered by the transmitted wave before it dies away.That is, a thin slab of material on top of an infinite substrate

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 6 / 18

Page 79: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection and transmission coefficients

For a slab of thickness ∆ on a substrate, the transmission and reflectioncoefficients at each interface are labeled:

n0

n1

r01

t01

r01 – reflection in n0 off n1

t01 – transmission from n0 into n1

r12 – reflection in n1 off n2

t12 – transmission from n1 into n2

r10 – reflection in n1 off n0

t10 – transmission from n1 into n0

Build the composite reflection coefficient from all possible events

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 7 / 18

Page 80: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection and transmission coefficients

For a slab of thickness ∆ on a substrate, the transmission and reflectioncoefficients at each interface are labeled:

n0

n1

r01

t01

r01 – reflection in n0 off n1

t01 – transmission from n0 into n1

r12 – reflection in n1 off n2

t12 – transmission from n1 into n2

r10 – reflection in n1 off n0

t10 – transmission from n1 into n0

Build the composite reflection coefficient from all possible events

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 7 / 18

Page 81: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection and transmission coefficients

For a slab of thickness ∆ on a substrate, the transmission and reflectioncoefficients at each interface are labeled:

n1

n2

r12

t12

n0

r01 – reflection in n0 off n1

t01 – transmission from n0 into n1

r12 – reflection in n1 off n2

t12 – transmission from n1 into n2

r10 – reflection in n1 off n0

t10 – transmission from n1 into n0

Build the composite reflection coefficient from all possible events

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 7 / 18

Page 82: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection and transmission coefficients

For a slab of thickness ∆ on a substrate, the transmission and reflectioncoefficients at each interface are labeled:

n0

n1

r10

t10

r01 – reflection in n0 off n1

t01 – transmission from n0 into n1

r12 – reflection in n1 off n2

t12 – transmission from n1 into n2

r10 – reflection in n1 off n0

t10 – transmission from n1 into n0

Build the composite reflection coefficient from all possible events

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 7 / 18

Page 83: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection and transmission coefficients

For a slab of thickness ∆ on a substrate, the transmission and reflectioncoefficients at each interface are labeled:

n0

n1

r10

t10

r01 – reflection in n0 off n1

t01 – transmission from n0 into n1

r12 – reflection in n1 off n2

t12 – transmission from n1 into n2

r10 – reflection in n1 off n0

t10 – transmission from n1 into n0

Build the composite reflection coefficient from all possible events

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 7 / 18

Page 84: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the topsurface is computed

n0

n1

n2

r01

+t01r12t10

· p2

+t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal.This adds a phase shift of

p2 = e i2(k1 sinα1)∆

= e iQ1∆

which multiplies the reflection coefficient with each pass through the slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 8 / 18

Page 85: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the topsurface is computed

n0

n1

n2

r01

+t01r12t10

· p2

+t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal.This adds a phase shift of

p2 = e i2(k1 sinα1)∆

= e iQ1∆

which multiplies the reflection coefficient with each pass through the slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 8 / 18

Page 86: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the topsurface is computed

n0

n1

n2

r01

+t01r12t10

· p2

+t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal.This adds a phase shift of

p2 = e i2(k1 sinα1)∆

= e iQ1∆

which multiplies the reflection coefficient with each pass through the slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 8 / 18

Page 87: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the topsurface is computed

n0

n1

n2

r01

+t01r12t10

· p2

+t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal.This adds a phase shift of

p2 = e i2(k1 sinα1)∆

= e iQ1∆

which multiplies the reflection coefficient with each pass through the slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 8 / 18

Page 88: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the topsurface is computed

n0

n1

n2

r01

+t01r12t10

· p2

+t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal.This adds a phase shift of

p2 = e i2(k1 sinα1)∆

= e iQ1∆

which multiplies the reflection coefficient with each pass through the slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 8 / 18

Page 89: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the topsurface is computed

n0

n1

n2

r01

+t01r12t10

· p2

+t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal.This adds a phase shift of

p2 = e i2(k1 sinα1)∆ = e iQ1∆

which multiplies the reflection coefficient with each pass through the slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 8 / 18

Page 90: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the topsurface is computed

n0

n1

n2

r01

+t01r12t10 · p2

+t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal.This adds a phase shift of

p2 = e i2(k1 sinα1)∆ = e iQ1∆

which multiplies the reflection coefficient

with each pass through the slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 8 / 18

Page 91: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the topsurface is computed

n0

n1

n2

r01

+t01r12t10 · p2

+t01r12r10r12t10 · p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal.This adds a phase shift of

p2 = e i2(k1 sinα1)∆ = e iQ1∆

which multiplies the reflection coefficient with each pass through the slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 8 / 18

Page 92: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p2 + t01r10r

212t10p

4 + t01r210r

312t10p

6 + · · ·

rslab = r01 + t01t10r12p2∞∑

m=0

(r10r12p

2)m

= r01 + t01t10r12p2 1

1− r10r12p2

factoring out the second termfrom all the rest

summing the geometric seriesas previously

The individual reflection and transmission coefficients can be determinedusing the Fresnel equations. Recall

r =Q − Q ′

Q + Q ′, t =

2Q

Q + Q ′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 9 / 18

Page 93: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p2 + t01r10r

212t10p

4 + t01r210r

312t10p

6 + · · ·

rslab = r01 + t01t10r12p2∞∑

m=0

(r10r12p

2)m

= r01 + t01t10r12p2 1

1− r10r12p2

factoring out the second termfrom all the rest

summing the geometric seriesas previously

The individual reflection and transmission coefficients can be determinedusing the Fresnel equations. Recall

r =Q − Q ′

Q + Q ′, t =

2Q

Q + Q ′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 9 / 18

Page 94: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p2 + t01r10r

212t10p

4 + t01r210r

312t10p

6 + · · ·

rslab = r01 + t01t10r12p2∞∑

m=0

(r10r12p

2)m

= r01 + t01t10r12p2 1

1− r10r12p2

factoring out the second termfrom all the rest

summing the geometric seriesas previously

The individual reflection and transmission coefficients can be determinedusing the Fresnel equations. Recall

r =Q − Q ′

Q + Q ′, t =

2Q

Q + Q ′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 9 / 18

Page 95: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p2 + t01r10r

212t10p

4 + t01r210r

312t10p

6 + · · ·

rslab = r01 + t01t10r12p2∞∑

m=0

(r10r12p

2)m

= r01 + t01t10r12p2 1

1− r10r12p2

factoring out the second termfrom all the rest

summing the geometric seriesas previously

The individual reflection and transmission coefficients can be determinedusing the Fresnel equations. Recall

r =Q − Q ′

Q + Q ′, t =

2Q

Q + Q ′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 9 / 18

Page 96: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p2 + t01r10r

212t10p

4 + t01r210r

312t10p

6 + · · ·

rslab = r01 + t01t10r12p2∞∑

m=0

(r10r12p

2)m

= r01 + t01t10r12p2 1

1− r10r12p2

factoring out the second termfrom all the rest

summing the geometric seriesas previously

The individual reflection and transmission coefficients can be determinedusing the Fresnel equations. Recall

r =Q − Q ′

Q + Q ′, t =

2Q

Q + Q ′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 9 / 18

Page 97: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p2 + t01r10r

212t10p

4 + t01r210r

312t10p

6 + · · ·

rslab = r01 + t01t10r12p2∞∑

m=0

(r10r12p

2)m

= r01 + t01t10r12p2 1

1− r10r12p2

factoring out the second termfrom all the rest

summing the geometric seriesas previously

The individual reflection and transmission coefficients can be determinedusing the Fresnel equations. Recall

r =Q − Q ′

Q + Q ′, t =

2Q

Q + Q ′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 9 / 18

Page 98: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p2 + t01r10r

212t10p

4 + t01r210r

312t10p

6 + · · ·

rslab = r01 + t01t10r12p2∞∑

m=0

(r10r12p

2)m

= r01 + t01t10r12p2 1

1− r10r12p2

factoring out the second termfrom all the rest

summing the geometric seriesas previously

The individual reflection and transmission coefficients can be determinedusing the Fresnel equations. Recall

r =Q − Q ′

Q + Q ′, t =

2Q

Q + Q ′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 9 / 18

Page 99: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p2 + t01r10r

212t10p

4 + t01r210r

312t10p

6 + · · ·

rslab = r01 + t01t10r12p2∞∑

m=0

(r10r12p

2)m

= r01 + t01t10r12p2 1

1− r10r12p2

factoring out the second termfrom all the rest

summing the geometric seriesas previously

The individual reflection and transmission coefficients can be determinedusing the Fresnel equations. Recall

r =Q − Q ′

Q + Q ′

, t =2Q

Q + Q ′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 9 / 18

Page 100: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p2 + t01r10r

212t10p

4 + t01r210r

312t10p

6 + · · ·

rslab = r01 + t01t10r12p2∞∑

m=0

(r10r12p

2)m

= r01 + t01t10r12p2 1

1− r10r12p2

factoring out the second termfrom all the rest

summing the geometric seriesas previously

The individual reflection and transmission coefficients can be determinedusing the Fresnel equations. Recall

r =Q − Q ′

Q + Q ′, t =

2Q

Q + Q ′

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 9 / 18

Page 101: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =Q0 − Q1

Q0 + Q1

r10 =Q1 − Q0

Q1 + Q0= −r01

t01 =2Q0

Q0 + Q1

t10 =2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=Q2

0 − 2Q0Q1 + Q21 + 4Q0Q1

(Q0 + Q1)2=

Q20 + 2Q0Q1 + Q2

1

(Q0 + Q1)2=

(Q0 + Q1)2

(Q0 + Q1)2= 1

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 10 / 18

Page 102: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =Q0 − Q1

Q0 + Q1

r10 =Q1 − Q0

Q1 + Q0= −r01

t01 =2Q0

Q0 + Q1

t10 =2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=Q2

0 − 2Q0Q1 + Q21 + 4Q0Q1

(Q0 + Q1)2=

Q20 + 2Q0Q1 + Q2

1

(Q0 + Q1)2=

(Q0 + Q1)2

(Q0 + Q1)2= 1

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 10 / 18

Page 103: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =Q0 − Q1

Q0 + Q1

r10 =Q1 − Q0

Q1 + Q0= −r01

t01 =2Q0

Q0 + Q1

t10 =2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=Q2

0 − 2Q0Q1 + Q21 + 4Q0Q1

(Q0 + Q1)2=

Q20 + 2Q0Q1 + Q2

1

(Q0 + Q1)2=

(Q0 + Q1)2

(Q0 + Q1)2= 1

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 10 / 18

Page 104: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =Q0 − Q1

Q0 + Q1

r10 =Q1 − Q0

Q1 + Q0= −r01

t01 =2Q0

Q0 + Q1

t10 =2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=Q2

0 − 2Q0Q1 + Q21 + 4Q0Q1

(Q0 + Q1)2=

Q20 + 2Q0Q1 + Q2

1

(Q0 + Q1)2=

(Q0 + Q1)2

(Q0 + Q1)2= 1

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 10 / 18

Page 105: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =Q0 − Q1

Q0 + Q1

r10 =Q1 − Q0

Q1 + Q0= −r01

t01 =2Q0

Q0 + Q1

t10 =2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=Q2

0 − 2Q0Q1 + Q21 + 4Q0Q1

(Q0 + Q1)2=

Q20 + 2Q0Q1 + Q2

1

(Q0 + Q1)2=

(Q0 + Q1)2

(Q0 + Q1)2= 1

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 10 / 18

Page 106: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =Q0 − Q1

Q0 + Q1

r10 =Q1 − Q0

Q1 + Q0= −r01

t01 =2Q0

Q0 + Q1

t10 =2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10

=(Q0 − Q1)2

(Q0 + Q1)2+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=Q2

0 − 2Q0Q1 + Q21 + 4Q0Q1

(Q0 + Q1)2=

Q20 + 2Q0Q1 + Q2

1

(Q0 + Q1)2=

(Q0 + Q1)2

(Q0 + Q1)2= 1

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 10 / 18

Page 107: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =Q0 − Q1

Q0 + Q1

r10 =Q1 − Q0

Q1 + Q0= −r01

t01 =2Q0

Q0 + Q1

t10 =2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=Q2

0 − 2Q0Q1 + Q21 + 4Q0Q1

(Q0 + Q1)2=

Q20 + 2Q0Q1 + Q2

1

(Q0 + Q1)2=

(Q0 + Q1)2

(Q0 + Q1)2= 1

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 10 / 18

Page 108: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =Q0 − Q1

Q0 + Q1

r10 =Q1 − Q0

Q1 + Q0= −r01

t01 =2Q0

Q0 + Q1

t10 =2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=Q2

0 − 2Q0Q1 + Q21 + 4Q0Q1

(Q0 + Q1)2

=Q2

0 + 2Q0Q1 + Q21

(Q0 + Q1)2=

(Q0 + Q1)2

(Q0 + Q1)2= 1

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 10 / 18

Page 109: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =Q0 − Q1

Q0 + Q1

r10 =Q1 − Q0

Q1 + Q0= −r01

t01 =2Q0

Q0 + Q1

t10 =2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=Q2

0 − 2Q0Q1 + Q21 + 4Q0Q1

(Q0 + Q1)2=

Q20 + 2Q0Q1 + Q2

1

(Q0 + Q1)2

=(Q0 + Q1)2

(Q0 + Q1)2= 1

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 10 / 18

Page 110: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =Q0 − Q1

Q0 + Q1

r10 =Q1 − Q0

Q1 + Q0= −r01

t01 =2Q0

Q0 + Q1

t10 =2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=Q2

0 − 2Q0Q1 + Q21 + 4Q0Q1

(Q0 + Q1)2=

Q20 + 2Q0Q1 + Q2

1

(Q0 + Q1)2=

(Q0 + Q1)2

(Q0 + Q1)2= 1

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 10 / 18

Page 111: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p2 1

1− r10r12p2

= r01 +(1− r2

01

)r12p

2 1

1− r10r12p2

=r01 + r2

01r12p2 +

(1− r2

01

)r12p

2

1− r10r12p2

rslab =r01 + r12p

2

1 + r01r12p2=

r01

(1− p2

)1− r2

01p2

Using the identity

t01t10 = 1− r201

Expanding over a com-mon denominator and re-calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-fication of r12 = −r01.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 11 / 18

Page 112: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p2 1

1− r10r12p2

= r01 +(1− r2

01

)r12p

2 1

1− r10r12p2

=r01 + r2

01r12p2 +

(1− r2

01

)r12p

2

1− r10r12p2

rslab =r01 + r12p

2

1 + r01r12p2=

r01

(1− p2

)1− r2

01p2

Using the identity

t01t10 = 1− r201

Expanding over a com-mon denominator and re-calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-fication of r12 = −r01.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 11 / 18

Page 113: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p2 1

1− r10r12p2

= r01 +(1− r2

01

)r12p

2 1

1− r10r12p2

=r01 + r2

01r12p2 +

(1− r2

01

)r12p

2

1− r10r12p2

rslab =r01 + r12p

2

1 + r01r12p2=

r01

(1− p2

)1− r2

01p2

Using the identity

t01t10 = 1− r201

Expanding over a com-mon denominator and re-calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-fication of r12 = −r01.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 11 / 18

Page 114: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p2 1

1− r10r12p2

= r01 +(1− r2

01

)r12p

2 1

1− r10r12p2

=r01 + r2

01r12p2 +

(1− r2

01

)r12p

2

1− r10r12p2

rslab =r01 + r12p

2

1 + r01r12p2=

r01

(1− p2

)1− r2

01p2

Using the identity

t01t10 = 1− r201

Expanding over a com-mon denominator and re-calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-fication of r12 = −r01.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 11 / 18

Page 115: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p2 1

1− r10r12p2

= r01 +(1− r2

01

)r12p

2 1

1− r10r12p2

=r01 + r2

01r12p2 +

(1− r2

01

)r12p

2

1− r10r12p2

rslab =r01 + r12p

2

1 + r01r12p2=

r01

(1− p2

)1− r2

01p2

Using the identity

t01t10 = 1− r201

Expanding over a com-mon denominator and re-calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-fication of r12 = −r01.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 11 / 18

Page 116: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p2 1

1− r10r12p2

= r01 +(1− r2

01

)r12p

2 1

1− r10r12p2

=r01 + r2

01r12p2 +

(1− r2

01

)r12p

2

1− r10r12p2

rslab =r01 + r12p

2

1 + r01r12p2=

r01

(1− p2

)1− r2

01p2

Using the identity

t01t10 = 1− r201

Expanding over a com-mon denominator and re-calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-fication of r12 = −r01.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 11 / 18

Page 117: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p2 1

1− r10r12p2

= r01 +(1− r2

01

)r12p

2 1

1− r10r12p2

=r01 + r2

01r12p2 +

(1− r2

01

)r12p

2

1− r10r12p2

rslab =r01 + r12p

2

1 + r01r12p2

=r01

(1− p2

)1− r2

01p2

Using the identity

t01t10 = 1− r201

Expanding over a com-mon denominator and re-calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-fication of r12 = −r01.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 11 / 18

Page 118: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p2 1

1− r10r12p2

= r01 +(1− r2

01

)r12p

2 1

1− r10r12p2

=r01 + r2

01r12p2 +

(1− r2

01

)r12p

2

1− r10r12p2

rslab =r01 + r12p

2

1 + r01r12p2

=r01

(1− p2

)1− r2

01p2

Using the identity

t01t10 = 1− r201

Expanding over a com-mon denominator and re-calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-fication of r12 = −r01.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 11 / 18

Page 119: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p2 1

1− r10r12p2

= r01 +(1− r2

01

)r12p

2 1

1− r10r12p2

=r01 + r2

01r12p2 +

(1− r2

01

)r12p

2

1− r10r12p2

rslab =r01 + r12p

2

1 + r01r12p2=

r01

(1− p2

)1− r2

01p2

Using the identity

t01t10 = 1− r201

Expanding over a com-mon denominator and re-calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-fication of r12 = −r01.

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 11 / 18

Page 120: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kiessig fringes

p2 = e iQ1∆

rslab =r01

(1− p2

)1− r2

01p2

If we plot the reflectivity

Rslab = |rslab|2

These are Kiessig fringes whicharise from interference betweenreflections at the top and bot-tom of the slab. They have anoscillation frequency

2π/∆ = 0.092A−1 0 0.2 0.4 0.6 0.8 1

Q (Å-1

)

0

1

RS

lab

∆=68 Å

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 12 / 18

Page 121: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kiessig fringes

p2 = e iQ1∆

rslab =r01

(1− p2

)1− r2

01p2

If we plot the reflectivity

Rslab = |rslab|2

These are Kiessig fringes whicharise from interference betweenreflections at the top and bot-tom of the slab. They have anoscillation frequency

2π/∆ = 0.092A−1 0 0.2 0.4 0.6 0.8 1

Q (Å-1

)

0

1

RS

lab

∆=68 Å

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 12 / 18

Page 122: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kiessig fringes

p2 = e iQ1∆

rslab =r01

(1− p2

)1− r2

01p2

If we plot the reflectivity

Rslab = |rslab|2

These are Kiessig fringes whicharise from interference betweenreflections at the top and bot-tom of the slab. They have anoscillation frequency

2π/∆ = 0.092A−1

0 0.2 0.4 0.6 0.8 1

Q (Å-1

)

0

1

RS

lab

∆=68 Å

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 12 / 18

Page 123: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kiessig fringes

p2 = e iQ1∆

rslab =r01

(1− p2

)1− r2

01p2

If we plot the reflectivity

Rslab = |rslab|2

These are Kiessig fringes whicharise from interference betweenreflections at the top and bot-tom of the slab.

They have anoscillation frequency

2π/∆ = 0.092A−1

0 0.2 0.4 0.6 0.8 1

Q (Å-1

)

10-8

10-4

100

RS

lab

∆=68 Å

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 12 / 18

Page 124: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kiessig fringes

p2 = e iQ1∆

rslab =r01

(1− p2

)1− r2

01p2

If we plot the reflectivity

Rslab = |rslab|2

These are Kiessig fringes whicharise from interference betweenreflections at the top and bot-tom of the slab. They have anoscillation frequency

2π/∆ = 0.092A−1 0 0.2 0.4 0.6 0.8 1

Q (Å-1

)

10-8

10-4

100

RS

lab

∆=68 Å

2π/∆

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 12 / 18

Page 125: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab.

If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 126: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab.

If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 127: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle

refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 128: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle

refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 129: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle

refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 130: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle

refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)

= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 131: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)

= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 132: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)

rslab ≈(

Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 133: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)

rslab ≈(

Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 134: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)

rslab ≈(

Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1

=q2

0 − q21

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 135: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)

rslab ≈(

Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 136: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)

rslab ≈(

Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2

=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 137: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)

rslab ≈(

Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 138: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 139: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)

= −i(

4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 140: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)sin(Q∆/2)

Q∆/2e iQ∆/2

≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 141: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)sin(Q∆/2)

Q∆/2e iQ∆/2

≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 142: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2

≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 143: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and weare well above the critical angle refraction effects can be ignored and weare in the “kinematical” regime.

rslab =r01

(1− p2

)1− r2

01p2

≈ r01

(1− p2

)= r01

(1− e iQ∆

)rslab ≈

(Qc

2Q0

)2 (1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =q0 − q1

q0 + q1

q0 + q1

q0 + q1=

q20 − q2

1

(q0 + q1)2

≈ 1

(2q0)2=

(Qc

2Q0

)2

rslab = −16πρro4Q2

e iQ∆/2(e iQ∆/2 − e−iQ∆/2

)= −i

(4πρr0∆

Q

)����

��sin(Q∆/2)

Q∆/2����e iQ∆/2 ≈ −i λρro∆

sinα= rthin slab

Since Q∆� 1 for a thin slab

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 13 / 18

Page 144: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θN repetitions of a bilayer of thickness Λcomposed of two materials, A and B whichhave a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameterrelated to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =N−1∑ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18

Page 145: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θN repetitions of a bilayer of thickness Λcomposed of two materials, A and B whichhave a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameterrelated to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =N−1∑ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18

Page 146: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θN repetitions of a bilayer of thickness Λcomposed of two materials, A and B whichhave a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameterrelated to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =N−1∑ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18

Page 147: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θN repetitions of a bilayer of thickness Λcomposed of two materials, A and B whichhave a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameterrelated to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =N−1∑ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18

Page 148: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θN repetitions of a bilayer of thickness Λcomposed of two materials, A and B whichhave a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameterrelated to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =N−1∑ν=0

r1(ζ)e i2πζνe−βν

= r1(ζ)1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18

Page 149: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θN repetitions of a bilayer of thickness Λcomposed of two materials, A and B whichhave a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameterrelated to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =N−1∑ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18

Page 150: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivitydeveloped for a slab but replacing the density of the slab material with thedifference in densities of the bilayer components

and assuming thatmaterial A is a fraction Γ of the bilayer thickness

ρ −→ ρAB = ρA − ρB

r1(ζ) = −i λroρABsin θ

∫ +ΓΛ/2

−ΓΛ/2e i2πζz/Λdz

= −i λroρABsin θ

Λ

i2πζ

[e iπζΓ − e−iπζΓ

]

r1 = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

e ix − e−ix = 2i sin x

Q = 4π sin θ/λ = 2πζ/Λ

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 15 / 18

Page 151: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivitydeveloped for a slab but replacing the density of the slab material with thedifference in densities of the bilayer components

and assuming thatmaterial A is a fraction Γ of the bilayer thickness

ρ −→ ρAB = ρA − ρB

r1(ζ) = −i λroρABsin θ

∫ +ΓΛ/2

−ΓΛ/2e i2πζz/Λdz

= −i λroρABsin θ

Λ

i2πζ

[e iπζΓ − e−iπζΓ

]

r1 = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

e ix − e−ix = 2i sin x

Q = 4π sin θ/λ = 2πζ/Λ

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 15 / 18

Page 152: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivitydeveloped for a slab but replacing the density of the slab material with thedifference in densities of the bilayer components and assuming thatmaterial A is a fraction Γ of the bilayer thickness

ρ −→ ρAB = ρA − ρB

r1(ζ) = −i λroρABsin θ

∫ +ΓΛ/2

−ΓΛ/2e i2πζz/Λdz

= −i λroρABsin θ

Λ

i2πζ

[e iπζΓ − e−iπζΓ

]

r1 = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

e ix − e−ix = 2i sin x

Q = 4π sin θ/λ = 2πζ/Λ

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 15 / 18

Page 153: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivitydeveloped for a slab but replacing the density of the slab material with thedifference in densities of the bilayer components and assuming thatmaterial A is a fraction Γ of the bilayer thickness

ρ −→ ρAB = ρA − ρB

r1(ζ) = −i λroρABsin θ

∫ +ΓΛ/2

−ΓΛ/2e i2πζz/Λdz

= −i λroρABsin θ

Λ

i2πζ

[e iπζΓ − e−iπζΓ

]

r1 = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

e ix − e−ix = 2i sin x

Q = 4π sin θ/λ = 2πζ/Λ

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 15 / 18

Page 154: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivitydeveloped for a slab but replacing the density of the slab material with thedifference in densities of the bilayer components and assuming thatmaterial A is a fraction Γ of the bilayer thickness

ρ −→ ρAB = ρA − ρB

r1(ζ) = −i λroρABsin θ

∫ +ΓΛ/2

−ΓΛ/2e i2πζz/Λdz

= −i λroρABsin θ

Λ

i2πζ

[e iπζΓ − e−iπζΓ

]

r1 = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

e ix − e−ix = 2i sin x

Q = 4π sin θ/λ = 2πζ/Λ

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 15 / 18

Page 155: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivitydeveloped for a slab but replacing the density of the slab material with thedifference in densities of the bilayer components and assuming thatmaterial A is a fraction Γ of the bilayer thickness

ρ −→ ρAB = ρA − ρB

r1(ζ) = −i λroρABsin θ

∫ +ΓΛ/2

−ΓΛ/2e i2πζz/Λdz

= −i λroρABsin θ

Λ

i2πζ

[e iπζΓ − e−iπζΓ

]

r1 = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

e ix − e−ix = 2i sin x

Q = 4π sin θ/λ = 2πζ/Λ

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 15 / 18

Page 156: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

rN = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

1− e i2πζNe−βN

1− e i2πζe−β

The incident x-ray has a path length Λ/ sin θ in a bilayer, a fraction Γthrough nA and a fraction (1− Γ) through nB . The amplitude absorptioncoefficient, β is

β = 2

[µA2

ΓΛ

sin θ+µB2

(1− Γ)Λ

sin θ

]=

Λ

sin θ[µAΓ + µB(1− Γ)]

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 16 / 18

Page 157: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

rN = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

1− e i2πζNe−βN

1− e i2πζe−β

The incident x-ray has a path length Λ/ sin θ in a bilayer, a fraction Γthrough nA and a fraction (1− Γ) through nB .

The amplitude absorptioncoefficient, β is

β = 2

[µA2

ΓΛ

sin θ+µB2

(1− Γ)Λ

sin θ

]=

Λ

sin θ[µAΓ + µB(1− Γ)]

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 16 / 18

Page 158: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

rN = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

1− e i2πζNe−βN

1− e i2πζe−β

The incident x-ray has a path length Λ/ sin θ in a bilayer, a fraction Γthrough nA and a fraction (1− Γ) through nB . The amplitude absorptioncoefficient, β is

β = 2

[µA2

ΓΛ

sin θ+µB2

(1− Γ)Λ

sin θ

]=

Λ

sin θ[µAΓ + µB(1− Γ)]

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 16 / 18

Page 159: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

rN = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

1− e i2πζNe−βN

1− e i2πζe−β

The incident x-ray has a path length Λ/ sin θ in a bilayer, a fraction Γthrough nA and a fraction (1− Γ) through nB . The amplitude absorptioncoefficient, β is

β = 2

[µA2

ΓΛ

sin θ+µB2

(1− Γ)Λ

sin θ

]

sin θ[µAΓ + µB(1− Γ)]

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 16 / 18

Page 160: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

rN = −2iroρAB

(Λ2Γ

ζ

)sin (πΓζ)

πΓζ

1− e i2πζNe−βN

1− e i2πζe−β

The incident x-ray has a path length Λ/ sin θ in a bilayer, a fraction Γthrough nA and a fraction (1− Γ) through nB . The amplitude absorptioncoefficient, β is

β = 2

[µA2

ΓΛ

sin θ+µB2

(1− Γ)Λ

sin θ

]=

Λ

sin θ[µAΓ + µB(1− Γ)]

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 16 / 18

Page 161: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity calculation

0 0.2

Q (Å-1

)

0

1

RM

ultil

ayer

∆W/∆Si=10Å/40Å

10 bilayersof W/Si

• When ζ = QΛ/2π is aninteger, we have peaks

• As N becomes larger, thesepeaks would become moreprominent

• This is effectively adiffraction grating forx-rays

• Multilayers are usedcommonly on laboratorysources as well as atsynchrotrons as mirrors

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 17 / 18

Page 162: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity calculation

0 0.2

Q (Å-1

)

0

1

RM

ultil

ayer

∆W/∆Si=10Å/40Å

10 bilayersof W/Si

• When ζ = QΛ/2π is aninteger, we have peaks

• As N becomes larger, thesepeaks would become moreprominent

• This is effectively adiffraction grating forx-rays

• Multilayers are usedcommonly on laboratorysources as well as atsynchrotrons as mirrors

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 17 / 18

Page 163: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity calculation

0 0.2

Q (Å-1

)

10-4

10-2

100

RM

ultil

ayer

∆W/∆Si=10Å/40Å

10 bilayersof W/Si

• When ζ = QΛ/2π is aninteger, we have peaks

• As N becomes larger, thesepeaks would become moreprominent

• This is effectively adiffraction grating forx-rays

• Multilayers are usedcommonly on laboratorysources as well as atsynchrotrons as mirrors

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 17 / 18

Page 164: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity calculation

0 0.2

Q (Å-1

)

10-4

10-2

100

RM

ultil

ayer

∆W/∆Si=10Å/40Å

10 bilayersof W/Si

• When ζ = QΛ/2π is aninteger, we have peaks

• As N becomes larger, thesepeaks would become moreprominent

• This is effectively adiffraction grating forx-rays

• Multilayers are usedcommonly on laboratorysources as well as atsynchrotrons as mirrors

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 17 / 18

Page 165: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Reflectivity calculation

0 0.2

Q (Å-1

)

10-4

10-2

100

RM

ultil

ayer

∆W/∆Si=10Å/40Å

10 bilayersof W/Si

• When ζ = QΛ/2π is aninteger, we have peaks

• As N becomes larger, thesepeaks would become moreprominent

• This is effectively adiffraction grating forx-rays

• Multilayers are usedcommonly on laboratorysources as well as atsynchrotrons as mirrors

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 17 / 18

Page 166: Today’s Outline - September 19, 2016csrri.iit.edu/~segre/phys570/16F/lecture_08.pdf · Today’s Outline - September 19, 2016 Re ection from a thin slab Kiessig fringes Kinematical

Slab - multilayer comparison

0 0.2 0.4 0.6 0.8 1

Q (Å-1

)

10-8

10-4

100

RS

lab

∆=68 Å

0 0.2

Q (Å-1

)

10-4

10-2

100

RM

ultil

ayer

∆W/∆Si=10Å/40Å

10 bilayersof W/Si

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 18 / 18