25
1 Page 1 Tips and Tricks of Faster LC Analysis Without Capital Investment It may be easier than you think! Agilent Technologies Page 2 There Are Many Reasons to Reduce Analysis Time •Run More Samples/Day •Reduce Mobile Phase Use •Reduce Mobile Phase Waste Disposal •Better Utilize Existing Resources in Instruments and Personnel •Implement “HB5”* Work Schedule (* “HB5” Home By 5, Ray Lombardy, Agilent Technologies, Inc. 2007) At What Cost and Difficulty? That Depends on What You Want to Accomplish!

Tips and Tricks of Faster LC Analysis Without Capital Investment

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

1

Page 1

Tips and Tricks of Faster LC Analysis Without Capital InvestmentIt may be easier than you think!

Agilent Technologies

Page 2

There Are Many Reasons to Reduce Analysis Time

•Run More Samples/Day

•Reduce Mobile Phase Use

•Reduce Mobile Phase Waste Disposal

•Better Utilize Existing Resources in Instruments and Personnel

•Implement “HB5”* Work Schedule

(* “HB5” Home By 5, Ray Lombardy, Agilent Technologies, Inc. 2007)

At What Cost and Difficulty?

That Depends on What You Want to Accomplish!

2

Page 3

How Fast Do You Want To Go?Your Answer Will Determine the Cost of Increased Speed

•2 to 3 X increase in Speed – Easy

•5-10 X Increase – May Require Instrument Tweak

•10 X + Increase – Will Require Instrument Upgrade and Tweak

What Are the Paths to LC Method Speed Gains?

•Most Speed From Column and Particle Size Optimization

•Instrument Optimization Will Enable or Boost Those Gains

The Following Discussion is Designed to

Simplify the Process - Often at No Cost!

Page 4

How Do Small Particles Help Speed Up Methods?

•Increase Kinetics of the separation

•Increase Efficiency (N) in Same Length Column

•Allow Shorter Column to Match Efficiency of Longer Column

• Provide Expanded Flow Rate Range Without Loss of Efficiency

3

Page 5

Trick: Use Smaller Particles For More Efficient Separations Across a Wide Flow Rate Range

Small Particle Columns including Monolith

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Dimensions: 4.6 x 50/30/20mmEluent: 85:15 ACN:WaterFlow Rates: 0.05 – 5.0 mL/minTemp: 20°CSample: 1.0µL Octanophenone in Eluent

Volumetric Flow Rate (mL/min)

HE

TP

(cm

/pla

te)

ZORBAX 5.0µmZORBAX 3.5µmVendor A 2.5 µmVendor B 2.0 µmZORBAX 1.8µmMonolith

Page 6

ISOCRATIC ELUTION

4

Page 7

Tip: Short Column/Smaller Particle Maintains Rs Trick: Tailor Column Dimensions and Particle Size

to Analysis NeedsColumnLength(mm)

Resolving Power

N(5 µm)

Resolving Power

N(3.5 µm)

ResolvingPower

N(1.8 µm)

Typical Pressure

Bar (1.8 µm)

150 12,500 21,000 32,500 >400

100 8,500 14,000 24,000 >400

75 6000 10,500 17,000 320

50 4,200 7,000 12,000 210

30 N.A. 4,200 6,500 126

15 N.A. 2,100 2,500 55

AnalysisTime

PeakVolume

Analysis Time*

-33%

-50%

-67%

-80%

-90%SolventUsage

* Reduction in analysis time compared to 150 mm column• pressure determined with 60:40 MeOH/water, 1ml/min, 4.6mm ID

Page 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Time (min)

5

4

32

1

0 1 2 3 4 5 6Time (min)

5

432

1

Goal: Run Current Method 2X FasterTrick: ½ Column Length and Smaller Particle = ½ Tim e

Mobile Phase: 45% 25 mM NaH2PO4, pH 3.0

55% MeOHFlow Rate: 2.0 mL/min.Temperature:35°CDetection: UV 254 nmSample: Cardiac Drugs

1. Diltiazem2. Dipyridamole3. Nifedipine4. Lidoflazine5. Flunarizine

Rapid ResolutionStableBond SB-C184.6 x 75 mm, 3.5 µm

StableBond SB-C184.6 x 150 mm, 5 µm

Analysis Time:5.2 minAnalysis Time:

11.7 min

5

Page 9

Goal: Run Current Method 3X Faster Trick: 1/3 Column Length and Smaller Particle = 1/3 Time

Original methodZORBAX LC column Extend-C184.6 x 150 mm, 5 µm3 µL inj.

min0 2 4 6 8 10

mAU

0

50

100

150

200

250

min0 2 4 6 8 10

mAU

-20

0

20

40

60

80

100

120

Mobile phase: (70:30) MeOH: 50 mM pyrrolidine buffer Flow = 1.0 mL/min, Temp. : ambient

ZORBAX RRHT column Extend C184.6 x 50 mm, 1.8 µm1 µL inj.

12

2 3

5

4

4

5

3

16

6

3x faster

Page 10

How Long Can the Column Be with MeOH?System Pressure With MeOH/Water

Percentage of MeOH (%)

Pressure (bar)

0 142

10 169

20 203

30 229

40 249

50 252

60 240

70 216

80 184

90 145

100 98

4.6 x 50mm Column with 1.8um particles at 1 ml/min, 30oC

Pr essur e cur ve

050

100150200250

0 20 40 60 80 100per cent age of MeOH

pres

sure

•Use P of 4.6 x 50mm as baseline

•Multiply P by L col2 / Lcol1

•If P is Lower than Max P of Instrument you can run that Length

6

Page 11

How Long Can the Column Be with ACN?System Pressure with ACN/Water

Percentage of ACN (%)

Pressure (bar)

0 142

10 154

20 159

30 156

40 150

50 135

60 120

70 104

80 88

90 70

100 59

4.6 x 50mm Column with 1.8um particles at 1 ml/min, 30oC

Syst em pr essur e wi t h t he change ofper cent age of ACN

0

50100

150

0 50 100Per cent age of ACN

Pres

sure

•Use P of 4.6 x 50mm as baseline

•Multiply P by Lcol2 / Lcol1

•If P is Lower than Max P of Instrument you can run that Length

Page 12

More Resolution in Original Method than NeededTip: 1.8u, Very Short Column, Faster Flow 5-10X Fas ter Isocratic on Instrument with 400bar Pressure Limit

.

4.6 x 250 mm, 5 µm

min0 5 10 15 20 25 30

4.6 x 100 mm, 3.5 µm

4.6 x 30 mm, 1.8 µm 1 mL/min

4.6 x 30 mm, 1.8 µm2 mL/min

min0 5 10 15 20 25 30

min0 5 10 15 20 25 30

min0 5 10 15 20 25 30

0.5 1 1.5 2 2.5

29.65

12.71

4.15

2.09

1 23

1

1

1

2

2

2

3

3

3

4

4

4

4

Rs(1,2) = 4.8

Rs(1,2) = 3.5

Rs(1,2) = 3.3

Rs(1,2) = 3.1

Columns: ZORBAX SB-C18 Mobile Phase: 50% 20 mM NaH2PO4, pH 2.8: 50% ACN Flow Rate: 1 mL/min Temperature: RTDetection: UV 230 nm Sample: 1. Estradiol 2. Ethynylestradiol 3. Dienestrol 4. Norethindrone

N=22680

N=11691

N=6104

N=6568

N=6460

N=6463

N=21848

7

Page 13

Tip: Constant Linear Velocity Maintains EfficiencyTrick: Reduce Flow Rate When Reducing Column Diamet er

1

min0 5 10 15 20 25 30 35

mAU

0

25

50

75

100

125

150

175

min0 5 10 15 20 25 30 35

mAU

0

25

50

75

100

125

150

175

Mobile Phase: 25% methanol in 0.4% Formic Acid

ZORBAX SB-C18, 4.6 x 250 mm, 5 µm, 1 mL/minSolvent Used: 34 mL

ZORBAX SB-C18, 3.0 x 100 mm, 3.5 µm, 0.425 mL/minSolvent Used: 5.7 mL, decrease of 83% (decrease in analysis time of 57%)

2

3

45 6

Page 14

Flow rate column 2 = (diameter column 2)2/(diameter column 1)2 x Flow rate column 1

Quick Reference for Changing to Common Column Diameters

Maintains Equivalent Linear Velocity for Different C olumn ID’s:

Column Type Column ID Flow Rate

Analytical 4.6 mm 1.0 mL/min

Solvent Saver 3.0 mm 0.42 mL/min

NarrowBore 2.1 mm 0.21 mL/min

MicroBore 1.0 mm 47 µL/min

Capillary 0.5 mm 12 µL/min

Capillary 0.3 mm 4.2 µL/min

Nano 0.1 mm 472 nL/min

Nano 0.075 mm 266 nL/min

•Maintain equivalent mobile phase linear velocity when changing column diameter.

8

Page 15

Isocratic Tips and Tricks Summary

•Increased Isocratic Speed Does Not Necessarily Require Sub-Two Micron Particles

•Particle Diameter and Column Length are Major Factors in Resolving Power

• Chose New, Shorter Column to Approximate Original Column Efficiency - Chose Length Based on Time Savings Goal

Example 3X: 150mm, 5µm (~12,000N) ~ 50mm, 1.8µm (~12,000N)

•Usually Only Need to Reduce Col. Length and Particle Size –Not Necessary to Change Flow, Injection Vol. or Organic Content of M.P.

•Altered Column Diameter Requires Change in Flow and Injection Volume

Page 16

GRADIENT ELUTION

9

Page 17

Reducing Particle Size Improves KineticsReduces Peak Width, Increases Height- It Does NOT Ch ange the Gradient!

min2 4 6 8

mAU

0

200

400

600

800

1000

1200

1400

1600

Pressure at start: 51bar, 5µmRs(4,5) = 3.14Peak Width 5 σ (9) = 0.107

Pressure at start: 394bar, 1.8µmRs(4,5) = 5.07Peak Width 5 σ (9) = 0.074

�Chromatograms Offset for Better View

1.8um vs. 5um+ 60% Resolution (Theory: 67%)+ 160% Efficiency (Theory: 177%)

Page 18

VR ≈ N

4k*α

Resolution Equation for Gradient Elution Relationship of k* to

Gradient Time, Flow and Column Dimensions

tg FS (∆%B) Vm

k* ∝∆%B = difference between initial and final % B S = constant (≈ 4 for 100 - 500 Da)F = flow rate (mL/min.)tg = gradient time (min.)Vm = column void volume (mL)

Zorbax Vm= π x (Col Internal Radius)2 x Length x 0.6

10

Page 19

Expected: Use of a Longer Gradient Time Increases Gradient Retention

4

2

0 25 500 5 10 15Time (min)Time (min)

1,2

34 5

8

6,7

13

5

8

6

7

Column: ZORBAX SB-C84.6 x 150 mm, 5 µm

Gradient: 20 – 60% BMobile Phase: A:H2O with 0.1%TFA, pH 2

B: AcetonitrileFlow Rate: 1.0 mL/minTemperature:35°CSample: Herbicides

Gradient Time10 min.

Gradient Time60 min.

• Increased gradient retention improves resolution of several peak pairs – 1,2 and 4,5.

Page 20

Tip: A Shorter Column (smaller Vm) Also Increases Gradient Retention and Rs Increases Gradient Retention, Increases Overall Res olution

2

1,2

34 5

6

7

8

0 5 10 15Time (min)

0 5 10Time (min)

13

4

5

67

8

Column: ZORBAX SB-C8Gradient: 20 – 60% BMobile Phase: A:H2O with 0.1%TFA, pH 2

B: AcetonitrileFlow Rate: 1.0 mL/minTemperature:35°CSample: Herbicides

4.6 x 150 mm, 5 µm 4.6 x 75 mm, 3.5 µm

11

Page 21

300SB-C8, 4.6 x 150 mm, 5µm 300SB-C8, 4.6 x 50 mm, 3 .5µm

Mobile Phase: A: 95% Water : 5 % ACN, 0.1% TFAB: 5% Water : 95% ACN, 0.085% TFAGradient: 10-60% B in 30 min.

Flow Rate: 1.0 mL / min.Temperature: Ambient

Sample: 1. Gly-Tyr 6. Leu-Enk2. Val-Tyr-Val 7. Angiotensin II3. [Gln 11] Amyloid- β- 8. Kinetensin

Protein Fragm 1-16 9. RNase4. (TYR8) Bradykinin 10. Insulin (Eq.)5. Met-Enk

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

1

2

3

45

6

7 8

9

10

12

3

45

6

7 8

9

10

000997P1.PPT

Tip: Improve Resolution By Using ShortColumn Length ( Vm ) for BioMolecules

Page 22

Vm-Column length

Vm-Column (i.d.)

Decrease in t G or F

Decrease in t G or F

Any Decrease in Can be Offset by a Proportional

k* ∝tG • F

S • ∆%B • Vm

001809S1.PPT

Tip: Maintain k* To Keep Relative Peak Position in a Chromatogram Unchanged While Reducing Time

12

Page 23

Time (min)

0 5 10 15 20 25

1

2

4

5

3

Time (min)

0 5 10 15

Column: StableBond SB-C84.6 x 150 mm, 5 µm

GradientTime: 30 min.

Flow Rate: 1.0 mL/min

AnalysisTime: 24 min

8

6

7

1

2

45

3

8

6

7

Column: Rapid Resolution StableBond SB-C84.6 x 75 mm, 3.5 µm

GradientTime: 15 min.

Flow Rate: 1.0 mL/min

AnalysisTime: 12 min

Sample: 1. Tebuthiuron 2. Prometon 3. Prometryne 4. Atrazine 5. Bentazon 6. Propazine 7. Propanil 8. Metolachlor

001784S1.PPT

Trick: Change V m and t G by Same Proportion

Two Chromatograms Both Having the Same Gradient Ste epness

Page 24

Very Fast LC on Conventional 1100 HPLC

G1379 Degasser

G1311 Quaternary pump

G1313A ALS autosampler

G1316A column compartment

G1314A VWD (standard cell G1314-60086, 10mm, 14uL)

AcetophenoneDiethyl phthalateBenzophenoneButyrophenoneValerophenoneHexanophenoneHeptanophenoneOctanophenone

The Sample

The Instrument

13

Page 25

0 2 4 6 8 10 12 14

mAU

0

50

100

150

200

250

VWD1 A, Wavelength=246 nm (D:\SAMPLE TEST\RRHT-1100\070809SBC180003.D)

1.4

74

3.3

23

5.0

64

5.6

51

6.1

14

6.9

64

8.3

37

9.6

90

10.

982

Conventional Column - 4.6 x 150mm, 5µm, SB-C18

Flow Rate 1.0 ml/minInjection Volume 15uLTemperature 30°CWavelength 246nmSample rate 2.5 Hz

Time (min) % Acetonitrile

0 50

10 90

13.5 90

13.6 50

15 50

Initial Pressure: 69 barFinal Pressure: 38 bar

Page 26

Tip: Shorten Column and Gradient Time by Same Facto r1/3 Column Length- 1/3 Gradient TimeRRHT Column – 4.6 x 50mm , 1.8µm, SB-C18

min0 1 2 3 4 5 6

mAU

0

20

40

60

80

100

120

140

VWD1 A, Wavelength=246 nm (D:\SAMPLE TEST\RRHT-1100\HDS 2007-08-09 17-25-25\070809SBC180009.D)

1.1

76

2.0

04

2.2

54

2.4

64

2.8

11

3.3

57

3.8

71

4.3

43

Flow Rate 1.0 ml/minInjection Volume 5uLTemperature 30°CWavelength 246nmSample rate 13.74 Hz

Time (min) % Acetonitrile

0 503.33 904.5 904.53 50

5 50

Initial Pressure: 132 barFinal Pressure: 74 bar

14

Page 27

The Comparison of chromatogram with the same RRHT column in 1100 and 1200 SL

min1 1.5 2 2.5 3 3.5 4 4.5 5

Norm.

0

20

40

60

80

100

120

140

VWD1 A, Wavelength=246 nm (D:\SAMPLE TEST\RRHT-1100\HDS 2007-08-09 17-25-25\070809SBC180008.D)

1.1

79

2.0

07

2.2

57

2.4

68

2.8

16

3.3

61

3.8

74

4.3

43

*DAD1 A, Sig=246,4 Ref=360,100 (WORKSHOP-TAIWAN\070815SBC180003.D)

Overlay the two Chromatograms

The red one is 1200, the blue one is 1100.

Page 28

Tip: Increase Column Flow-Reduce Gradient TimeDouble Flow (2mL/min) – ½ Gradient Time

RRHT 4.6 x 50mm, 1.8µm, SB-C18

0 0.5 1 1.5 2 2.5 3

mAU

0

20

40

60

80

100

120

140

VWD1 A, Wavelength=246 nm (D:\SAMPLE TEST\RRHT-1100\HDS 2007-08-10 08-22-16\070810SBC180004.D)

0.5

87

1.0

20

1.1

46

1.2

60

1.4

37

1.7

15

1.9

70

2.2

01

Flow Rate 2.0 ml/minInjection Volume 5uLTemperature 30°CWavelength 246nmSample rate 13.74 Hz

Time (min) % Acetonitrile

0 50

1.67 90

2.25 90

2.27 50

3.34 50

Initial Pressure: 266 barFinal Pressure: 146 bar

15

Page 29

Gradient Tips and Tricks Summary

Gradient Retention Relationship Formula Is the Key to -

• Improving Resolution

– Longer Gradient Time (tg)

– Smaller Column Volume (Vm) Length or Inner Diameter

– Keeping All other Parameters Constant

•Increasing Speed Without Losing Resolution

– Shorter Column with Proportionally Shorter Gradient Time

– Shorter Gradient Time with Proportionally Faster Flow Rate

tg FS (∆%B) Vm

k* ∝

Page 30

� Injection Volume Conversion

�Detector Settings recommendation

�Gradient and Isocratic Method Conversion (auto-detected)

Tip: Method Translator Makes Changes EasyTrick: Let Agilent Method Translator Do the MathBasic Mode for Easy Transfer of Conventional Method to RRLC

16

Page 31

Original Method New Method

Detailed OutputDetailed Input

Agilent Method Translator – Advanced ModeMore Detaled Information, But Still Easy to Use

Page 32

Analysis of impurities of an active pharmaceutical ingredient by conventional HPLC (4.6mm ID x 250 mm, 5.0 µm):

min0 2.5 5 7.5 10 12.5 15 17.5 20

mAU

0

10

20

30

40 OH

HN

CH3CH3

OCH3

Main Compound

OH

HN

CH3CH3

OCH3

Impurity A

O CH3

Br

Bromanisole

NCH3CH3

OCH3

Impurity B

CHCHN

33

OCH3

H

Impurity C

NCH3CH3

OH

H

OH

Impurity D

Does it work? - Example

17

Page 33

Converting to a 4.6 mm ID x 100 mm, 1.8µm column:

Page 34

Does it work? Yes!

min0 2.5 5 7.5 10 12.5 15 17.5 20

mAU

0

10

20

30

40 Conventional HPLC

min0 1 2 3 4 5 6 7 8

mAU

-2

0

2

4

6

8

10

12

14

Resolution optimized 1.8µm

Added Benefit of Increased Sensitivity!

18

Page 35

4.6 mmID x 250 mm, 5.0µm Zorbax SB C18

0.00 min 5% B20.00 min 90% B23.00 min 90% B23.01 min 5% B30.00 min 5% B

min0 2.5 5 7.5 10 12.5 15 17.5 20

mAU

0

10

20

30

40

Conventional HPLC

4.6 mmID x 100 mm, 1.8µm Zorbax SB C18

0.00 min 5% B8.00 min 90% B9.20 min 90% B9.21 min 5% B

12.00 min 5% B

min0 1 2 3 4 5 6 7 8

mAU

0

5

10

15

20

25

30

35

Simple Conversion

min0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

mAU

0

5

10

15

20

4.6 mmID x 100 mm, 1.8µm Zorbax SB C18

0.00 min 5% B4.33 min 90% B4.98 min 90% B4.99 min 5% B

6.5 min 5% B

Speed Optimized

Does it work?

Page 36

Eclipse PAH

ZORBAX Selectivity Choices Options for Improved Speed and Resolution

Extend-C18Extend-C18Bidentate-C18

Double endcapping

SB-C18Diisobutyl-C18

SB-PhenylDiisopropyl-

Phenyl

StableBondDiisopropyl

Diisobutyl bonding

Rx/SB-C8Diisopropyl-C8

SB-AQDiisopropyl

SB-C3Triisopropyl

Rx-C18Dimethyloctadecylsilane

Eclipse XDBEclipse XDBDimethyl bonding

Double endcapping

Eclipse XDB-C18

Eclipse XDB-C8

Eclipse XDB-Phenyl

Eclipse XDB-CN

Bonus-RPBonus-RPEmbedded amideDiisopropyl-C14Triple endcapped

Reversed Phase ChromatographyReversed-Phase Chromatography

SB-CNDiisopropyl-CN

Eclipse PlusEclipse PlusDimethyl bonding

Double endcapping

Eclipse Plus C18

Eclipse Plus C8

Eclipse Plus-Phenyl-Hexyl

Specialty products

19

Page 37

Tip: Bonded Phase Can Change SelectivityImprove Peak Shape and Shorten HPLC Assay Time

•Each ZORBAX phase available in matching 1.8µm,3.5µm and 5µm choices, most in 7µm!

•Over 140 RRHT,1.8um 600 bar column choices available

•14 Different Column Chemistries – 13 bonded phases and silica for HILIC use

•7 column lengths (250*, 150, 100, 75, 50, 30 and 20 mm long) * 1.8µm as custom column

•3 internal diameters (4.6, 3.0, 2.1 mm and Prep ID)

Page 38

Group/Presentation TitleAgilent Restricted

Month ##, 200X

Tip: C8 Often Yields Same Peak Order in < Time Than C18 Trick: Evaluate Different Phases with Same M.P.

1. Oxybenzone2. Internal Std.3. Octylmethoxycinnamate

Rapid Resolution Eclipse Plus C8, 4.6 x 50mm, 3.5 u m

Conditions:Mobile Phase.: Water: Acetonitrile (30:70)Flow Rate: 2.0 mL/min. Detection: UV 230nm Temperature: 30 °CSample: Lip balm extract in ACN(melted at 100°C ACN , cooled and 0.45 um filtered)

2.2 min.

RRHT Eclipse Plus C18, 4.6 x 50mm, 1.8 um

N: 6600Pw: 0.037 min.TF: 0.99

N: 6300Pw: 0.061 min.TF: 0.98

N: 5000Pw: 0.019 min.TF: 1.09

N: 8800Pw: 0.014 min.TF: 1.20

N: 11600Pw: 0.047 min.TF: 1.06

N: 11800Pw: 0.093 min.TF: 1.02

247 bar

88 bar

min0 1 2 3 4

min0 1 2 3 4

)

Less retention can save significant time – the C8 is a good choice here.The RRHT column is delivering the efficiency and re solution expected, but the C8 bonded phase may be the best choice.

20

Page 39

Tip: Polar Phases Can Save Analysis TimeTrick: Evaluate Non-Polar and Polar Phases with Sam e M.P.

Group/Presentation TitleAgilent Restricted

Month ##, 200X

Eclipse Plus Phenyl Hexyl

Eclipse Plus C8

Eclipse Plus C18

Mobile Phase 40 % ACN 60 % 25 mM Sodium Phosphate Buffer pH 2.4 Flow Rate: 1.5 ml/min 4.6 x 50mm UV 210 nm 2µl Elution order for Eclipse Plus Phenyl Hexyl: (1) Piroxicam, (2) Sulindac,(3) Tolmetin, (4) Naproxen, (5) Ibuprofen, (6) Diclofenac, (7) Celebrex (equal portions of approximately 1 mg/ml solutions

min0 2 4 6 8 10

min0 2 4 6 8 10

min0 2 4 6 8 10

Elution order reversal between Phenyl-Hexyl and Alk yl chains

Page 40

Tip: Higher Temperature Can Improve Speed and Resolution

Higher Temperature should always be considered

as a parameter during speed optimization

•Provides more rapid mass transfer:– Improves Efficiency – enhances resolution

– Decreases analysis time – faster separations with no loss in resolution

•Decreases Mobile Phase Viscosity– Lowers backpressure – allows for higher flow rates, faster separations,

greater efficiency

•Can change selectivity – optimize resolution

•Not Necessary to Go to the Limit-Midrange Offers Benefits

21

Page 41

Tip: Temperature Changes Can Alter SelectivityTrick: Optimize Col Temp For Best Speed/Rs

20°C

60°C

40°C

30°C

90°C

Salicylic acid

min0 1 2

0 1 2 345

0 1 2 345

0 1 2 345

0 1 2345

3 4

Salicylic acid

Salicylic acid

Salicylic acid

Salicylic acid

Column: RRHT SB-C184.6 x 50mm, 1.8um

Coelution

Increased T Decreases Run Time, Changes Selectivity and Sharpens Peaks

Improving Resolution

Page 42

Tips on When You Should Move to the Higher Pressure and Performance 1200 SL (RRLC) System

•Very Fast Methods with High Velocity Mobile Phase That Increase Backpressure Above 400bar

•Resolution of Difficult Samples Requires Long Columns With 1.8µm Particles (>400bar Backpressure)

•Labs Required to Run Both Traditional and New, Higher Performance LC Methods

•Need Faster Data Acquisition for Narrow, High Efficiency Peaks Generated in Higher Speed Methods

22

Page 43

Tip: 1.8µm Particle Increases Resolution (How?)Trick: Substitute 1.8µm Particles in Same Length Co lumn

Ref: Appl. Note 5989-4506 by Edgar Naegele

Conditions for both experimentsPumps• Solvent A: H2O + 0.1% TFA Solvent B: ACN + 0.1% TFA

• Gradient: 10% to 95% ACN in 40min, hold for 1min

• Flow Rate: 0.4ml/minAutosamplers• Injection volume: 3µlThermostatted Column Comp.• Temperature: 50°CDetectors• DAD 2µl cell and 20Hz, 220nm,

Agilent 1200 RRLC

min13 14 15 16 17 18

50

100

150

200

250

15.32

415.16

4 16.74

615.47

215.79

0mAU

15.07

914.93

714.78

7

Zorbax 2.1x150mm SB C-18, 1.8µm

min13 14 15 16 17 18

mAU

50

100

150

200

250

300

350

17.13

6

15.41

1

15.96

7

15.15

9

15.55

5

15.06

5Agilent 1100 Zorbax 2.1x150mm SB C-18, 5µm

Page 44

min0 5 10 15 20

mAU

-1

-0.5

0

0.5

1

1.5

2

2.5

DAD1 A, Sig=254,4 Ref =of f (051119A\SIG10003.D) Column:150x4.6 mm

5µm

Pressure: 93 bar

N: 8213

Height: 1.25 mAU

S/N: 42.3

Rs = 1.15

tr = 14.9 min (1st epimer)

Nptp: 2.4 � 10-2 mAU

4.6 x 150, 5um

93 bar

N = 7259

R_S = 1.15S/N = 42

Height = 1.25

Noise = 24uAU

Column:150 x 4.6 mm 1.8µm

Pressure: 490 bar

N: 28669

Height:1.78

S/N: 43.6

Rs = 1.80

tr = 17.2 (1st epimer)

Nptp: 3 � 10-2

min10

Norm.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

DAD1 A, Sig=254,4 Ref=off (051007D\LC_X000001.D)

Column:150 x 4.6 mm 1.8µm

Pressure: 490 bar

N: 28669

Height:1.78

S/N: 43.6

Rs = 1.80

tr = 17.2 (1st epimer)

Nptp: 3 � 10-2

min10

Norm.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

DAD1 A, Sig=254,4 Ref=off (051007D\LC_X000001.D)

Column:150x4.6 mm

3.5µm

Pressure: 165 bar

N: 14862

Height:1,34 mAU

S/N: 50.7

Rs = 1.37

tr = 15.3 min (1st epimer)

Nptp: 2 � 10-2 mAU

min0 5 10 15 20

Norm.

-1

-0.5

0

0.5

1

1.5

2

2.5

DAD1 A, Sig=254,4 Ref=off (051004D\LC_J0002.D)

Column:150x4.6 mm

3.5µm

Pressure: 165 bar

N: 14862

Height:1,34 mAU

S/N: 50.7

Rs = 1.37

tr = 15.3 min (1st epimer)

Nptp: 2 � 10-2 mAU

min0 5 10 15 20

Norm.

-1

-0.5

0

0.5

1

1.5

2

2.5

DAD1 A, Sig=254,4 Ref=off (051004D\LC_J0002.D)

Column:150 x 4.6 mm 1.8µm

Pressure: 490 bar

N: 28669

Height:1.78

S/N: 43.6

Rs = 1.80

tr = 17.2 (1st epimer)

Nptp: 3 � 10-2

min10

Norm.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

DAD1 A, Sig=254,4 Ref=off (051007D\LC_X000001.D)

Column:150 x 4.6 mm 1.8µm

Pressure: 490 bar

N: 28669

Height:1.78

S/N: 43.6

Rs = 1.80

tr = 17.2 (1st epimer)

Nptp: 3 � 10-2

min10

Norm.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

DAD1 A, Sig=254,4 Ref=off (051007D\LC_X000001.D)

Column:150x4.6 mm

3.5µm

Pressure: 165 bar

N: 14862

Height:1,34 mAU

S/N: 50.7

Rs = 1.37

tr = 15.3 min (1st epimer)

Nptp: 2 � 10-2 mAU

min0 5 10 15 20

Norm.

-1

-0.5

0

0.5

1

1.5

2

2.5

DAD1 A, Sig=254,4 Ref=off (051004D\LC_J0002.D)

Column:150x4.6 mm

3.5µm

Pressure: 165 bar

N: 14862

Height:1,34 mAU

S/N: 50.7

Rs = 1.37

tr = 15.3 min (1st epimer)

Nptp: 2 � 10-2 mAU

min0 5 10 15 20

Norm.

-1

-0.5

0

0.5

1

1.5

2

2.5

DAD1 A, Sig=254,4 Ref=off (051004D\LC_J0002.D)

4.6 x 150, 3.5um

165 bar

N = 14862

R_S = 1.37S/N = 50

Height = 1.34

Noise = 20uAU

4.6 x 150, 1.8um

490 bar

N = 28669

R_S = 1.80 (+57%)S/N = 44

Height = 1.80

Noise = 30uAU

1/dp

0.2 0.3 0.4 0.5 0.6

N

5000

10000

15000

20000

25000

30000

pdN

1∝

Tip: Small Particles Improve Detection of Low Level Impurities

23

Page 45

Particles Reveal More Information and Improve Detection and Integration

4.6 x 150, 1.8µm490 barN = 28669 R_S = 1.80 (+57%)S/N = 44

7 Impurities

All 7 Baseline Separated!

4.6 x 150, 3.5µm165 barN = 14862R_S = 1.37S/N = 50

7 Impurities

6 Not Baseline Separated!

4.6 x 150, 5µm93 barN = 7259R_S = 1.15S/N = 42

4 Impurities

2 Not Baseline Separated!

Customer Sample, Translation of Isocratic Impurity Methods, Zoom Critical Time Range (t = 7min)

Up to 60% higher resolutionwithout loss in sensitivity

Page 46

F= 1.20ml/minT = 40°CAnalysis Time = 11minSolvent Cons. = 13.2ml

High Resolution:4.6mm x 150 mm 5.0µm

min0 2 4 6 8 10 12

F = 4.80ml/minT = 40°CAnalysis Time = 1.05minSolvent Cons. = 5.1ml

High Speed:4.6mm x 50 mm 5.0µm

min0 0.2 0.4 0.6 0.8 1

F= 1.00ml/minT = 40°CAnalysis Time = 1.1minSolvent Cons. = 1.1ml

High Speed & Resolution:2.1mm x 50mm 1.8µm

min0.2 0.4 0.6 0.8 10

Example of What Is Possible!Shorter Column, Smaller Particle, > Flow Rate, High Temp

Max Speed at T = 95 oC2.1mm x 50mm 1.8um

F= 2.40ml/minT = 95°CAnalysis Time: 0.4minSolvent Cons. = 1.0ml

PWHH = 197msec

min0.2 0.4 0.6 0.8 10

> 20x faster !

Easy!

Easy!

Easy, But You Will Need > 400bar!

Easy!

24

Page 47

Data Rate

Peak Width

Resolution Peak Capacity

80 Hz 0.300 2.25 60

40 Hz 0.329 2.05 55

20 Hz 0.416 1.71 45

10 Hz 0.666 1.17 29

5 Hz 1.236 0.67 16

min0.1 0.2 0.3 0.4 0.50

80Hz

PW=0.30sec

40Hz

PW=0.33sec

20HzPW=0.42sec

10HzPW=0.67sec

5HzPW=1.24secSample: Phenones Test MixColumn: Zorbax SB-C18, 4.6x30, 1.8umGradient:: 50-100%ACN in 0.3minFlow Rate: 5ml/min

80Hz versus 10Hz Data Rate• Peak Width: – 55%• Resolution: + 90%• Peak Capacity: + 120%• App. Column Eff.: + 260%

Tip: Higher Data Improves Response and Rs Trick: Optimize Data Rate for Accurate Profile

Page 48

Moving From Conventional LC to RRLC:

Moving to RRLC is simple and easy !Moving to RRLC is simple and easy !

• Same software (e.g. ChemStation, EZChrom)

� No additional training effort

• Limit capital investment by modular step-wise upgra de

� Leverage existing 1100 modules, existing method

and stationary phase

• Configurable delay volume in 1200 SL pump

� Easy to also run legacy LC methods

• Simple LC to RRLC method translator

� No tedious method development

“Doesn’t this cost a fortune ?”

“No - not at all !”

25

Page 49

Stepwise Scale-up to Rapid Resolution LCFrom 1100 to 1200 RRLC in two steps -Add What You Need When You Need It!

Actual: 1100

Quat System

> 5 min

> 6 min> 3 sec

5 - 12,0004.6 mm

50 mm 0.2 - 10ml/min

80 C400bar

ALS

TCC

VWD/MWD/DAD

Quat Pump

Degasser

Step 1: 1100/1200

„Bin SL“ System

h-ALS SL

TCC

VWD/MWD/DAD

Bin Pump SL

µ-Degasser

> 1.5min

> 2min> 1.5 sec

5 - 30,0002.1 - 4.6 mm

50 - 150 mm0.05 - 5 ml/min

80 C600 bar

Analysis Time

Cycle timesPeak Width

NColumn ID

Column Length Flow rates

TemperaturePressure

Step 2: 1200

Rapid Resolution System

h-ALS SL

TCC SL

DAD SL

Bin Pump SL

u-Degasser

> 0.2min

> 0.4min> 0.2 sec

5 - 60,0002.1 - 4.6 mm

20 - 150mm0.05 – 5 ml/min

100 C600bar

+ Speed+ Resolution+ Sensitivity

+ MS-Robustness+ Data Security & Traceability

+ Qualification (Degasser, ACE)+ Compatible with conv. HPLC

+ Resolution+ Speed

+ MS-Compatibility+ Solvent Saving

+ Compatible with conv. HPLC

Page 50

SUMMARY

• Increasing Speed of HPLC Separations Need Not be Difficult or Costly

•Changes in Columns and Equipment Depend on Your Goals

•Majority of Time Saved Will Be Based on Column and Particle Size

•Isocratic and Gradient 2X , 3X and 5X Times Savings are Easy

•Greater Time Savings May Require Instrument Modifications

•10-20X Increase in Speed May Require Instrument Upgrade

•Long Columns with 1.8µm Particles May Require >400 bar Pump and Autosampler Capability