96
Today’s Outline - November 14, 2016 C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the examSend me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 2: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the examSend me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 3: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the examSend me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 4: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the examSend me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 5: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the examSend me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 6: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the examSend me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 7: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the examSend me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 8: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the examSend me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 9: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the examSend me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 10: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the exam

Send me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 11: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Today’s Outline - November 14, 2016

• Kramers-Kronig relations

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

• Imaging

Homework Assignment #7:Chapter 7: 2,3,9,10,11due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 2132 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Provide me with the paper you intend to present and a preferred sessionfor the examSend me your presentation in Powerpoint or PDF format before beforeyour session

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 1 / 19

Page 12: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter.

Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial, whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 13: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial, whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 14: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial,

whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 15: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial,

whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t)

= (ε− ε0)~E (t) = −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 16: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial,

whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t)

= −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 17: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial, whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t)

= −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 18: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial, whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t)

= −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 19: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial, whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 20: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial, whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 21: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial, whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0

=

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 22: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial, whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 23: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial, whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 24: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

Scattering and refraction are alternative ways to approach the phenomenonof x-ray interaction with matter. Thus the resonant response we have seenin scattering must be manifested in the index of refraction as well.

the electric field from the x-rays, ~E (t), induces a polar-ization response, ~P(t), in thematerial, whereχ = (ε/ε0 − 1)is the electric susceptibility

given an electron density ρand using the displacementfunction for the electrons inthe forced oscillator model

index of refraction can thusbe computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ(− e

m

) E0e−iωt

(ω2s − ω2 − iωΓ)

P(t)

E (t)= ε− ε0 =

(e2ρ

m

)1

(ω2s − ω2 − iωΓ)

n2 =c2

v2=

ε

ε0

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 2 / 19

Page 25: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

n2 = 1 +

(e2ρ

ε0m

)1

(ω2s − ω2 − iωΓ)

= 1 +

(e2ρ

ε0m

)ω2s − ω2

(ω2s − ω2)2 + (ωΓ)2

+ iωΓ

(ω2s − ω2)2 + (ωΓ)2

-0.5

0

0.5

1

1.5

2

2.5

3

0.1 1 10

Re

[n2]

ω/ωs

0

0.5

1

1.5

2

2.5

3

0.1 1 10

Im[n

2]

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 3 / 19

Page 26: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

n2 = 1 +

(e2ρ

ε0m

)1

(ω2s − ω2 − iωΓ)

= 1 +

(e2ρ

ε0m

)ω2s − ω2

(ω2s − ω2)2 + (ωΓ)2

+ iωΓ

(ω2s − ω2)2 + (ωΓ)2

-0.5

0

0.5

1

1.5

2

2.5

3

0.1 1 10

Re

[n2]

ω/ωs

0

0.5

1

1.5

2

2.5

3

0.1 1 10

Im[n

2]

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 3 / 19

Page 27: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Refractive index

n2 = 1 +

(e2ρ

ε0m

)1

(ω2s − ω2 − iωΓ)

= 1 +

(e2ρ

ε0m

)ω2s − ω2

(ω2s − ω2)2 + (ωΓ)2

+ iωΓ

(ω2s − ω2)2 + (ωΓ)2

-0.5

0

0.5

1

1.5

2

2.5

3

0.1 1 10

Re

[n2]

ω/ωs

0

0.5

1

1.5

2

2.5

3

0.1 1 10

Im[n

2]

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 3 / 19

Page 28: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Absorption cross-section

Electrons in atoms are bound andtherefore have resonant effects dueto the binding forces

the imaginary part of the resonantscattering for an electron bound toan atom shows a frequency depen-dence with a peak at ω ≈ ωs

this single oscillator model, how-ever, does not reproduce theobserved absorption cross-sectionjump at an absorption edge

f ′′s (ω) =ω2sωΓ

(ω2 − ω2s )2 + (ωΓ)2

r20

0

0.2

0.4

0.6

0.8

1

1.2

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

,s

ω/ωs

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 4 / 19

Page 29: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Absorption cross-section

Electrons in atoms are bound andtherefore have resonant effects dueto the binding forces

the imaginary part of the resonantscattering for an electron bound toan atom shows a frequency depen-dence with a peak at ω ≈ ωs

this single oscillator model, how-ever, does not reproduce theobserved absorption cross-sectionjump at an absorption edge

f ′′s (ω) =ω2sωΓ

(ω2 − ω2s )2 + (ωΓ)2

r20

0

0.2

0.4

0.6

0.8

1

1.2

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

,s

ω/ωs

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 4 / 19

Page 30: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Absorption cross-section

Electrons in atoms are bound andtherefore have resonant effects dueto the binding forces

the imaginary part of the resonantscattering for an electron bound toan atom shows a frequency depen-dence with a peak at ω ≈ ωs

this single oscillator model, how-ever, does not reproduce theobserved absorption cross-sectionjump at an absorption edge

f ′′s (ω) =ω2sωΓ

(ω2 − ω2s )2 + (ωΓ)2

r20

0

0.2

0.4

0.6

0.8

1

1.2

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

,s

ω/ωs

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 4 / 19

Page 31: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Absorption cross-section

Electrons in atoms are bound andtherefore have resonant effects dueto the binding forces

the imaginary part of the resonantscattering for an electron bound toan atom shows a frequency depen-dence with a peak at ω ≈ ωs

this single oscillator model, how-ever, does not reproduce theobserved absorption cross-sectionjump at an absorption edge

f ′′s (ω) =ω2sωΓ

(ω2 − ω2s )2 + (ωΓ)2

r20

0

0.2

0.4

0.6

0.8

1

1.2

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

,s

ω/ωs

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 4 / 19

Page 32: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Absorption cross-section

Electrons in atoms are bound andtherefore have resonant effects dueto the binding forces

the imaginary part of the resonantscattering for an electron bound toan atom shows a frequency depen-dence with a peak at ω ≈ ωs

this single oscillator model, how-ever, does not reproduce theobserved absorption cross-sectionjump at an absorption edge

f ′′s (ω) =ω2sωΓ

(ω2 − ω2s )2 + (ωΓ)2

r20

0

0.2

0.4

0.6

0.8

1

1.2

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

,s

ω/ωs

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 4 / 19

Page 33: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Absorption cross-section

Electrons in atoms are bound andtherefore have resonant effects dueto the binding forces

the imaginary part of the resonantscattering for an electron bound toan atom shows a frequency depen-dence with a peak at ω ≈ ωs

this single oscillator model, how-ever, does not reproduce theobserved absorption cross-sectionjump at an absorption edge

f ′′s (ω) =ω2sωΓ

(ω2 − ω2s )2 + (ωΓ)2

r20

0

0.2

0.4

0.6

0.8

1

1.2

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

,s

ω/ωs

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 4 / 19

Page 34: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Multi-oscillator model

The damping constant, Γis gener-ally much less than the resonantfrequency, ωs

thus the single oscillator is essen-tially a delta function

in a real atom, exceeding the ab-sorption edge allows the electronto be excited into a continuum ofstates which can be approximatedby a sum of resonant oscillatorswith frequency distribution g(ωs)

σa(ω) = 2π2r0c∑s

g(ωs)δ(ω − ωs)

a similar effect is seen in the reso-nant scattering term f ′(w)

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

≈4πr0cπ

2δ(ω − ωs)

0

0.5

1

1.5

2

2.5

3

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 5 / 19

Page 35: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Multi-oscillator model

The damping constant, Γis gener-ally much less than the resonantfrequency, ωs

thus the single oscillator is essen-tially a delta function

in a real atom, exceeding the ab-sorption edge allows the electronto be excited into a continuum ofstates which can be approximatedby a sum of resonant oscillatorswith frequency distribution g(ωs)

σa(ω) = 2π2r0c∑s

g(ωs)δ(ω − ωs)

a similar effect is seen in the reso-nant scattering term f ′(w)

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

≈4πr0cπ

2δ(ω − ωs)

0

0.5

1

1.5

2

2.5

3

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 5 / 19

Page 36: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Multi-oscillator model

The damping constant, Γis gener-ally much less than the resonantfrequency, ωs

thus the single oscillator is essen-tially a delta function

in a real atom, exceeding the ab-sorption edge allows the electronto be excited into a continuum ofstates which can be approximatedby a sum of resonant oscillatorswith frequency distribution g(ωs)

σa(ω) = 2π2r0c∑s

g(ωs)δ(ω − ωs)

a similar effect is seen in the reso-nant scattering term f ′(w)

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

≈4πr0cπ

2δ(ω − ωs)

0

0.5

1

1.5

2

2.5

3

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 5 / 19

Page 37: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Multi-oscillator model

The damping constant, Γis gener-ally much less than the resonantfrequency, ωs

thus the single oscillator is essen-tially a delta function

in a real atom, exceeding the ab-sorption edge allows the electronto be excited into a continuum ofstates which can be approximatedby a sum of resonant oscillatorswith frequency distribution g(ωs)

σa(ω) = 2π2r0c∑s

g(ωs)δ(ω − ωs)

a similar effect is seen in the reso-nant scattering term f ′(w)

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

≈4πr0cπ

2δ(ω − ωs)

0

0.5

1

1.5

2

2.5

3

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 5 / 19

Page 38: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Multi-oscillator model

The damping constant, Γis gener-ally much less than the resonantfrequency, ωs

thus the single oscillator is essen-tially a delta function

in a real atom, exceeding the ab-sorption edge allows the electronto be excited into a continuum ofstates which can be approximatedby a sum of resonant oscillatorswith frequency distribution g(ωs)

σa(ω) = 2π2r0c∑s

g(ωs)δ(ω − ωs)

a similar effect is seen in the reso-nant scattering term f ′(w)

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

≈4πr0cπ

2δ(ω − ωs)

0

0.5

1

1.5

2

2.5

3

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 5 / 19

Page 39: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Multi-oscillator model

The damping constant, Γis gener-ally much less than the resonantfrequency, ωs

thus the single oscillator is essen-tially a delta function

in a real atom, exceeding the ab-sorption edge allows the electronto be excited into a continuum ofstates which can be approximatedby a sum of resonant oscillatorswith frequency distribution g(ωs)

σa(ω) = 2π2r0c∑s

g(ωs)δ(ω − ωs)

a similar effect is seen in the reso-nant scattering term f ′(w)

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

≈4πr0cπ

2δ(ω − ωs)

0

0.5

1

1.5

2

2.5

3

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 5 / 19

Page 40: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Multi-oscillator model

The damping constant, Γis gener-ally much less than the resonantfrequency, ωs

thus the single oscillator is essen-tially a delta function

in a real atom, exceeding the ab-sorption edge allows the electronto be excited into a continuum ofstates which can be approximatedby a sum of resonant oscillatorswith frequency distribution g(ωs)

σa(ω) = 2π2r0c∑s

g(ωs)δ(ω − ωs)

a similar effect is seen in the reso-nant scattering term f ′(w)

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

≈4πr0cπ

2δ(ω − ωs)

0

0.5

1

1.5

2

2.5

3

0.6 0.8 1 1.2 1.4 1.6 1.8 2

σa

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 5 / 19

Page 41: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Multi-oscillator model

The damping constant, Γis gener-ally much less than the resonantfrequency, ωs

thus the single oscillator is essen-tially a delta function

in a real atom, exceeding the ab-sorption edge allows the electronto be excited into a continuum ofstates which can be approximatedby a sum of resonant oscillatorswith frequency distribution g(ωs)

σa(ω) = 2π2r0c∑s

g(ωs)δ(ω − ωs)

a similar effect is seen in the reso-nant scattering term f ′(w)

σa,s(ω) = 4πr0cω2s Γ

(ω2 − ω2s )2 + (ωΓ)2

≈4πr0cπ

2δ(ω − ωs)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.6 0.8 1 1.2 1.4 1.6 1.8 2

f’

ω/ωs

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 5 / 19

Page 42: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of thedispersion corrections.

However, if it is possible to obtain the experimentalabsorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from themeasured absorption cross-section

f ′′(ω) = −(

ω

4πr0c

)σa(ω)

then use the Kramers-Kronig relations which connect the resonant term tothe absorptive term and where all the integrals are “principal value”integrals

f ′(ω) =1

πP∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)dω′ =

2

πP∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)dω′

f ′′(ω) = − 1

πP∫ +∞

−∞

f ′(ω′)

(ω′ − ω)dω′ = −2ω

πP∫ +∞

0

f ′(ω′)

(ω′2 − ω2)dω′

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 6 / 19

Page 43: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of thedispersion corrections. However, if it is possible to obtain the experimentalabsorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from themeasured absorption cross-section

f ′′(ω) = −(

ω

4πr0c

)σa(ω)

then use the Kramers-Kronig relations which connect the resonant term tothe absorptive term and where all the integrals are “principal value”integrals

f ′(ω) =1

πP∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)dω′ =

2

πP∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)dω′

f ′′(ω) = − 1

πP∫ +∞

−∞

f ′(ω′)

(ω′ − ω)dω′ = −2ω

πP∫ +∞

0

f ′(ω′)

(ω′2 − ω2)dω′

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 6 / 19

Page 44: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of thedispersion corrections. However, if it is possible to obtain the experimentalabsorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from themeasured absorption cross-section

f ′′(ω) = −(

ω

4πr0c

)σa(ω)

then use the Kramers-Kronig relations which connect the resonant term tothe absorptive term and where all the integrals are “principal value”integrals

f ′(ω) =1

πP∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)dω′ =

2

πP∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)dω′

f ′′(ω) = − 1

πP∫ +∞

−∞

f ′(ω′)

(ω′ − ω)dω′ = −2ω

πP∫ +∞

0

f ′(ω′)

(ω′2 − ω2)dω′

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 6 / 19

Page 45: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of thedispersion corrections. However, if it is possible to obtain the experimentalabsorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from themeasured absorption cross-section

f ′′(ω) = −(

ω

4πr0c

)σa(ω)

then use the Kramers-Kronig relations which connect the resonant term tothe absorptive term and where all the integrals are “principal value”integrals

f ′(ω) =1

πP∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)dω′ =

2

πP∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)dω′

f ′′(ω) = − 1

πP∫ +∞

−∞

f ′(ω′)

(ω′ − ω)dω′ = −2ω

πP∫ +∞

0

f ′(ω′)

(ω′2 − ω2)dω′

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 6 / 19

Page 46: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of thedispersion corrections. However, if it is possible to obtain the experimentalabsorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from themeasured absorption cross-section

f ′′(ω) = −(

ω

4πr0c

)σa(ω)

then use the Kramers-Kronig relations which connect the resonant term tothe absorptive term

and where all the integrals are “principal value”integrals

f ′(ω) =1

πP∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)dω′ =

2

πP∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)dω′

f ′′(ω) = − 1

πP∫ +∞

−∞

f ′(ω′)

(ω′ − ω)dω′ = −2ω

πP∫ +∞

0

f ′(ω′)

(ω′2 − ω2)dω′

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 6 / 19

Page 47: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of thedispersion corrections. However, if it is possible to obtain the experimentalabsorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from themeasured absorption cross-section

f ′′(ω) = −(

ω

4πr0c

)σa(ω)

then use the Kramers-Kronig relations which connect the resonant term tothe absorptive term

and where all the integrals are “principal value”integrals

f ′(ω) =1

πP∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)dω′

=2

πP∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)dω′

f ′′(ω) = − 1

πP∫ +∞

−∞

f ′(ω′)

(ω′ − ω)dω′ = −2ω

πP∫ +∞

0

f ′(ω′)

(ω′2 − ω2)dω′

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 6 / 19

Page 48: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of thedispersion corrections. However, if it is possible to obtain the experimentalabsorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from themeasured absorption cross-section

f ′′(ω) = −(

ω

4πr0c

)σa(ω)

then use the Kramers-Kronig relations which connect the resonant term tothe absorptive term

and where all the integrals are “principal value”integrals

f ′(ω) =1

πP∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)dω′

=2

πP∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)dω′

f ′′(ω) = − 1

πP∫ +∞

−∞

f ′(ω′)

(ω′ − ω)dω′

= −2ω

πP∫ +∞

0

f ′(ω′)

(ω′2 − ω2)dω′

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 6 / 19

Page 49: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of thedispersion corrections. However, if it is possible to obtain the experimentalabsorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from themeasured absorption cross-section

f ′′(ω) = −(

ω

4πr0c

)σa(ω)

then use the Kramers-Kronig relations which connect the resonant term tothe absorptive term

and where all the integrals are “principal value”integrals

f ′(ω) =1

πP∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)dω′ =

2

πP∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)dω′

f ′′(ω) = − 1

πP∫ +∞

−∞

f ′(ω′)

(ω′ − ω)dω′

= −2ω

πP∫ +∞

0

f ′(ω′)

(ω′2 − ω2)dω′

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 6 / 19

Page 50: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of thedispersion corrections. However, if it is possible to obtain the experimentalabsorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from themeasured absorption cross-section

f ′′(ω) = −(

ω

4πr0c

)σa(ω)

then use the Kramers-Kronig relations which connect the resonant term tothe absorptive term

and where all the integrals are “principal value”integrals

f ′(ω) =1

πP∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)dω′ =

2

πP∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)dω′

f ′′(ω) = − 1

πP∫ +∞

−∞

f ′(ω′)

(ω′ − ω)dω′ = −2ω

πP∫ +∞

0

f ′(ω′)

(ω′2 − ω2)dω′

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 6 / 19

Page 51: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of thedispersion corrections. However, if it is possible to obtain the experimentalabsorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from themeasured absorption cross-section

f ′′(ω) = −(

ω

4πr0c

)σa(ω)

then use the Kramers-Kronig relations which connect the resonant term tothe absorptive term and where all the integrals are “principal value”integrals

f ′(ω) =1

πP∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)dω′ =

2

πP∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)dω′

f ′′(ω) = − 1

πP∫ +∞

−∞

f ′(ω′)

(ω′ − ω)dω′ = −2ω

πP∫ +∞

0

f ′(ω′)

(ω′2 − ω2)dω′

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 6 / 19

Page 52: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Calculated cross-sections

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 7 / 19

Page 53: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Calculated cross-sections

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 7 / 19

Page 54: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Scattering from two unlike atoms

Two unlike atoms with scatter-ing factors f1 and f2 are orientedby a vector pointing from thelarger to the smaller.

Consider two cases, with thescattering vector Q in the samedirection as the orientation vec-tor and opposite to the orienta-tion vector.

Now compute the scattered in-tensity in each case, assumingscattering factors are purely real.

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 8 / 19

Page 55: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Scattering from two unlike atoms

Two unlike atoms with scatter-ing factors f1 and f2 are orientedby a vector pointing from thelarger to the smaller.

Consider two cases, with thescattering vector Q

in the samedirection as the orientation vec-tor and opposite to the orienta-tion vector.

Now compute the scattered in-tensity in each case, assumingscattering factors are purely real.

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 8 / 19

Page 56: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Scattering from two unlike atoms

Two unlike atoms with scatter-ing factors f1 and f2 are orientedby a vector pointing from thelarger to the smaller.

Consider two cases, with thescattering vector Q in the samedirection as the orientation vec-tor

and opposite to the orienta-tion vector.

Now compute the scattered in-tensity in each case, assumingscattering factors are purely real.

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 8 / 19

Page 57: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Scattering from two unlike atoms

Two unlike atoms with scatter-ing factors f1 and f2 are orientedby a vector pointing from thelarger to the smaller.

Consider two cases, with thescattering vector Q in the samedirection as the orientation vec-tor and opposite to the orienta-tion vector.

Now compute the scattered in-tensity in each case, assumingscattering factors are purely real.

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 8 / 19

Page 58: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Scattering from two unlike atoms

Two unlike atoms with scatter-ing factors f1 and f2 are orientedby a vector pointing from thelarger to the smaller.

Consider two cases, with thescattering vector Q in the samedirection as the orientation vec-tor and opposite to the orienta-tion vector.

Now compute the scattered in-tensity in each case, assumingscattering factors are purely real.

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 8 / 19

Page 59: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Friedel’s Law

A(+Q) = f1 + f2e+iQx

I (+Q) = (f1 + f2e+iQx)(f1 + f2e

−iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

I (+Q) = I (−Q) Friedel′s Law

A(−Q) = f1 + f2e−iQx

I (−Q) = (f1 + f2e−iQx)(f1 + f2e

+iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 9 / 19

Page 60: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Friedel’s Law

A(+Q) = f1 + f2e+iQx

I (+Q) = (f1 + f2e+iQx)(f1 + f2e

−iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

I (+Q) = I (−Q) Friedel′s Law

A(−Q) = f1 + f2e−iQx

I (−Q) = (f1 + f2e−iQx)(f1 + f2e

+iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 9 / 19

Page 61: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Friedel’s Law

A(+Q) = f1 + f2e+iQx

I (+Q) = (f1 + f2e+iQx)(f1 + f2e

−iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

I (+Q) = I (−Q) Friedel′s Law

A(−Q) = f1 + f2e−iQx

I (−Q) = (f1 + f2e−iQx)(f1 + f2e

+iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 9 / 19

Page 62: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Friedel’s Law

A(+Q) = f1 + f2e+iQx

I (+Q) = (f1 + f2e+iQx)(f1 + f2e

−iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

I (+Q) = I (−Q) Friedel′s Law

A(−Q) = f1 + f2e−iQx

I (−Q) = (f1 + f2e−iQx)(f1 + f2e

+iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 9 / 19

Page 63: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Friedel’s Law

A(+Q) = f1 + f2e+iQx

I (+Q) = (f1 + f2e+iQx)(f1 + f2e

−iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

I (+Q) = I (−Q) Friedel′s Law

A(−Q) = f1 + f2e−iQx

I (−Q) = (f1 + f2e−iQx)(f1 + f2e

+iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 9 / 19

Page 64: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j

= rjeiφj

j = 1, 2 rj = |fj |A(Q) = r1e

iφ1 + r2eiφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 65: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j

= rjeiφj

j = 1, 2

rj = |fj |A(Q) = r1e

iφ1 + r2eiφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 66: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 67: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 68: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 69: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 70: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 71: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2)

6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 72: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 73: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 74: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 75: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 76: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, wehave to include them in the computation

fj = f 0j + f ′j + if ′′j = rjeiφj j = 1, 2 rj = |fj |

A(Q) = r1eiφ1 + r2e

iφ2e iQx

I (Q) = (r1eiφ1 + r2e

iφ2e iQx)(r1e−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2eiφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 10 / 19

Page 77: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Argand diagram

This can all be described graphically using an Argand diagram:

no resonant terms

including resonant terms

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 11 / 19

Page 78: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Argand diagram

This can all be described graphically using an Argand diagram:

no resonant terms including resonant terms

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 11 / 19

Page 79: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

ZnS example

The ZnS structure is not cen-trosymmetric and when viewedalong the 〈111〉 direction, it showsalternating stacked planes of Znand S atoms.

Scattering from opposite faces of asingle crystal of ZnS gives a dif-ferent scattering factor and onecan deduce the terminating surfaceatom.

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 12 / 19

Page 80: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

ZnS example

The ZnS structure is not cen-trosymmetric and when viewedalong the 〈111〉 direction, it showsalternating stacked planes of Znand S atoms.

Scattering from opposite faces of asingle crystal of ZnS gives a dif-ferent scattering factor and onecan deduce the terminating surfaceatom.

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 12 / 19

Page 81: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Bijvoet pairs - chiral molecules

Consider a tetrahedral molecule of carbon with four different species ateach corner, oriented so the lightest is projected to the origin.

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 13 / 19

Page 82: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Bijvoet pairs - chiral molecules

Consider a tetrahedral molecule of carbon with four different species ateach corner, oriented so the lightest is projected to the origin.

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 13 / 19

Page 83: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Atomic scattering factors

Each of the three atoms not at the origin has a scattering factor for ~Q asshown

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 14 / 19

Page 84: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Left handed scattering factor

FS = |fs |+ |fm|e−iφme iφ + |fl |e−iφl e−iφ

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 15 / 19

Page 85: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Left handed scattering factor

FS = |fs |+ |fm|e−iφme iφ + |fl |e−iφl e−iφ

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 15 / 19

Page 86: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Right handed scattering factor

FR = |fs |+ |fm|e−iφme−iφ + |fl |e−iφl e iφ

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 16 / 19

Page 87: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Right handed scattering factor

FR = |fs |+ |fm|e−iφme−iφ + |fl |e−iφl e iφ

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 16 / 19

Page 88: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Scattering factor comparison

It is thus possible to tell the difference in handedness of chiral moleculesimply by x-ray scattering

s

∣∣∣|fs |+ |fm|e−iφme iφ + |fl |e−iφl e−iφ∣∣∣2 6= ∣∣∣|fs |+ |fm|e−iφme−iφ + |fl |e−iφl e iφ

∣∣∣2

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 17 / 19

Page 89: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Scattering factor comparison

It is thus possible to tell the difference in handedness of chiral moleculesimply by x-ray scattering

s

∣∣∣|fs |+ |fm|e−iφme iφ + |fl |e−iφl e−iφ∣∣∣2 6= ∣∣∣|fs |+ |fm|e−iφme−iφ + |fl |e−iφl e iφ

∣∣∣2C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 17 / 19

Page 90: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

MAD phasing

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 18 / 19

Page 91: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

MAD phasing

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 18 / 19

Page 92: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

MAD phasing

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 18 / 19

Page 93: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

MAD phasing

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 18 / 19

Page 94: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Comparison of matrix elements

Absorption

e~A · ~pm

Thomson scattering

e2A2

2m

Resonant scattering

(e~A · ~pm

)2

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 19 / 19

Page 95: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Comparison of matrix elements

Absorption

e~A · ~pm

Thomson scattering

e2A2

2m

Resonant scattering

(e~A · ~pm

)2

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 19 / 19

Page 96: Today’s Outline - November 14, 2016csrri.iit.edu/~segre/phys570/16F/lecture_22.pdf · Today’s Outline - November 14, 2016 Kramers-Kronig relations Friedel’s Law Bijvoet (Bay-voot)

Comparison of matrix elements

Absorption

e~A · ~pm

Thomson scattering

e2A2

2m

Resonant scattering

(e~A · ~pm

)2

C. Segre (IIT) PHYS 570 - Fall 2016 November 14, 2016 19 / 19