Thord Wennberg Lic2010

Embed Size (px)

Citation preview

  • 7/29/2019 Thord Wennberg Lic2010

    1/112

    LICENTIATE TH ES I S

    Transporting Highly Concentrated Slurries

    with Centrifugal PumpsThe Thickened Minerals Tailings Example

    Thord Wennberg

  • 7/29/2019 Thord Wennberg Lic2010

    2/112

  • 7/29/2019 Thord Wennberg Lic2010

    3/112

    Transporting Highly Concentrated Slurries

    with Centrifugal Pumps

    The Thickened Minerals Tailings Example

    Thord Wennberg

    Lule University of Technology

    Department of Chemical Engineering and Geosciences

    Mineral Processing

  • 7/29/2019 Thord Wennberg Lic2010

    4/112

    Printed by Universitetstryckeriet, Lule 2010

    ISSN: 1402-1757ISBN 978-91-7439-169-5

    Lule 2010

    www.ltu.se

  • 7/29/2019 Thord Wennberg Lic2010

    5/112

    Preface

    7KLVWKHVLVLVSUHVHQWHGDVDSDUWLDOIXOILOPHQWRIWKHUHTXLUHPHQWVIRUWKHGHJUHHRI/LFHQWLDWHDW/XOHn8QLYHUVLW\RI7HFKQRORJ\,WFRQFHUQVWKHK\GUDXOLFWUDQVSRUWRIKLJKO\FRQFHQWUDWHGVOXUULHVZLWKFHQWULIXJDOSXPSVLQFRQQHFWLRQZLWKWKLFNHQHGPLQHUDOVWDLOLQJVV\VWHPV,ZDQWWRH[SUHVVP\WKDQNVWRP\H[DPLQHU'RFHQW%HUWLO3nOVVRQDWWKH'LYLVLRQRI0LQHUDO3URFHVVLQJDQGVXSHUYLVRU3URIHVVRU(PHULWXV$QGHUV6HOOJUHQIRUSURYLGLQJFRQVWUXFWLYHDQGYDOXDEOHJXLGDQFH7KHLUFRQWULEXWLRQDQGSDWLHQFHZLWKPHWKURXJKRXWWKHVHVWXGLHVLVJUHDWO\DSSUHFLDWHG, ZRXOG DOVR OLNH WR H[SUHVV P\WKDQNV WRP\FROOHDJXHV DW /XRVVDYDDUD.LLUXQDYDDUD$%/.$%&RPSDQ\IRUVXSSRUWHVSHFLDOO\Dr.cVD6XQGTYLVWIRUKHUJXLGDQFHLQWKHLQLWLDOSKDVH0\DSSUHFLDWLRQDOVRJRHVWR-DQ$QGHUVVRQDQG2YH(ULNVVRQ0HWVR0LQHUDOV6ZHGHQ$%IRUWHFKQLFDOVXSSRUWDQGLQIRUPDWLRQ,ZRXOGDOVROLNHWRH[SUHVVP\WKDQNVWR1HZ%ROLGHQ

    DQG WKH SHUVRQQHO DW WKH SDVWH SODQW DW WKH *DUSHQEHUJ PLQHV IRU RSHUDWLQJ GDWD IURP DWKLFNHQHUXQGHUIORZSXPSLQVWDOODWLRQ)LQDOO\,WKDQNIXOO\DFNQRZOHGJH/.$%IRUJLYLQJPHWKHRSSRUWXQLW\WRSHUIRUPWKLVZRUN7KRUG:HQQEHUJ0DOPEHUJHW1RYHPEHU

  • 7/29/2019 Thord Wennberg Lic2010

    6/112

  • 7/29/2019 Thord Wennberg Lic2010

    7/112

  • 7/29/2019 Thord Wennberg Lic2010

    8/112

  • 7/29/2019 Thord Wennberg Lic2010

    9/112

    Published papers

    A

    :HQQEHUJ76HOOJUHQ$:KLWORFN/3UHGLFWLQJWKHSHUIRUPDQFHRIFHQWULIXJDO

    SXPSVZKHQKDQGOLQJFRPSOH[VOXUULHV3URFHHGLQJVWK,QWHUQDWLRQDO&RQIHUHQFHRQ7UDQVSRUW6HGLPHQWDWLRQRI6ROLGVSDUWLFOHV-XQH6DLQW3HWHUVEXUJ5XVVLDSS

    B

    :HQQEHUJ76HOOJUHQ$3XPSLQJHYDOXDWLRQVZLWKSDVWHWDLOLQJVWKLFNHQHGFORVHWRWKHVXUIDFHGLVSRVDODUHD3URFHHGLQJV7KHWKLQWHUQDWLRQDOFRQIHUHQFHRQWKHK\GUDXOLFWUDQVSRUWDWLRQRIVROLGVLQSLSHV+\GURWUDQVSRUW&DSH7RZQ6RXWK$IULFD0D\SSC

    :HQQEHUJ76HOOJUHQ$*ROGNXKO,5KHRORJLFDODQG'HSRVLWLRQDOFKDUDFWHULVDWLRQRISDVWHOLNHWDLOLQJVVOXUULHV3URFHHGLQJV&RQIHUHQFHLQ0LQHUDOV(QJLQHHULQJ)HEUXDU\/XOHn6ZHGHQD:HQQEHUJ76HOOJUHQ$6XQGTYLVWc)HDVLELOLW\FRQVLGHUDWLRQVRIKLJKGHQVLW\GLVSRVDODWWKH/.$%6YDSSDYDDUDFRQFHQWUDWRU3URFHHGLQJV7KH,QW&RQIHUHQFH6HFXULQJWKH)XWXUH-XQH6NHOOHIWHn6ZHGHQE(QJPDQ0$6HOOJUHQc6XQGTYLVW,*ROGNXKODQG7:HQQEHUJ8VHUV

    SHUVSHFWLYHRQWKHGHVLJQRIKLJKGHQVLW\EDVHPHWDOWDLOLQJVV\VWHPV3URFHHGLQJVWK,QW&RQIHUHQFHRQ7DLOLQJVDQG0LQH:DVWH9DLO&286$2FWREHU

  • 7/29/2019 Thord Wennberg Lic2010

    10/112

  • 7/29/2019 Thord Wennberg Lic2010

    11/112

    ContentsABSTRACT.............................................................................................................................. 5

    PUBLISHED PAPERS ............................................................................................................ 7CONTENTS .............................................................................................................................. 9

    INTRODUCTION .................................................................................................................. 11

    &RQYHQWLRQDODQGWKLFNHQHGWDLOLQJVPDQDJHPHQW 2. OBJECTIVES AND SCOPE ............................................................................................. 15

    3. FLOW OF THICKENED TAILINGS SLURRIES ........................................................ 17

    &KDUDFWHUL]DWLRQ&RQGXLWIORZUHVLVWDQFH)UHHVXUIDFHIORZ

    4. PERFORMANCE OF CENTRIFUGAL PUMPS HANDLING COMPLEX

    SLURRIES .............................................................................................................................. 21

    5. EXPERIMENTAL RESULTS .......................................................................................... 23

    )ORZUHVLVWDQFHLQSLSHOLQHVDQGIOXPHV 'HSRVLWLRQVORSHHYDOXDWLRQV 3XPSSHUIRUPDQFH2YHUDOOUHVXOWVXPPDU\

    6. DISCUSSION ..................................................................................................................... 27

    &HQWULIXJDOSXPSSHUIRUPDQFH'HSRVLWLRQDOFRQGLWLRQV

    7. CONCLUSIONS ................................................................................................................. 358. FUTURE WORK ............................................................................................................... 37

    9. REFERENCES...................................................................................................................39

    10. NOTATIONS.................................................................................................................... 43

  • 7/29/2019 Thord Wennberg Lic2010

    12/112

  • 7/29/2019 Thord Wennberg Lic2010

    13/112

    1. Introduction7KHUHLVDQLQFUHDVHGLQWHUHVWWKURXJKRXWWKHZRUOGLQWKHWUHDWPHQWDQGSURFHVVLQJRIILQHJUDLQHGUHViGuDOSURGXFWVWDLOLQJVIURPPLQHUDOEHQHILFLDWLRQSODQWVOLPLWWKHYROXPHVWR

    EHKDQGOHGDQG UHGXFHVL]HVRIWDLOLQJGDPV7KHHFRQRPLFDOIHDVLELOLW\RIDKLJKGHJUHHRIWDLOLQJV WKLFNHQLQJ LV GHWHUPLQHG E\ WKH ORQJWHUP LPSDFW RQ WKH GLVSRVDO DUHD :DWHUDYDLODELOLW\ PD\ EH D FULWLFDO LVVXH LQ DULG RU VHPLDULG DUHDV ZKHUH ZDWHU H[SRVHG LQ WKHGLVSRVDODUHDLVODUJHO\ORVWWKURXJKHYDSRUDWLRQ,QVXEDUFWLFDQGDUFWLFUHJLRQVKHDWUHFRYHU\ZLWKUDSLGZDWHUFLUFXODWLRQWKURXJKWKLFNHQLQJFDQLPSURYHWKHHQHUJ\HIIHFWLYHQHVVLQWKHPLQHUDOSURFHVVLQJSODQW7KHUHGXFHGFRVWIRUGDPVFDSSLQJDQGUHWXUQZDWHUSXPSLQJFDQEHFRQVLGHUDEOHRYHUWKHOLIHRIWKHPLQH$QRWKHUFRQFHUQLVGDPVDIHW\VRPHUHSRUWHGWDLOLQJVGDPIDLOXUHVDQGLQFLGHQWVPD\EHUHODWHGWRODUJHDPRXQWVRIZDWHULQWKHGLVSRVDODUHD

    1.1 Conventional and thickened tailings management

    7KHWDLOLQJVVOXUU\LVFRQYHQWLRQDOO\GLVFKDUJHGZLWKDFRQVLGHUDEOHTXDQWLW\RISURFHVVZDWHULQWRDVHWWOLQJSRQG)LJ

    PondTailings

    Pipeline Dam

    Figure 1. Conventional tailings disposal system.

    ,QJHQHUDO VORSHV DUH EHORZ LQ WKH GLVSRVDO DUHD 0RVWRI WKH SURFHVV ZDWHU LV WKHQUHFRYHUHG IURP D VHFRQG SRQG FODULILFDWLRQSRQG DQG UHWXUQHG WR WKH SURFHVV 7KH VROLGVFRQFHQWUDWLRQ LV RIWHQ ZHOO EHORZ E\ YROXPH E\ PDVV ZLWK D SRWHQWLDO RIVHJUHJDWLRQDIWHUGHSRVLWLRQLHK\GUDXOLFVRUWLQJRISDUWLFOHVLQWKHVHWWOLQJSRQG

    :LWKDWDLOLQJVV\VWHPWKDWLQFOXGHVDWKLFNHQHUWKDWSURGXFHVDKLJKO\FRQFHQWUDWHGXQGHUIORZWKH WKLFNHQHUFDQEH SODFHGQHDUWKH FRQFHQWUDWRURULQ WKH GLVSRVDODUHD ,Q IODW WHUUDLQ WKHWKLFNHQHGWDLOLQJVLVGLVFKDUJHGIURPDQDUWLILFLDOUDPSRUDWRZHUIRUPLQJDULGJHRUFRQH,WPD\EHIDYRXUDEOHWRORFDWHWKHWKLFNHQHUFORVHWRWKHGLVSRVDODUHDZKHQGHSRVLWLRQWDNHV

    SODFHDORQJDKLOOVLGHRUGRZQDYDOOH\)LJXUH

    &RQFHQWUDWRU

    :DWHU

    7KLFNHQHU

    3XPS

    3XPS'DP

    Figure 2. Schematic descriptions of a thickened tailings system with the thickener located

    on a hill close to the disposal area.

  • 7/29/2019 Thord Wennberg Lic2010

    14/112

    :LWK DQ HOHYDWHG ORFDWLRQ RI WKH WKLFNHQHU FORVH WR WKH GLVSRVDO DUHD RQO\ VKRUW GLVWDQFHSXPSLQJRIWKLFNHQHGVOXUU\LVLQLWLDOO\UHTXLUHG:LWKDWKLFNHQHGWDLOLQJVV\VWHPXSWRRI WKH ZDWHU FDQ EH UHF\FOHG GLUHFWO\ IURP WKH RYHUIORZ RI WKH WKLFNHQHU 7KH VROLGVFRQFHQWUDWLRQVE\YROXPH&PXVWJHQHUDOO\EHZHOODERYHWRDFKLHYHVOXUU\SURSHUWLHVWKDW JLYHVD FRQFHSWXDOO\ HYHQVORSHRIGHSRVLWHG WDLOLQJV RI ZLWKQRVHJUHJDWLRQ RISDUWLFOHVDQGYLUWXDOO\QRGUDLQDJHRIZDWHU

    7KHVOXUU\GHQVLW\UDWLRLVUHODWHGWR&LQWKHIROORZLQJZD\

    1SC1 SO

    1

    ZKHUH oLVWKHGHQVLW\RIZDWHUDQG6VWKHVROLGVGHQVLW\UDWLR

    O

    SSS

    ZKHUH SLVWKHGHQVLW\RIVROLGV)RUH[DPSOHZLWK&DQGSs WKHVOXUU\GHQVLW\UDWLRLQ(TLVDERXW7KHUHODWLRQVKLSVEHWZHHQWKHVROLGVFRQFHQWUDWLRQE\YROXPHDQGPDVVIORZUDWHRIVROLGVDQG ZDWHU DUH SUHVHQWHG LQ )LJXUH WRJHWKHU ZLWK D JUDSKLFDO UHSUHVHQWDWLRQ RI WKH ZDWHUUHTXLUHPHQWSHUWRQQHRIGU\VROLGV

    Solids concentration by mass

    Tonneofsolids

    Solids concentration by volume

    1)s(SwCsS

    wCC1

    oMsMsM

    wC

    wCwC1

    sMoM

    Tonnewater

    Figure 3. The relationship between water content per tonne solids and solids concentration

    or the volume metric concentration, Ss = 2.9. Ms= mass flow rate of dry solids,

    MO= mass flow rate of water. Cw is concentration by mass.

    ,W IROORZV IURP )LJXUH KRZ WKH ZDWHU UHTXLUHPHQW LV VWURQJO\ QRQOLQHDUO\ UHODWHG WR WKH

    VROLGV FRQFHQWUDWLRQV ,Q WKH FDVHRI WKLFNHQHG WDLOLQJ WKH UHFLUFXODWLRQ RISURFHVV ZDWHU LVUHFRYHUHG GLUHFWO\ IURP WKH WKLFNHQHU WR WKH FRQFHQWUDWRU LQVWHDG RI IORZLQJ WKURXJK WKH

  • 7/29/2019 Thord Wennberg Lic2010

    15/112

    GLVSRVDODUHD7KHUHFRYHU\RIKHDWLQDWKLFNHQHGWDLOLQJVV\VWHPPD\EHDYDOXDEOHUHVRXUFHLQFROGDUHDVVHHIRUH[DPSOH+ROORZHWDO2[HQIRUGDQG/RUG$FRPSDULVRQRIWKHIORZVRIZDWHUDQGVOXUU\LQDFRQYHQWLRQDODQGWKLFNHQHGWDLOLQJVV\VWHPLVVKRZQLQ7DEOHWRJHWKHUZLWKDQLQGLFDWLRQRIWKHKHDWUHFRYHU\SRWHQWLDO

    Table 1. Flows of slurry and water and heat recovery potential in an example with the

    capacity 90 tonnes /h of dry tailings in a sub-arctic region.

    &RQYHQWLRQDO 7KLFNHQHGWDLOLQJV6ROLGVFRQFHQWUDWLRQE\PDVV )ORZRIVOXUU\P K )ORZRIZDWHUP K 5HFRYHUHGZDWHUWHPSHUDWXUHR& $YHUDJHWHPSHUDWXUHRYHUWKH\HDU

    7KHORFDWLRQRIWKHWKLFNHQHULVLQDGGLWLRQWRORFDOFRQGLWLRQVPDLQO\DEDODQFHRIWKHFRVWIRUKLJKSUHVVXUHSXPSLQJDQGWKHGLVDGYDQWDJHRIKDYLQJWKHWKLFNHQLQJIDFLOLW\UHPRWHIURPWKHUHVW RI WKH SURFHVVLQJ WDNLQJ SODFH LQ WKH FRQFHQWUDWRU 7HFKQLFDOHFRQRPLFDO IHDVLELOLW\FRQVLGHUDWLRQVDUHFRXSOHGWRWKH6YDSSDYDDUDLURQRUHPLQHRSHUDWLRQVE\WKH/XRVVDYDDUD.LLUXQDYDDUD$%/.$%&RPSDQ\LQQRUWKHUQ6ZHGHQ:HQQEHUJHWDO3UHOLPLQDU\V\VWHP HYDOXDWLRQV KDG LQGLFDWHG WKDW WKH ORFDO FRQGLWLRQV IDYRXUHG SODFHPHQW ZLWK DQHOHYDWHGWKLFNHQHUORFDWLRQFORVHWRWKHGLVSRVDODUHD:LWKWKHWKLFNHQHUORFDWHGDWWKHFRQFHQWUDWRULQYHVWPHQWVLQDKLJKSUHVVXUHV\VWHPZRXOGEHUHTXLUHG ZLWK SRVLWLYH GLVSODFHPHQW W\SH RI SXPSV :LWK D ORFDWLRQRQ WKH KLOO FHQWULIXJDOSXPSVFDQEHXVHGGLUHFWO\GXULQJWKHILUVW \HDUVRIRSHUDWLRQ&HQWULIXJDO SXPSVDUHRIWHQXVHGWRSXPSKLJKGHQVLW\WKLFNHQHUXQGHUIORZVKRUWGLVWDQFHVRUWRFLUFXODWHWKLFNHQHGVOXUU\LQWKHORZHUSRUWLRQRIWKHWKLFNHQHUWRSURPRWHPL[LQJDQGIORZDELOLW\

    7R PHHW WKH PRVW HIIHFWLYH ORQJWHUP VROXWLRQ IRU SLSHOLQH GLVWULEXWLRQ DQG SODFHPHQWFRQWLQXHGXVHRIFHQWULIXJDOSXPSVLQVHULHVLQVWDOODWLRQVLVKHUHFRQVLGHUHGDVWKHGLVFKDUJHSRLQW DGYDQFHV GXULQJ WKH \HDU OLIH 7KH WKLFNHQHU RSHUDWLRQ SLSHOLQH GLVWULEXWLRQ DQGSODFHPHQWRIKLJKO\WKLFNHQHGWDLOLQJVIRUPDV\VWHPZKLFKVKRXOGEHGHVLJQHGDQGPDQDJHGIRUPD[LPXPORQJWHUPHIIHFWLYHQHVV:LWK WKH KLJK UHTXLUHG YROXPHWULF VROLGV FRQFHQWUDWLRQV RI ZHOO DERYH WKH IORZUHVLVWDQFH LQ WKH WKLFNHQLQJ SXPSLQJ DQG GHSRVLWLRQ EH\RQG D FHUWDLQ FRQFHQWUDWLRQ ULVHVGUDPDWLFDOO\IRULQFUHPHQWDOLQFUHDVHVLQWKHVROLGVFRQWHQW

  • 7/29/2019 Thord Wennberg Lic2010

    16/112

  • 7/29/2019 Thord Wennberg Lic2010

    17/112

    2. Objectives and scope7KHREMHFWLYHRIWKLVVWXG\LVWRIRUPDEDFNJURXQGIRUIHDVLELOLW\FRQVLGHUDWLRQVEDVHGRQODERUDWRU\ DQG SLORWVFDOH H[SHULPHQWV LQ IOXPHV DQG SLSHOLQHV WRJHWKHU ZLWK YLVFRPHWULF

    PHDVXUHPHQWV DQG VORSH REVHUYDWLRQV UHODWHG WR SLSHOLQH GLVWULEXWLRQ DQG SODFHPHQW7KLFNHQLQJ ODERUDWRU\ DQG SLORWVFDOH WHVWV ZHUH FDUULHG RXW DQG UHSRUWHG VHSDUDWHO\ E\HTXLSPHQWVXSSOLHUV5HVXOWLQJ EDFNJURXQG IORZUHODWHG ODERUDWRU\ DQG SLORW VFDOH H[SHULPHQWV FDUULHG RXW LQFRQQHFWLRQ ZLWK WKLFNHQLQJ WHVWV GRQH E\ RWKHUV DUH SUHVHQWHG LQ 3DSHU ( WRJHWKHU ZLWK DGLVFXVVLRQ RI VORSH REVHUYDWLRQV DQG SUHGLFWLRQV 7KLV GLVFXVVLRQ LV H[WHQGHG LQ 3DSHU &ZKHUH VRPH UHSRUWHG LQVWDOODWLRQV DOVR DUH UHYLHZHG ,Q 3DSHU ' WKH WHFKQLFDOHFRQRPLFDOIHDVLELOLW\LVEULHIO\SUHVHQWHGIRUWKHYDULRXVDUUDQJHPHQWVDQGWKLFNHQHUORFDWLRQVWKDWKDYHEHHQFRQVLGHUHG([SHULPHQWDOSLSHOLQHUHVLVWDQFHUHVXOWVLQSLORWVFDOHDUHSUHVHQWHGLQ3DSHU%WRJHWKHUZLWKDVXPPDUL]DWLRQDQGGLVFXVVLRQRIUHSRUWHGSXPSSHUIRUPDQFHGDWD3DSHU$

    LVFRQFHQWUDWHGWRDGLVFXVVLRQRISXPSSHUIRUPDQFHUHVXOWVDQGPHFKDQLVPVZKHQKDQGOLQJFRPSOH[VOXUULHV

  • 7/29/2019 Thord Wennberg Lic2010

    18/112

  • 7/29/2019 Thord Wennberg Lic2010

    19/112

    3. Flow of thickened tailings slurries

    3.1 Characterization

    7KHWDLOLQJVVWXGLHGKHUHKDYHW\SLFDOO\DYHUDJHSDUWLFOHVL]HVRIWRPZLWKPD[LPXPVL]HV RIXS WRDERXW P 7KH FRUUHVSRQGLQJVOXUULHV DUH WHUPHG FRPSOH[EHFDXVHWKH\FRYHU DQ LQWHUPHGLDWH DUHD EHWZHHQ KRPRJHQHRXVO\ DQG KHWHURJHQHRXVO\ IORZV RU QRQVHWWOLQJDQGVHWWOLQJW\SHVRIPL[WXUHVUHVSHFWLYHO\,WLVNQRZQWKDWWKHVHVOXUULHVPD\QRWEHKDYH LQ D FRPSOHWHO\ QRQVHWWOLQJ ZD\ IORZLQJ KRPRJHQHRXVO\ GXULQJ SLSHOLQHWUDQVSRUWDWLRQEHFDXVHODUJHUSDUWLFOHVPD\VKRZVHWWOLQJWHQGHQFLHV3XOOXP9DULRXV WKLFNHQHG WDLOLQJV GHVLJQ IHDWXUHV DUH RIWHQ UHIHUHHG WR LQ UKHRORJLFDO WHUPV LHKRPRJHQHRXV IORZ 7KHVH WHUPV DUH XVHG KHUH ZLWK VRPH FDXWLRQ ZLWK UHVSHFW WR WKDW DFRQVLGHUDEOHDPRXQWRISDUWLFOHVDUHODUJHUWKDQDERXWP

    3.2 Conduit flow resistance

    7KHSUHVVXUHJUDGLHQW p / x 3DPIRUWKHIORZLQDKRUL]RQWDOSLSHOLQHLV

    jgx

    p

    x

    p

    ZKHUHjLVWKHIULFWLRQORVVHVLQPRIVOXUU\SHUPRISLSHK\GUDXOLFJUDGLHQW LVWKHGHQVLW\RIWKHVOXUU\gLVWKHDFFHOHUDWLRQGXHWRJUDYLW\PV 7KHSLSHZDOOVKHDUVWUHVV wLVUHODWHG WR WKH SUHVVXUH JUDGLHQWDQG WKH IULFWLRQ ORVV JUDGLHQW WKURXJK D IRUFHEDODQFH LQ DSLSHOLQHVHFWLRQZLWKGLDPHWHUD

    4

    gjD

    4

    Dxpww

    xp

    7KLV UHODWLRQ KROGV IRU ODPLQDU DQG WXUEXOHQW IORZV DV ZHOO DV IRU 1HZWRQLDQ RU QRQ1HZWRQLDQIOXLGVDQGWKHSLSHZDOOVKHDUVWUHVVLVDNH\VFDOLQJSDUDPHWHU

    7KH IORZ RI KLJKO\ FRQFHQWUDWHG WDLOLQJV VOXUULHV EHKDYHV VHHPLQJO\ OLNH KRPRJHQHRXVO\IORZLQJQRQ1HZWRQLDQPHGLD5KHRORJLFDOGHILQLWLRQVDUHLQWURGXFHGEHORZIRUH[SUHVVLRQVRIIORZUHVLVWDQFHDQGVFDOLQJ7KHYLVFRVLW\ RID1HZWRQLDQIOXLGLVGHILQHGE\WKHUDWLRRIVKHDUVWUHVVDQGVKHDUUDWH VWDUWLQJ IURP ]HUR LH D OLQHDU UHODWLRQVKLS VHH )LJXUH $ %LQJKDP W\SH RI D QRQ1HZWRQLDQIOXLGLVGHILQHGE\DSODVWLFYLVFRVLW\ SDQGD\LHOGVWUHVV\WKDWPXVWEHH[FHHGHGEHIRUHWKHIOXLGVWDUWVWRIORZ py

  • 7/29/2019 Thord Wennberg Lic2010

    20/112

    ApparentviscosityPa

    Shear rate JPf

    P

    PS

    Shears

    tressW

    Bingham

    plastic

    Shear rate J

    New

    tonian

    W\

    W

    J Figure 4. Rheogram for a non-Newtonian Bingham plastic fluid and a Newtonian fluid

    (left). The apparent viscosity a versus shear rate for a Bingham plastic fluid is

    shown to the right together with a constant viscosity; , at high shear rates

    ,W LV VHHQ LQ )LJXUH KRZ WKH DSSDUHQW YLVFRVLW\ LV GHILQHG E\ WKH SLSH ZDOO VKHDU VWUHVVGLYLGHGZLWKWKHVKHDUUDWHDWDQDUELWUDU\SRLQW LHDDWDSDUWLFXODUUDWHRIVKHDUH[SUHVVHGLQWHUPVRID1HZWRQLDQIOXLG:LWKDQRQ1HZWRQLDQIOXLGZLWKD\LHOGVWUHVVWKHDSSDUHQWYLVFRVLW\LQFUHDVHVGUDPDWLFDOO\IRUVPDOOVKHDUUDWHV$VWKHVKHDUUDWHLVLQFUHDVHGWKHDSSDUHQWYLVFRVLW\UHDFKHVDQDOPRVWFRQVWDQWYDOXHWKDWFDQEHFRPSDUHGZLWKWKHSODVWLFYLVFRVLW\ LQ)LJXUHOHIW$FRQWLQXRXVO\ GHFUHDVLQJFXUYHEHWZHHQWKH1HZWRQLDQDQG%LQJKDPFXUYHVLQ)LJXUHVWDUWLQJIURP]HURGHILQHVDSVHXGRSODVWLFIOXLG,WVDSSDUHQWYLVFRVLW\DOVRLQFUHDVHVZLWKGHFUHDVLQJVKHDUUDWH7KHVKHDUVWUHVVDWWKHSLSHZDOO ZDQGWKHSVHXGRVKHDUUDWH8V/DUHSUHVHQWUKHRORJLFDO

    VFDOLQJ SDUDPHWHUV ZKHUH 9 LV YHORFLW\ 5DELQRZLWFK DQG 0RRQH\ IRXQG DWHFKQLTXHZKLFKUHODWHVWKHSVHXGRVKHDUUDWHWRWKHWUXHVKHDUUDWH

    3n+1/4n8V/D ZKHUHnUHSUHVHQWVWKHVORSHLQDORJORJSORWRIZYHUVXV9',Q WKLV ZD\ D UKHRJUDP FDQ EH FRQVWUXFWHG IURP SUHVVXUH GURS (TV DQG IORZ UDWHPHDVXUHPHQWVRQDSRLQWE\SRLQWEDVLVZLWKRXWDQ\UKHRORJLFDOPRGHODSSURDFK:LWKWKH%LQJKDPPRGHOLQ(TWKHIRUPDOUHODWLRQVKLSIRUWKHSVHXGRVKHDUUDWHFDQEHH[SUHVVHGDVIROORZVGHWDLOVRPLWWHGKHUHVHHIRUH[DPSOH6KRRNDQG5RFR

    4

    w

    y

    w

    y

    p

    w

    3

    1

    3

    41

    D

    V8

    :KHQH[SUHVVLQJZYHUVXVSVHXGRVKHDUUDWHDOLQHDUDSSURDFKPD\VOLJKWO\RYHUHVWLPDWHWKHVKHDUVWUHVVIRUVPDOOSVHXGRVKHDUUDWHYDOXHV7KLVLVVFKHPDWLFDOO\UHSUHVHQWHGLQ)LJXUHWRJHWKHUZLWKWKHWUDQVLWLRQSRLQWZKHUHWKHUHJLPHFKDQJHVIURPODPLQDUWRWXUEXOHQWIORZ

  • 7/29/2019 Thord Wennberg Lic2010

    21/112

    Shears

    tre

    ssWw

    (Pa

    )

    8V/D (s-1

    )0 100 200 300 400 500

    0

    20

    40

    60

    80

    100

    120

    140

    160

    Water curve

    VT

    Figure 5. Transition point, VT, where flow regime changes from laminar to turbulent in a

    tailings slurry with Bingham like properties. The arrows indicate various

    approaches for turbulent friction losses.7KHIROORZLQJUHODWLRQVKLSLVZHOOHVWDEOLVKHGIRU%LQJKDPW\SHRIIOXLGVDQGKDVEHHQIRXQGWRKROGIRUDSSUR[LPDWHHVWLPDWLRQVRIVT,:LOVRQHWDO

    yT 522V

    ZKHUH\LV\LHOGVWUHVVDQGWKHVOXUU\GHQVLW\

    3.3 Free surface flow (Paper E)

    )RUWKHIUHHVXUIDFHIORZLQDFKDQQHOLVFKDUDFWHUL]HGE\WKHGHSWKZHWWHGSHULPHWHUDQGIORZDUHD)LJXUH

    Channel

    B (m)

    y (m)

    Figure 6. Sketch of channel section with depth y and width B. The wetted perimeter, P, isB+2y for the area, A = By.

    7KHVXFFHVVLYHO\FKDQJHLQGHSWKDORQJWKHIORZLQWKHIOXPHRYHUWKHOHQJWK/ZDVKHUHHYDOXDWHG LQ WHUPVRIDQDYHUDJH VKHDUUDWH Z EDVHG RQ D QHJOLJLEOHHIIHFW RI WKH YHORFLW\KHDG

    P

    gAS

    L

    yyb

    duw

    L

  • 7/29/2019 Thord Wennberg Lic2010

    22/112

    ZKHUHydDQGyuDUHGRZQVWUHDPDQGXSVWUHDPVOXUU\GHSWKVRYHUWKHOHQJWKLDQGSbLVWKHERWWRP VORSH :KHQ WKH VKHDU VWUHVV KHUH LV PDWFKHG WR D SVHXGR VKHDU UDWH WKH K\GUDXOLFGLDPHWHU'+$3LVXVHGIRU'LQWKHSLSHOLQHH[SUHVVLRQ9'

  • 7/29/2019 Thord Wennberg Lic2010

    23/112

    4. Perf ormance of cen trifugal pumps ha ndling complex

    slurries7\SLFDO SXPS SHUIRUPDQFH HIIHFWV ZKHQ SXPSLQJ YLVFRXV 1HZWRQLDQ OLTXLGV DUH VKRZQ

    )LJXUH 7KH SXPSLQJ KHDG LV GHWHUPLQHG E\ WKH SLSHOLQH FRQILJXUDWLRQ DQG WKH SLSHOLQHUHVLVWDQFHWRIORZWKHV\VWHPFXUYH7KHRSHUDWLQJSRLQWLVGHILQHGE\WKHLQWHUVHFWLRQZLWKWKHSXPSKHDGFXUYH

    Flow rate

    H

    K

    Higher viscosity

    Water viscosity

    System curve

    Pump head curve

    Efficiency curve

    Figure 7. Schematic sketch on pump characteristics depending on fluid Newtonian viscosity.

    ,W IROORZV IURP )LJXUH KRZ WKH IORZ UDWH DQG KHDG LV ORZHUHG ZKHQ SXPSLQJ D YLVFRXV1HZWRQLDQIOXLG 7KHHIIHFW RIDKLJKHUYLVFRVLW\ PHDQVWKDW WKHSXPSEHKDYHVDVDVPDOOHUXQLW

    7KH W\SH RI VOXUULHV FRQVLGHUHG KHUH EHKDYHV RIWHQ LQD QRQ1HZWRQLDQ ZD\ DQG H[KLELW D\LHOGVWUHVV:KLOHWKHGHUDWLQJIRUD1HZWRQLDQIOXLGFRQYHUJHVIRUGHFUHDVLQJIORZUDWHV)LJXUHDQRSSRVLWHWHQGHQF\PD\RFFXUIRUQRQ1HZWRQLDQVOXUULHVZLWKD\LHOGEHKDYLRXUKHUHGHPRQVWUDWHGLQDQH[WUHPHVLWXDWLRQVHH)LJXUH

    Pump head curve, water

    Flow rate

    H

    K

    Slurry

    System curve

    Efficiency curve, water

    Figure 8. Extreme derating effect on the pumping head for a non-Newtonian slurry with a

    yield stress typical giving a large head requirements for low flow rates.

  • 7/29/2019 Thord Wennberg Lic2010

    24/112

    7KHV\VWHPFXUYHPDWFKHVVFKHPDWLFDOO\WKHSXPSFXUYHLQVHYHUDOSRLQWVLQ)LJXUHZKLFKGHPRQVWUDWHVXQVWDEOHRSHUDWLRQ7KHRSHUDWLRQVKRZQLVDVVRFLDWHGZLWKWZRFRPSOLFDWLQJIDFWRUV FRPSDUHG WR WKH VLWXDWLRQ LQ )LJXUH IRU D YLVFRXV 1HZWRQLDQ IOXLG )LUVWO\ WKHSRVVLEOH WHQGHQF\ RI D GLYHUJLQJ SXPS KHDG FXUYH DQG VHFRQGO\ WKH \LHOG EHKDYLRXU WKDWJHQHUDWHDSLSHOLQHV\VWHPFXUYHWKDWLQFUHDVHYHU\OLWWOHZLWKWKHIORZUDWH7KLVPHDQVWKDWWKHRSHUDWLQJSRLQWZLOOEHYHU\VHQVLWLYHWRWKHHIIHFWRIWKHVOXUU\RQWKHSXPSSHUIRUPDQFH

    7KHUHODWLYHUHGXFWLRQRIFOHDUZDWHUKHDGDQGHIILFLHQF\IRUDFRQVWDQWIORZUDWHDQGURWDU\VSHHGPD\EHGHILQHGE\WKHUDWLRDQGIDFWRUVVKRZQLQ)LJXUH7KHFRPSOLFDWLQJIORZUDWHGHSHQGHQF\RQWKHSXPSSHUIRUPDQFHFXUYHVVHHQLQ)LJXUHVDQGDUHQRWLQFOXGHGLQWKHH[SUHVVLRQV

    )/2:5$7(

    +

    K

    +R

    +

    KRK

    :DWHU6OXUU\

    +HDGUDWLR+5++R+HDGUHGXFWLRQIDFWRU5++5

    (IILFLHQF\UDWLR(5KKR

    (IILFLHQF\UHGXFWLRQIDFWRU5K(5

    Figure 9. Sketch defining the reduction in head and efficiency of a centrifugal pump

    pumping a solids water mixture. H and H0 are heads in slurry and water service,

    respectively. The corresponding efficiencies are and0.

    7KHHQHUJ\FRQVXPSWLRQRISXPSLQJWKHVOXUU\LQDSLSHOLQHV\VWHPDOVRLQFOXGHVWKHWRWDOHIILFLHQF\ TRIWKHSXPSLQDV\VWHP$VVXPHWKDWWKHSRZHUORVWLQWKHPRWRUDQGLQWKHWUDQVPLVVLRQ FRUUHVSRQGV WR DQ HIILFLHQF\ IDFWRU M.7KHQ TFDQEHUHODWHGWRWKHSXPSHIILFLHQF\ LQWKHIROORZLQJZD\

    MT

    7KHHIILFLHQF\UHGXFWLRQIDFWRUZDVGHILQHGDVR = 1 - / oZKHUH DQG oDUHWKHSXPSHIILFLHQF\LQVOXUU\DQGZDWHUVHUYLFHUHVSHFWLYHO\:LWKWKHGHILQLWLRQRIR WKHQLWIROORZVWKDW

    R1OMT

    )RUH[DPSOHZLWKR 0 DQG M LWIROORZVIURP(TWKDW TLVDERXW7REHDEOHWRJHQHUDWHDUHTXLUHGKHDGHLQPVOXUU\WKHSXPSPXVWEHFDSDEOHRISURGXFLQJDKHDGRIZDWHUH0JLYHQE\(T

    H0 = H/HR 7KHSXPSPXVWWKHQRSHUDWHIRUWKHURWDU\VSHHGFRUUHVSRQGLQJWR H07KHYDOXHRIZDWHUHIILFLHQF\

    oLVREWDLQHGIURPWKLVURWDU\VSHHG

  • 7/29/2019 Thord Wennberg Lic2010

    25/112

    5. Exp eri men tal res ults

    5.1 Flow resistance in pipelines and flumes (Paper B and E)

    7KHIORZUHVLVWDQFHDQGUKHRORJLFDOFKDUDFWHUL]DWLRQDUHEDVHGRQYDULRXVWHVWVIURPSLSHOLQHORRSSXPSLQJLQVPDOOWRODUJHUSLSHGLDPHWHUVDQGIRUIOXPHIORZV3LSHVL]HVKDYHEHHQIURPP2EVHUYDWLRQVRIFRQWLQXRXVIORZRYHUDOHQJWKRIDERXWPLQWKHIOXPHZLWKZLGWKDQGKHLJKW DQG P UHVSHFWLYHO\ ZHUH FDUULHG RXW DW VORSHV IURP DERXW XS WR $SSUR[LPDWHO\XQLIRUPFRQGLWLRQVZLWKDQHDUO\FRQVWDQWGHSWKDQGQRGHSRVLWLRQRISDUWLFOHVZHUHREVHUYHG7KHFRUUHVSRQGLQJDQDO\VLVIRUHVWLPDWLRQRIDYHUDJHVKHDUVWUHVVHV(TLVJLYHQLQGHWDLOVE\(QJPDQHWDO

    6XPPDUL]HGSLSHDQGIOXPHZDOOVKHDUVWUHVVUHVXOWVYHUVXVSVHXGRVKHDUUDWH9'LQ)LJXUH)RUIUHHVXUIDFHIORZ''+ $3 ZKHUH$ LV WKHDYHUDJHVHFWLRQ DUHD DQG3 LV WKHDYHUDJHZHWWHGSHULPHWHU

    1

    10

    100

    1000

    P

    P

    P

    Pipeline diameter

    and flume

    )OXPHP

    8V/D (s-1

    )

    0.1 1 10 100 1000

    Shears

    tres

    sw

    (Pa)

    Figure 10. Summary of experimentally found shear stresses versus the pseudo shear rate8V/D for various tests in pipeline loops and in a flume.

    7KHUHVXOWVLQ)LJXUHDUHEDVHGRQ&YDOXHVIURPWR,WFDQEHVHHQWKDWWKH\LHOGVWUHVVHVDUHLQWKHWR3DGRPDLQ,QDGGLWLRQWRWKHYDULDWLRQLQ&WKHVFDWWHUPD\WRVRPHH[WHQWH[SUHVVWKHYDULDELOLW\LQSUDFWLFHUHODWHGWRORFDOVOXUU\SURSHUWLHVDQGWKLFNHQHU RSHUDWLRQ )XUWKHUPRUH WR YDULRXV WHVWLQJ FRQGLWLRQV WKDWUHSUHVHQW UHPL[LQJDQGPLOGO\ WRVWURQJO\ FLUFXODWLRQ WKURXJKDSXPSRUD SURGXFW WKDW KDG EHHQVWRUHGIRU RQH WRVHYHUDOZHHNVGHSHQGLQJRQWULDOFRQGLWLRQV

  • 7/29/2019 Thord Wennberg Lic2010

    26/112

    5.2 Deposition slope evaluations (Paper E)

    6ORSHHYDOXDWLRQVZHUHFDUULHGRXWDWWKH6YDSSDYDDUD&RQFHQWUDWRUDQGLQDODUJHWUHQFKDWDQRWKHUFRQFHQWUDWRU0XOWL6HUYH$%IRUDVLPLODUWDLOLQJVSURGXFW7KHGLVFKDUJHIURPWKHSLORWVFDOHWKLFNHQLQJWHVWVZHUHZLWKPSODVWLFKRVHVDQGDW0XOWL6HUYHZLWKGLVFKDUJHLQDWUHQFKZLWKERWWRPZLGWKRIPDQGKHLJKWDERXWP7KHGHSRVLWLRQREVHUYDWLRQVDWWKH 6YDSSDYDDUD FRQFHQWUDWRU WRRN SODFH RQ D KRUL]RQWDO IORRU ZKLFK FUHDWHG FRQHV ZLWKGLDPHWHUVRIWRPDQGKHLJKWVRIWRP,QDGGLWLRQEDWFKWHVWVZHUHFDUULHGRXWLQDIOXPHZLWKZLGWKKHLJKWDQGOHQJWKRIDQGUHVSHFWLYHO\7KHYDULRXVODERUDWRU\DQG ILHOG VHWXSV DQG GHWDLOHG UHVXOWV DUH JLYHQ E\ (QJPDQ HW DO D VXPPDU\ RIGHSRVLWLRQVORSHVDUHVKRZQLQ)LJXUH

    0

    5

    10

    15

    20

    25

    30

    38 45 50

    C (%)

    Slope(%)

    )ORRU

    %DWFK

    7UHQFK

    7UHQFKFLUFXODWHG

    %DWFKFLUFXODWHG

    Figure 11. Observed deposition angles from 0.025 m diameter discharge pipelines, batch

    laboratory-scale flume tests and pilot-scale trench results. Unfilled and filled

    marks correspond to tests at two companies with similar particle size

    distributions of the tailings. Solids density 2900 kg/m3.

    ,Q)LJXUHFLUFXODWHGLVFRXSOHGWRWHVWVZLWKDJLWDWHGVOXUU\WKURXJKDFLUFXODWLQJSXPSDUUDQJHPHQW LQ WKH ORZHU SRUWLRQ RI WKH WKLFNHQHU SXPSV ZLWK PHFKDQLFDO VHDOV ,W ZDVREVHUYHGWKDWWKLVVOXUU\IORZHGPRUHHDVLO\GRZQWKHVORSH,WIROORZVIURP)LJXUHWKDWDYHUDJHVORSHVRIWRZHUHREWDLQHGIURPDYROXPHWULFFRQFHQWUDWLRQRIDERXW

    DQGWKDWSXPSFLUFXODWLRQLQWKHWKLFNHQHUIRUWKHWUHQFKGDWDWHQGHGWRORZHUWKHVORSHWKXVDIIHFWLQJWKHEHKDYLRXURIWKHVOXUU\

    5.3 Pump performance (Paper A and B)

    $QH[DPSOHRIREVHUYHGSXPSGHUDWLQJVIRUDVLPXODWHGWDLOLQJVSURGXFWDUHJLYHQLQ)LJXUH $GGLH 6HOOJHUQ 7KH SXPS ZDV D PRGLILHG YDQH PHWDO XQLW ZLWK DQ RSHQVKURXGPGLDPHWHULPSHOOHUKDYLQJDVLPSOHDXJHUOLNHLQGXFHU

  • 7/29/2019 Thord Wennberg Lic2010

    27/112

    0

    2

    4

    6

    8

    10

    12

    14

    16

    30 40 50 60 70 80

    Flowrate (m3/hr)

    Head(m)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    Efficien

    cy(%)

    Head, Water Head, Slurry Efficiency, Water Efficiency, Slurry

    Figure 12. Pump performance derating for a simulated tailings product characterized by ayield stress of about 100 Pa. From Addie & Sellgern (2007).

    ,WIROORZVIURP)LJXUHWKDW WKHKHDGZDVVWDEOHDQG+5DQG(5ZHUHIRXQGWREHDERXWDQGUHVSHFWLYHO\7KHIORZUHVLVWDQFHZDVHYDOXDWHGIURPSLSHOLQHORRSUHVXOWVDQGH[SUHVVHGLQWHUPVRIWKH\LHOGVWUHVVDQGDSODVWLFYLVFRVLW\7KHFRUUHVSRQGLQJ\LHOGVWUHVVDQG SODVWLF YLVFRVLW\ ZHUH HVWLPDWHG WR DERXW 3DDQG 3DV UHVSHFWLYHO\ $QRWKHUWDLOLQJVVLPXODWHG:KLWORFNDQG6HOOJUHQZLWKWKHVDPHSXPSIRUDFOD\VDQGPL[WXUHVKRZHG+5DQG(5YDOXHVRIDQGUHVSHFWLYHO\7KHFRUUHVSRQGLQJ\LHOGVWUHVVDQGSODVWLFYLVFRVLW\ZHUHKHUHDERXW3DDQG3DVUHVSHFWLYHO\

    &RRNH SUHVHQWHG UHVXOWV IRU GLIIHUHQW WUXH WKLFNHQHG WDLOLQJV SURGXFWV ZLWK \LHOGVWUHVVHVRIXSWR3DDQG SIURPWR3DV7KHFRUUHVSRQGLQJYDOXHVRI+5DQG(5ZHUHLQWKHUDQJHRIWRIRUDSXPSZLWKLPSHOOHUGLDPHWHUP

    5.4 Overall result summary

    ,W ZDV IRXQG WKDW WKH VROLGV FRQFHQWUDWLRQV E\ YROXPH & RI DERXW FKDUDFWHUL]HV WKHSLSHOLQH SXPSLQJ KHUH HVWLPDWHG WR EH RQ WKH FRQVHUYDWLYH VLGH ZLWK UHVSHFW WR WKLFNHQHGSURGXFWTXDOLW\UHTXLUHPHQW7KHRYHUDOOSLSHOLQHORRSUHVXOWVZHUHHYDOXDWHGIURP)LJLQ

    WHUPVRIDUHSUHVHQWDWLYHZDOOVWUHVVRI3D7KHYDULDWLRQRIVKHDUVWUHVVHVLQ)LJXUHPD\ WR VRPH H[WHQW VKRZ WKH YDULDWLRQ LQ SUDFWLFH UHODWHG WR ORFDO VOXUU\ SURSHUWLHV DQGWKLFNHQHURSHUDWLRQ7KH H[SHULPHQWDO UHVXOWV FRQILUPHG WKDW WKH ORFDO FRQGLWLRQV IDYRXUHG SODFHPHQW ZLWK DQHOHYDWHG WKLFNHQHU ORFDWLRQ FORVH WR WKH GLVSRVDO DUHD ,Q WKLV ZD\ D QHZ KLJK SUHVVXUHSXPSLQJV\VWHP IRU D SUHVVXUHRI DERXW 03D LV DYRLGHGZKLOH WKH WKLFNHQHUXQGHUIORZVOXUU\LVGHOLYHUHGZLWKDFHQWULIXJDOSXPSWKHVKRUWGLVWDQFHDFWXDOKHUHGXULQJWKHILUVW\HDUVRIRSHUDWLRQ&RQWLQXHGXVHRIFHQWULIXJDOSXPSVLQVHULHVLQVWDOODWLRQVLVFRQVLGHUHGDVWKHGLVFKDUJHSRLQW

    DGYDQFHV GXULQJ WKH \HDU OLIH 7KHUHIRUH WKH XSFRPLQJ GLVFXVVLRQ LV IRFXVHG RQ WKH

  • 7/29/2019 Thord Wennberg Lic2010

    28/112

    SHUIRUPDQFHRI FHQWULIXJDOSXPSVLQFOXGLQJ WKHUHVXOWVRID IROORZXSRI WKHRSHUDWLRQRI DWKLFNHQHUXQGHUIORZSXPSLQVWDOODWLRQ7KHSXPSSHUIRUPDQFHOLWHUDWXUHUHVXOWVDERYHIRUWUXHRUVLPXODWHGWKLFNHQHGWDLOLQJVFDQEHVXPPDUL]HGDVPD[LPXPUHGXFWLRQVLQKHDG5+DQGHIILFLHQF\5 RIDERXWDQGUHVSHFWLYHO\ZKHQRSHUDWLQJLQWKHEHVWHIILFLHQF\UHJLRQ

  • 7/29/2019 Thord Wennberg Lic2010

    29/112

    6. Discussion

    6.1 Centrifugal pump performance (Paper A and B)

    7KHSXPSKHDGIORZUDWHFKDUDFWHULVWLFVZKHQSXPSLQJZDWHUUHVXOWVIURPWKHVXEWUDFWLRQRIORVVHVIURPWKHWKHRUHWLFDOFKDUDFWHULVWLFVWUDLJKWOLQHDVVFKHPDWLFDOO\VHHQLQ)LJXUH

    QBEP

    Shock losses

    Frictio

    nlossesActual pump

    H-Q curve

    Theoreticalheadline

    Hf

    Hs

    H

    Q Figure 13. Theoretical head curve and hydraulic losses from the ideal head curve. Partly

    from Wilson et al.(2006). Hs and Hfdefined in Eqs. 13 and 14, Sayers (1990).

    7KH VXFFHVVLYHO\ LQFUHDVHG HIIHFW RI UHFLUFXODWLRQ DQG VKRFN ORVVHVHs IRU GHFUHDVLQJWXUEXOHQWIORZUDWHVEDVLFDOO\LQFUHDVHZLWKWKHVTXDUHRIWKHIORZUDWHDW%(3PLQXVWKHDFWXDOIORZUDWH6D\HUV

    HSQBEPQ2

    7KHGLUHFWFRQGXLWIORZIULFWLRQORVVHVHfLVH[SUHVVHGDV

    Hf

    = Q2 7KHSUREOHPZLWKIORZRIQRQ1HZWRQLDQPHGLDZLWKLQDSXPSLVWRGHILQHDUHSUHVHQWDWLYHVKHDU UDWH 3XOOXP HW DO *UDKDP HW DO GHILQHG D FKDUDFWHULVWLF SDUDPHWHU WRH[SUHVVWKHVKHDUUDWHZKLFKIRUWKHW\SHRIVOXUULHVFRQVLGHUHGKHUHZRXOGUHVXOWLQODPLQDUIORZWKURXJKWKHSXPSYDQHSDVVDJHV5KHRJUDPV ZHUH VKRZQ WRJHWKHU ZLWK YDULRXV SHUIRUPDQFH GDWD LQ :HQQEHUJ 6HOOJUHQ7KHLUSLSHOLQHORRSUHVXOWVIRU&DERXWZHUHSUHVHQWHGLQUKHRORJLFDOWHUPVWKH%LQJKDP\LHOGVWUHVVDQGSODVWLFYLVFRVLW\ZHUH3DDQG3DVUHVSHFWLYHO\)RXUVHWVRI GDWD DUH UHSUHVHQWHG LQ )LJXUH LQ WHUPV RI DQ DSSDUHQW YLVFRVLW\ YHUVXV WKH VFDOLQJ

    SDUDPHWHU9'

  • 7/29/2019 Thord Wennberg Lic2010

    30/112

    )ORZHYDOXDWLRQVLQWHUPVRIDSSDUHQWYLVFRVLWLHVIURPSLSHOLQHVRURWKHUPHDVXUHPHQWVIRUVHYHUDOLQYHVWLJDWLRQVDQGRZQWDLOLQJVVOXUU\GDWDZHUHSUHVHQWHGLQVXPPDU\UKHRJUDPDQGWDEOHSUHVHQWDWLRQV LQ :HQQEHUJ DQG 6HOOJUHQ )RXU VHWV RI GDWD DUH UHSUHVHQWHG LQ)LJXUH

    Notation Product CRotary

    speed

    Impeller

    diameterHR ER

    Pump type, comments and

    reference

    .DROLQ

    E\PVHPLRSHQYDQHLPSHOOHU%RRWOH

    6OXGJH E\FORVHGYDQH

    LPSHOOHU6HOOJUHQHWDO

    &OD\VDQG

    E\PRSHQVKURXGHGYDQHLPSHOOHU:KLWORFN

    6HOOJUHQ

    Figure 14. Apparent viscosity for four sets of tests with mainly non-settling slurries with

    three centrifugal pumps with various impeller diameters and configurations.

    ,WIROORZVIURP)LJXUH KRZWKHQRQ1HZWRQLDQEHKDYLRXULVVWURQJO\LQIOXHQFHGE\\LHOGVWUHVVIRUGHFUHDVLQJ9'DQGWKDWDQDV\PSWRWLFYDOXHLVREWDLQHGIRUYHU\ODUJH9'7RHYDOXDWHWKHIORZUHJLPHLQWKHSLSHOLQHVDWWDFKHGWRWKHSXPSYHORFLWLHVZHUHFDOFXODWHG

    DQGFRPSDUHGWRWUDQVLWLRQYHORFLWLHVGHWHUPLQHGIURP(T

    yT 522V

    7KHFRPSDULVRQVVKRZHGWKDWWKHYHORFLWLHVLQWKHVXFWLRQDQGGLVFKDUJHVHFWLRQVZHUHKLJKHUWKDQ97LHWXUEXOHQWIRUWKHFDVHVPDUNHGDQGLQ)LJXUHDWIORZUDWHVLQWKH%(3UHJLRQ 7KH FRUUHVSRQGLQJ VXFWLRQ IORZVPDUNHG DQG ZHUH ODPLQDU $OO VXFWLRQ VLGHIORZVZHUHODPLQDUDW4%(3:KHQWKHIORZHQWHUVWKHLPSHOOHUH\HLWLVH[SRVHGWRDGHJUHHFKDQJHLQGLUHFWLRQDQGD

    URWDU\LQIOXHQFH7KHDFFHOHUDWLRQGHFHOHUDWLRQIORZILHOGLQ WKHHQWUDQFHUHJLRQPD\DOVREHDVVRFLDWHGZLWKLQWHUPHGLDWHODPLQDUWXUEXOHQWIORZIRU\LHOGPDWHULDO5DVKDLGD

  • 7/29/2019 Thord Wennberg Lic2010

    31/112

    )ULFWLRQORVVHVLQWXUEXOHQWFRQGXLWIORZGHFUHDVHLQSURSRUWLRQWRWKHGHFUHDVHLQ4UDLVHGWRWKHVHFRQGSRZHU(T)RUQRQ1HZWRQLDQVOXUULHVIORZLQJWXUEXOHQWO\DFRQVWDQWYLVFRVLW\RIWHQ GHILQHG E\ WKH DSSDUHQWYLVFRVLW\ IRUYHU\ ODUJH VKHDUUDWHV)LJXUHRUIRUWKHSODVWLFYLVFRVLW\LHD1HZWRQLDQDSSURDFKIROORZLQJ:DONHUDQG*RXODV)ULFWLRQ ORVVHV LQ ODPLQDU 1HZWRQLDQ LH FRQVWDQW YLVFRVLW\ FRQGXLW IORZ GHFUHDVH LQ

    SURSRUWLRQ WR D GHFUHDVH LQ WKH IORZ UDWH )RU WKH QRQ1HZWRQLDQ\LHOG EHKDYLRUH[SUHVVHGVFKHPDWLFDOO\LQ)LJXUHZLWKDQLQFUHDVLQJDSSDUHQWYLVFRVLW\IRUDGHFUHDVLQJIORZUDWHWKHGHFUHDVHLQIULFWLRQORVVHVLVVPDOOW\SLFDOO\ZLWKDSRZHURILQ47KHUHIRUHZLWKDQDVVXPSWLRQRIODPLQDUFRQGLWLRQVLQWKHSXPSDVFKHPDWLFFRPSDULVRQZLWK)LJVKRZVKRZWKHYLVFRXVIULFWLRQPD\WDNHDELJJHUVKDUHIRUORZHUIORZUDWHV7KXVTXDOLWDWLYHO\IRUORZHUIORZUDWHVWKHQRQ1HZWRQLDQEHKDYLRXUWRJHWKHUZLWKVKRFNORVVHVZRXOGH[SUHVVDORZHULQJRIWKHKHDGFXUYHLHXQVWDEOHFRQGLWLRQV%RRWOHLQYHVWLJDWHGWKHGHUDWLQJHIIHFWVIRUKLJK3DDQGORZ\LHOG3DVWUHVVNDROLQVOXUULHVVHH:HQQEHUJHWDODQGIRXQGWKDWWKHYDOXHVIRU+5DERXWDQG(5ZHUHQRWDIIHFWHGGHVSLWHWKHELJFKDQJHLQ\LHOGVWUHVV7KHUHVXOWVVKRZHGWKDWWKHUHZHUHSUDFWLFDOO\QRGHUDWLQJRQWKHKHDG7KHYDQHVHPLRSHQPLPSHOOHUSXPSXVHGE\%RRWOHIRUNDROLQZDVPRGLILHGZLWKDQHQODUJHGVXFWLRQLQOHWIURPWRPDQGLQWHJUDWHGIORZLQGXFHUVFRRSVZKLFKSURMHFWLQWRWKHLQOHW7KHXQH[SHFWHGQHJOLJLEOHLQIOXHQFHRIWKH\LHOGVWUHVVZDVUHODWHGWRDGRPLQDWLRQRIWXUEXOHQWHIIHFWV;XHWDO

    5HVXOWV E\ .DEDPED UHSRUWHG E\ :HQQEHUJ HW DO VKRZHG D WHQGHQF\ RI DORZHULQJ KHDG ZLWKD QRQ1HZWRQLDQ OLTXLG ZLWKSVHXGRSODVWLF SURSHUWLHV 7KLVLPSOLHV QR\LHOGEHKDYLRUVHH)LJXUH7KLVLQGLFDWHVWKDWD\LHOGVWUHVVLVQRWQHFHVVDULO\DGHWHUPLQLQJIDFWRUIRUWKHGHYHORSPHQWRIDQXQVWDEOHKHDGFXUYH

    3XPSSHUIRUPDQFHGHUDWLQJUHVXOWVIRUDQRQ1HZWRQLDQVOXUU\FDXVLQJXQVWDEOHKHDGFXUYHV

    DUHVKRZQLQ)LJXUH

    Figure 15. The effect of slurry on the pump head and efficiency at solids concentrations by

    volume of 31 and 35 % of a scrubber sludge product. Impeller diameter 0.63 m.

    y = 35 Pa and p = 0.03 Pas for 35 %. From Sellgren et al.(1999).

  • 7/29/2019 Thord Wennberg Lic2010

    32/112

    7KHFRPSDUDWLYHO\ORZ\LHOGVWUHVVDQGSODVWLFYLVFRVLW\IRU&LQ)LJXUHDVZHOODVWKHWXUEXOHQWIORZSUHGLFWLRQLQWKHVXFWLRQDQGGLVFKDUJHSLSHOLQHV&DVHLQ)LJXUHGRQRWUHIHUGLUHFWO\WRODPLQDUIORZZLWKLQWKHSXPSDQGDVVRFLDWHGKLJKIULFWLRQORVVHVIRUWKHVKDUSGURSLQKHDG7KH REVHUYHGVHWLQ RI WKH GHVWDELOL]DWLRQ HIIHFW PD\ EHUHODWHG WRKRZ IDU DZD\IURP WKH

    %(3UHJLRQ WKH SXPS RSHUDWHV ZLWK VXFFHVVLYHO\ PRUH UHFLUFXODWLRQ DQG VKRFN ORVVHV $QLQFUHDVH LQ URWDU\ VSHHG LQ WKLV GRPDLQ IRU D FRQVWDQW IORZ UDWH PD\ FRQWULEXWH WR WKHGHVWDELOL]DWLRQ EHFDXVH WKH GLVWDQFH DZD\ IURP %(3 LQFUHDVH VHH VFKHPDWLF H[DPSOH LQ)LJ

    1.5 N

    N

    B

    A

    Relative flow rate

    Re

    lat

    ive

    hea

    d BEP- Line

    1

    21

    2

    Figure 16. An increase in head from A to B through an increase in rotary speed, N, for a

    constant flow rate means operating further away from the BEP-region. From

    Wennberg et al. (2008).

    ,QWKHVLWXDWLRQLQ)LJXUHZLWKDFRQVWDQWIORZUDWHWKHHIIHFWRIDSSDUHQWYLVFRVLW\LVQRWFDXVHG E\ DGHFUHDVHG IORZUDWHRQO\WKH FKDQJH LQORFDOIORZSDWWHUQ DVVRFLDWHGZLWK WKHLQFUHDVHLQWKHURWDU\VSHHGDQGRSHUDWLRQDZD\IURP%(3UHJLRQ7KHVFKHPDWLFVLWXDWLRQLQ)LJXUHRFFXUUHGLQDOHVVSURQRXQFHGH[SHULPHQWDOVLWXDWLRQZKHQDWHQGHQF\RIDGURSLQKHDGZDVPHWZLWKDQLQFUHDVHLQURWDU\VSHHGZKHQ1LQFUHDVHGIURPWRUSPIRUSUDFWLFDOO\FRQVWDQWYDOXHVRIIORZUDWH&DQGSLSHOLQHIULFWLRQORVVHVGXULQJDERXWPLQXWHV:HQQEHUJHWDO7KLV VLWXDWLRQ PD\ KDYH EHHQ FDXVHG E\ SURJUHVVLYHEXLOGXS RIPDWHULDOZLWKLQ WKH SXPSZLWK JHRPHWULFDO PRGLILFDWLRQV RI IORZ SDVVDJHVZLWKLQ WKH SXPS WKDW SURPRWH ORVVHV DQG

    DIIHFWV WKH VXFWLRQ SHUIRUPDQFH 7HQGHQFLHV RI QRIORZ VWDJQDQW ]RQHV DW YDQHERXQGDULHVZLWKDZHOOGHILQHG%LQJKDPIOXLG8OWUH[IOXLGZLWKLQDE\PSXPSLPSHOOHUPKDYHEHHQGRFXPHQWHGLQSLFWXUHVZLWKDQDFU\OLFVHWXS3XOOXP7KHWHQGHQFLHVPD\ VLPXODWH EXLOWXS RI PDWHULDO ZLWKLQ WKH SXPS 7KHVH DWWDFKHG OXPSV FDQ RFFOXGHIUDFWLRQVRIWKHSDVVDJHVZLWKLQWKHSXPSZKLFKPD\VHULRXVO\LQIOXHQFHWKHKHDGSURGXFHG7KHDYDLODEOHDEVROXWHSUHVVXUHDWWKHSXPSVXFWLRQVLGHVKRXOGEHZHOODERYHWKHUHTXLUHGDEVROXWHSUHVVXUH136+5UHODWHGWRWKHSXPSGHVLJQDQGJLYHQE\WKHSXPSPDQXIDFWXUHU136+5LQFUHDVHVZLWKWKHIORZUDWHDQGLVQRUPDOO\FRQVLGHUHGWRKDYHWKHVDPHYDOXHDVIRUZDWHUZKHQSXPSLQJVOXUU\

  • 7/29/2019 Thord Wennberg Lic2010

    33/112

    5RXGQHYIRXQGWKDW136+5FDQEHVHYHUDOWLPHVODUJHUWKDQWKHZDWHUYDOXHEDVHGRQH[SHULPHQWDO UHVXOWV IURP 5XVVLDQ UHIHUHQFHV IURP WR ZLWK %LQJKDPW\SH RIVOXUULHV IRU H[DPSOH KHDY\ PHGLDPDJQHWLWH SURGXFWV 'HWDLOHG HYDOXDWLRQV RI WKH GDWD E\5RXGQHYVKRZHGWKDWWKHODUJHVWHIIHFWRIDQLQFUHDVHG136+5RFFXUUHGLQWKH%(3UHJLRQZKHUHLWZDVDERXWWLPHVWKHZDWHUYDOXH$W4 %(3WKHFRUUHVSRQGLQJYDOXHZDVRQO\7KXVUHJXODUVXPSSXPSDUUDQJHPHQWVDUHPRUHVXVFHSWLEOHWR136+5WKDQWKLFNHQHU

    XQGHUIORZ LQVWDOODWLRQV DQG VXIILFLHQW VDIHW\ IDFWRUV VKRXOG EH XVHG +RZHYHU LI QR GLUHFWQHJDWLYHHIIHFWLVQRWHGDW%(3IORZVWKHQDQHIIHFWDW4%(3LVOHVVOLNHO\5RXGQHY H[SUHVV WKDW WKH JUHDWHU 136+5 UHTXLUHPHQW FDQ EH UHODWHG WR EORFNDJHWHQGHQFLHVLQWKHHQWUDQFHUHJLRQE\WKH\LHOGEHKDYLRUUHVXOWLQJLQKLJKHUYHORFLWLHVDQGWKXVORZHU SUHVVXUH$GYHUVHSXPS SHUIRUPDQFH HIIHFWV UHODWHG WR WKH \LHOG EHKDYLRXU ZDVDOVRSRLQWHGRXWE\5DVKDLGDZLWKIRUPDWLRQRIVWDJQDQWFDYHUQVLQURWDWLRQGLVNV\VWHPV6WURQJYLVFRXVHIIHFWVRQWKHIORZSDWWHUQQHDUWKHLPSHOOHULQOHWZDVREVHUYHGE\/L7KHGLVFXVVHGPHFKDQLVPVKDYHVRPHVLPLODULWLHVWRSRVVLEOHEORFNDJHIURPYDSRXULQWKHHQWUDQFHUHJLRQVRPHWLPHVREVHUYHGIRUOLTXLGSXPSLQJDWORZIORZUDWHVZLWKVWURQJORFDOUHFLUFXODWLRQFDXVLQJFDYLWDWLRQDOFRQGLWLRQV*LUGKDUDQG0RQL])LJXUH

    Figure 17. The pressure on the suction side of the pump and the eye of the impeller when the

    suction pressure is lowered bubbles starts forming in the eye of the impeller.

    From Girdhar and Moniz (2004).

    )ROORZLQJWKHGLVFXVVLRQDERYHDWKLFNHQHUXQGHUIORZSXPSVKRXOGQRWEHH[SRVHGGLUHFWO\WRD 136+5 SUREOHP EHFDXVH LW LV QRUPDOO\ ORFDWHG D FRQVLGHUDEOH GHSWK EHORZ WKH VOXUU\

    VXUIDFH OHYHO 7KHUHIRUH WKH DEVROXWH SUHVVXUH UHTXLUHPHQW LV QRUPDOO\ IXOILOOHG LQ WKHGHWHUPLQLQJ%(3UHJLRQ$QLQVWDOODWLRQZDVLGHQWLILHGZKHUHDFHQWULIXJDOSXPSRSHUDWHGXQGHUDWKLFNHQHUZLWKKLJKGHQVLWLHVIRUDSDVWHXVHGIRUPLQHEDFNILOOLQJDWWKH1HZ%ROLGHQ*DUSHQEHUJRSHUDWLRQV(ULNVVRQ7KHWKLFNHQHGDQGIORFFXODWHGVOXUU\IORZVE\JUDYLW\DERXWPWRWKHEDVHRIWKHWKLFNHQHUWRWKHSXPSIURPZKHUHLWLVWUDQVSRUWHGDERXWP6DPSOHVZHUHWDNHQRXWIURPUKHRORJLFDOPHDVXUHPHQWVDQGIORZUDWHDQGSUHVVXUHPHDVXUHPHQWVZHUHFDUULHGRXW5KHRJUDPUHVXOWVDUHVKRZQLQ)LJXUHDQGFRPSDUHGWRWKHSLSHOLQHORRSUHVXOWVLQ)LJXUH

  • 7/29/2019 Thord Wennberg Lic2010

    34/112

    Figure 19. Rheogram for C-values from 43.2-46.5 % for the backfilling paste measured with

    a vane-type Bohlin-viscometer. Comparison with the pipeline-loop results inFigure 10.

    7KHSDUWLFOHVL]HGLVWULEXWLRQIURPWKHWKLFNHQHUXQGHUIORZKDGDQDYHUDJHVL]HRIG DERXW PZLWKRIWKHSDUWLFOHVILQHUWKDQ P7KHWRSVL]HZDVDERXW PDQGWKHVROLGV GHQVLW\ ZDV DERXW NJP (YDOXDWLRQ RI WKH IULFWLRQV ORVVHV LQ WKH SLSH V\VWHPIURPIORZUDWHDQGSUHVVXUHPHDVXUHPHQWVVKRZHGWKDWWKHDYHUDJHZDOOVKHDUVWUHVV ZZDVDERXW3D7KHYDQHYLVFRPHWHUUHVXOWVLQ)LJXUHLQGLFDWHVVLPLODUYDOXHIRUDYHUDJHRSHUDWLQJFRQGLWLRQV

    7KHSXPSZDVUXQQLQJZLWKURWDWLRQDOVSHHGVRIUSPDQGWKHRSHUDWLQJGRPDLQLV

    VFKHPDWLFDOO\VKRZQLQ)LJXUH

    50 100 150 200 250 300

    5

    10

    15

    20

    25

    30

    35

    40

    Q (m3/h)

    H (m)

    1800rpm

    1600rpm

    1400rpm

    BEP-LineOperating

    domain

    Figure 20. Schematic working domain for the pump when handling high concentrations

    shown in Fig.19. The pump was a 3-vane all-metal unit with a semi-open impeller

    with diameter 0.35 m.

  • 7/29/2019 Thord Wennberg Lic2010

    35/112

    ,WIROORZVVFKHPDWLFDOO\ IURP)LJXUH KRZWKH SXPSLVZRUNLQJ IDU DZD\ IURPWKH EHVWHIILFLHQF\OLQHDQGDWDERXW4%(3$Q\RSHUDWLQJSUREOHPVZLWKDQXQVWDEOHKHDGFXUYHKDVQRWEHHQH[SHULHQFHG

    6.2 Depositional conditions (Paper C and E)

    &HQWULIXJDO SXPSV DUH NQRZQWR LPSDUW KLJKVKHDULQWHQVLWLHV UHVXOWLQJ LQD UHGXFHG VOXUU\\LHOGVWUHVV)XUWKHUPRUHWKHVOXUU\LVH[SRVHGWRDJLQJDQGYDULRXVGHJUHHVRIVKHDULQWKHGRZQVWUHDP SLSHOLQH GLVWULEXWLRQ V\VWHP 3XEOLVKHG UHVXOWV DUH GLIILFXOW WR HYDOXDWH DQGVRPHWLPHVFRQWUDGLFWRU\DVGLVFXVVHGE\:HQQEHUJDQG6HOOJUHQ3DUWV RI WKH XQGHUIORZ LQ SDVWH WKLFNHQHUV DUH WRGD\ RIWHQ FLUFXODWHG EDFN LQWR WKH EDVHWKURXJKSXPSLQJ LQ RUGHU WR DJLWDWHWKHSDVWH 3LORW VFDOH WKLFNHQLQJ DQGWUHQFK GHSRVLWLRQWHVWVIRU DVLPLODU WDLOLQJV SURGXFW DVLQYHVWLJDWHG KHUHZLWK DQG ZLWKRXW FLUFXODWLRQ ZLWKDFHQWULIXJDOSXPSVKRZHGWKDWWKHDJLWDWHGSDVWHIORZHGPRUHHDVLO\GRZQWKHVORSHUHVXOWLQJLQDORZHUGHSRVLWLRQDQJOH

    7KHUHIRUH LQGHSHQGHQW RI WKH V\VWHP FRQILJXUDWLRQ VORSH IRUPLQJ PHFKDQLVPV FDQ EHFRQVLGHUHG WR EH UHODWHG WR VKHDU VWUHVVHV WKDW DUH PXFK ORZHU WKDQ WKRVH REVHUYHG LQ WKHWKLFNHQHUXQGHUIORZ5HFHQWDSSURDFKHVIRUVORSHHYDOXDWLRQVIRUH[DPSOHE\3LURX]HWDODQGRWKHUVPD\SURYLGH D PHDQV RI SUHGLFWLQJ WKH EHDFK VORSH DQJOH ZLWK WDLOLQJV VOXUULHV RI DUELWUDU\UKHRORJLFDOFKDUDFWHULVDWLRQ3LURX]HWDODSSOLHGYDULRXVQRQ1HZWRQLDQSLSHOLQHIULFWLRQORVVPRGHOVWRVLPXODWHIUHHVXUIDFHIORZORVVHVIRUDWDLOLQJVVOXUU\7KHUHSRUWHGILQGLQJVH[SODLQWR VRPH H[WHQW WKH GLIILFXOW\ ZLWK ODERUDWRU\ VFDOH IOXPH WHVWV EHFDXVH RI WKH SUREOHP WRREWDLQWXUEXOHQWIORZFRQGLWLRQV

    $Q DOWHUQDWLYH WR D UKHRORJLFDOO\EDVHG VORSH PRGHOOLQJ DSSURDFK ZDV FRQVLGHUHG ZLWKUHIHUHQFHVWR'H*URRWHWDODQG&85ZKRLQYHVWLJDWHGWKHVORSHUHTXLUHPHQWIRUDEDODQFHEHWZHHQVHGLPHQWDWLRQDQGHURVLRQDORQJDEHDFKIRUPHGE\GUHGJLQJPDWHULDOIURP SDUDOOHO GLVFKDUJHV IURP VHYHUDO ODUJH SLSHOLQHV 7KH\ LQYHVWLJDWHG VORSH DQJOHV IRUYDULRXVQDUURZO\JUDGHGILQHVDQGPHGLXPFRQFHQWUDWLRQVOXUULHVZLWKSDUWLFOHVGRZQWRDERXWPLHWZRFRPSRQHQWVHWWOLQJW\SHRIPL[WXUHV$GDSWLRQRIWKHLUDSSURDFKLQD VLPSOLILHGZD\IRUWKHDFWXDOWDLOLQJVH[SHULPHQWVH[SUHVVHVKRZ VPDOO SLSHOLQH GLVFKDUJH UDWHV WHQG WR JLYH KLJKHU VORSHV 7KH UHVXOW LQGLFDWHV WKDWGLVSRVDO VORSHV IRU WKH DSSOLFDWLRQV FRQVLGHUHG KHUH VKRXOG EH DERXW WR EHFDXVH

    REVHUYHGVORSHV GXULQJ WKH WHVWVZHUH WR GHSHQGHQW RQWKH FLUFXODWLQJSXPSZDVRSHUDWLQJRUQRWLQWKHSLORWVFDOHWKLFNHQHU$ FHQWUDO YDULDEOH LQ WKH DSSURDFK DERYH LV D FKDUDFWHULVWLF ZLGWK RI WKH VOXUU\ IORZ RQGHSRVLWHGWDLOLQJVLQWKHYLFLQLW\RIWKHGLVFKDUJLQJSLSHOLQHOHDGLQJXSWRWKHGHILQLWLRQRIDVSHFLILFIORZUDWHLQPV:LQWHUZHUSHWDO)XUWKHUDQDO\VLVRIWKHLUGDWDLQVPDOODQGODUJHIOXPHVDQGSKRWRFRPSDULVRQVKHUHLQFOXGLQJILHOGRSHUDWLRQVFRQILUPWKHWRHVWLPDWLRQVDERYH7KH IORZ UDWH GHSHQGHQFH RQ WKH VORSH PHDQV IOH[LELOLW\ EHFDXVH D VSOLW RI WKH GLVFKDUJHSLSHOLQHIORZLQWRWZRVWUHDPVJLYHKLJKHUVORSHV

  • 7/29/2019 Thord Wennberg Lic2010

    36/112

  • 7/29/2019 Thord Wennberg Lic2010

    37/112

    7. CONCLUSIONS:LWKDQHOHYDWHGWKLFNHQHUORFDWLRQFORVHWRWKHGLVSRVDODUHDDQHZKLJKSUHVVXUHSXPSLQJV\VWHP IRUD SUHVVXUH RIDERXW 03D LVDYRLGHG ZKLOH WKH WKLFNHQHU XQGHUIORZ VOXUU\ LV

    GHOLYHUHGZLWKDFHQWULIXJDOSXPSDVKRUWGLVWDQFHGXULQJWKHILUVW\HDUVRIRSHUDWLRQ7RPHHWWKHPRVWHIIHFWLYHORQJWHUPVROXWLRQIRUSLSHOLQHGLVWULEXWLRQDQGSODFHPHQWFRQWLQXHGXVHRIFHQWULIXJDOSXPSVLQVHULHVLQVWDOODWLRQVLVFRQVLGHUHGDVWKHGLVFKDUJHSRLQWDGYDQFHVGXULQJWKH\HDUOLIH$VROLGVFRQFHQWUDWLRQVE\YROXPH&RIDERXWFKDUDFWHUL]HVWKHSLSHOLQHSXPSLQJKHUHHVWLPDWHGWREHRQWKHFRQVHUYDWLYHVLGHZLWKUHVSHFWWRWKLFNHQHGSURGXFWTXDOLW\UHTXLUHPHQW7KHRYHUDOOSLSHOLQHORRSUHVXOWVZHUHHYDOXDWHGLQWHUPVRIDUHSUHVHQWDWLYHSLSHZDOOVWUHVVRI3DIRU&DERXW,QUKHRORJLFDOWHUPVWKH%LQJKDP\LHOGVWUHVVDQGSODVWLFYLVFRVLW\ZHUH3DDQG3DVUHVSHFWLYHO\

    7KHSHUIRUPDQFHRIDFHQWULIXJDOSXPSLVDIIHFWHGZKHQKDQGOLQJVOXUULHVRUYLVFRXVIOXLGVZKLFKVKRZVXSDVUHGXFWLRQVRIWKHFOHDUZDWHUKHDGDQGHIILFLHQF\FXUYHV7KHPD[LPXP UHGXFWLRQV LQKHDGDQG HIILFLHQF\ ZHUH DERXW DQG UHVSHFWLYHO\ZKHQ RSHUDWLQJ DW WKH GHVLJQ IORZ UDWH 4%(3 LQ WKH EHVW HIILFLHQF\ UHJLRQ 3XPSLPSHOOHUVL]HVOHVVWKDQDERXWP

    $VRSSRVHGWR1HZWRQLDQIOXLGVDGLYHUJLQJWHQGHQF\IURPWKHZDWHUKHDGFXUYHIRU

    GHFUHDVLQJIORZUDWHVKDVVRPHWLPHVEHHQUHSRUWHGEHORZDERXW4%(3IRUVOXUULHVWKDW VKRZD KLJKO\ QRQ1HZWRQLDQ EHKDYLRXU 7KH GLYHUJLQJ WHQGHQF\ PD\ DOVR EHUHODWHGWRWKHVXFWLRQSHUIRUPDQFH

    7KHVXFWLRQVLGHSUHVVXUHUHTXLUHPHQWLVQRUPDOO\IXOILOOHGZLWKDODUJHPDUJLQIRUDWKLFNHQHU XQGHUIORZ SXPS ,WZDVREVHUYHG LQDQ LQVWDOODWLRQ KRZ D VWDQGDUG SXPSRSHUDWLQJ DW 4%(3 XQGHU D WKLFNHQHU VKRZHG QR XQVWDEOH KHDG WHQGHQFLHV IRU DWDLOLQJVVOXUU\ZLWKZDOOVWUHVVHVRIXSWRDERXW3D

    &HQWULIXJDOSXPSVDUHNQRZQWRLPSDUWKLJKVKHDULQWHQVLWLHVUHVXOWLQJLQDUHGXFHG

    VOXUU\\LHOGVWUHVV$QXQGHUIORZSXPSLVWKXVH[SRVHGWRWKHPD[LPXP\LHOGHIIHFWVZKLOHGRZQVWUHDPSXPSVDUHDIIHFWHGOHVV7KHUHIRUHGRZQVWUHDPSXPSVVKRXOGEHDUUDQJHGZLWKVXIILFLHQWPDUJLQVIRUDQLQFUHDVHGVXFWLRQVLGHSUHVVXUHUHTXLUHPHQW

    7HQGHQFLHV RI QRIORZ VWDJQDQW ]RQHV DW YDQHERXQGDULHV ZLWKLQ D ZHOOGHILQHG

    %LQJKDPIOXLGKDYHEHHQUHSRUWHG:LWKDGRPLQDWLRQRIODPLQDUIORZLQWKHYLFLQLW\RIVXUIDFHVERWKVWDJQDQW]RQHVDQGKLJKIULFWLRQORVVHVFDQEHVWURQJO\UHODWHGWRWKH\LHOGEHKDYLRXUDQGWRWKHVXFWLRQSHUIRUPDQFH

    6ORSHV RI GHSRVLWHG WDLOLQJV KDYH KHUH EHHQ HVWLPDWHG WR DERXW IRU VOXUU\

    SURSHUWLHVWKDW JLYHVD FRQFHSWXDOO\HYHQVORSH ZLWK QR VHJUHJDWLRQ RI SDUWLFOHVDQGYLUWXDOO\QRGUDLQDJHRIZDWHU

  • 7/29/2019 Thord Wennberg Lic2010

    38/112

  • 7/29/2019 Thord Wennberg Lic2010

    39/112

    8. Future work7KHSXPSSHUIRUPDQFHGLVFXVVLRQDERYHGRHVQRWLQFOXGHDQ\GHWDLOHGDQDO\VHVRIWKHYDULRXVSXPS FRQILJXUDWLRQV DQG GHVLJQV WKH LQWHQWLRQ LV PHUHO\ WR IRUP D EDFNJURXQG IRU IXUWKHU

    GLVFXVVLRQV ZLWK LQWHUHVWHG SDUWLHV 7KH DYDLODELOLW\ RI SXPS SHUIRUPDQFH GDWD IRU WUXHWKLFNHQHGWDLOLQJVLVH[SHFWHGWRLQFUHDVHLQWKHQHDUIXWXUH7KHUHPD\WKXVEHDQRSSRUWXQLW\WR TXDQWLI\ DQG YDOLGDWH WKH SXPS SHUIRUPDQFH GLVFXVVLRQ LQ WKLV VWXG\ 'HVSLWH WKDWFRQVLGHUDEO\DGYDQFHVKDYHEHHQPDGHUHFHQWO\LQXQGHUVWDQGLQJWKHPHFKDQLVPRIIRUPDWLRQRIWKH VORSHV RIGHSRVLWHG WDLOLQJV WKLV LVDQDUHD ZHUHPRUH ZRUN QHHG WREHXQGHUWDNHQ-HZHOO

  • 7/29/2019 Thord Wennberg Lic2010

    40/112

  • 7/29/2019 Thord Wennberg Lic2010

    41/112

    9. REFERENCES$GGLH*5DQG6HOOJUHQ$$ILUVWVOXUU\SXPSVWDQGDUGDQGVRPHLPSOLFDWLRQVIRUSDVWHDSSOLFDWLRQV3URFHHGLQJVRIWKH7HQWK,QWHUQDWLRQDO6HPLQDURQ3DVWDQG7KLFNHQHG

    7DLOLQJV0DUFK3HUWK$XVWUDOLD%RRWOH0-3UDFWLFDODVSHFWVRI7UDQVSRUWLQJ3DVWZLWK5RWRG\QDPLF6OXUU\3XPSV3URFHHGLQJVRIWKH1LQWK,QWHUQDWLRQDO6HPLQDURQ3DVWDQG7KLFNHQHG7DLOLQJV$SULO/LPHULFN,UHODQGSS&RRNH57KLFNHQHGDQGSDVWHWDLOLQJVSLSHOLQHV\VWHPV'HVLJQSURFHGXUHSDUW3URFHHGLQJVRIWKH7HQWK,QWHUQDWLRQDO6HPLQDURQ3DVWDQG7KLFNHQHG7DLOLQJV0DUFK3HUWK$XVWUDOLDSS&85$UWLILFLDOVDQGILOOVLQZDWHU&HQWUHIRUFLYLOHQJUHVHDUFKDQGFRGHV7KH

    1HWKHUODQGV$$%DONHPD5RWWHUGDP'H*URRW0%+HH]HQ)70DVWEHUJHQ'5DQG6WHIHVV+6ORSHVDQGGHQVLWLHVRIK\GUDXOLFDOO\SODFHGVDQGV+\GUDXOLF)LOOVWUXFWXUHV$6&(*HRWHFKQLFDO'LYLVLRQ6SHFLDOLW\&RQIHUHQFH&RORUDGR6WDWH8QLYHUVLW\)W&ROOLQV86$(QJPDQ0$6HOOJUHQc6XQGTYLVW,*ROGNXKODQG7:HQQEHUJ8VHUVSHUVSHFWLYHRQWKHGHVLJQRIKLJKGHQVLW\EDVHPHWDOWDLOLQJVV\VWHPV3URFHHGLQJVWK,QW&RQIHUHQFHRQ7DLOLQJVDQG0LQH:DVWH9DLO&286$2FWREHU(ULNVVRQ23HUVRQDOFRPPXQLFDWLRQ0HWVR0LQHUDOV6ZHGHQ$%

    *LUGKDU3DQG0RQL]23UDFWLFDOFHQWULIXJDOSXPSV'HVLJQRSHUDWLRQDQGPDLQWHQDQFH(OVHYLHU*UDKDP/-:3XOOXP/6ODWWHU36HU\*5XGPDQ0&HQWULIXJDOSXPSSHUIRUPDQFHFDOFXODWLRQIRUKRPRJHQHRXVDQGFRPSOH[KHWHURJHQHRXVVXVSHQVLRQV7KH&DQDGLDQ-RI&KHPLFDO(QJSS+ROORZ-7/LQ+.:DOVK'(DQG:KLWH'0'HYHORSPHQWRIDQHQHUJ\EDODQFHPRGHOWRSUHGLFWWKHHFRQRPLFLPSDFWRILQVWDOOLQJDWDLOLQJVZDVKWKLFNHQHUDWWKH)RUW.QR[0LQH)DLUEDQNV$ODVND0LQHUDOVDQG0HWDOOXUJLFDO3URFHVVLQJ9RO1R0D\SS

    -HZHOO5-(QVXULQJWKHFUHGLELOLW\RIWKLFNHQHGWHFKQRORJ\3URFHHGLQJVRIWKHWK,QWHUQDWLRQDOVHPLQDURQ3DVWHDQG7KLFNHQLQJ7DLOLQJV0D\7RURQWR&DQDGDSS.DEDPED%0(YDOXDWLRQRIGHUDWLQJSURFHGXUHVIRUFHQWULIXJDOSXPSSHUIRUPDQFH0DJLVWHU7HFKQRORJLDHWKHVLV&DSH3HQLQVXOD8QLYHUVLW\RI7HFQRORJ\6RXWK$IULFD/L:*(IIHFWVRIYLVFRVLW\RQIOXLGVRQ&HQWULIXJDOSXPSSHUIRUPDQFHDQGIORZSDWWHUQLQWKHLPSHOOHU,QWHUQDWLRQDO-RXUQDORI+HDWDQG)OXLG)ORZSS0RRQH\0--5KHRORJ\

  • 7/29/2019 Thord Wennberg Lic2010

    42/112

    2[HQIRUG-DQG/RUG(5&DQDGLDQH[SHULHQFHLQWKHDSSOLFDWLRQRISDVWHDQGWKLFNHQHGWDLOLQJVIRUVXUIDFHGLVSRVDO3URFHHGLQJVRIWKHWK,QWHUQDWLRQDO6HPLQDURQ3DVWHDQG7KLFNHQHG7DLOLQJV$SULO/LPHULFN,UHODQGSS3LURX]%.DQG:LOOLDPV33UHGLFWLRQRIQRQVHJUHJDWLQJWKLFNHQLQJWDLOLQJVEHDFKVORSHVDQHZPHWKRG3URFHHGLQJVRIWKHWK,QWHUQDWLRQDO6HPLQDURQ3DVWHDQG7KLFNHQHG

    7DLOLQJV3HUWK$XVWUDOLD0DUFKSS3XOOXP/3HUVRQDOFRPPXQLFDWLRQFRXUWHV\RIWKH7KHUPDODQG)OXLGV(QJLQHHULQJ*URXS&6,52$XVWUDOLD3XOOXP/*UDKDP/-:5XGPDQ0$'H5DWLQJ0HWKRGIRU&HQWULIXJDO3XPSV3XPSLQJ3DVWH3URFHHGLQJVRIWKH7HQWK,QWHUQDWLRQDO6HPLQDURQ3DVWDQG7KLFNHQHG7DLOLQJV0DUFK3HUWK$XVWUDOLDSS3XOOXP/3LSHOLQLQJWDLOLQJVSDVWHVDQGEDFNILOO3UHGLFWLRQRIQRQVHJUHJDWLQJWKLFNHQLQJWDLOLQJVEHDFKVORSHVDQHZPHWKRG3URFHHGLQJVRIWKHWK,QWHUQDWLRQDO6HPLQDURQ3DVWHDQG7KLFNHQHG7DLOLQJV3HUWK$XVWUDOLD0DUFKSS5DELQRZLWVFK%=3K\VLN&KHP6HU$5DVKDLGD$$)ORZRIDQRQ1HZWRQLDQ%LQJKDPSODVWLFIOXLGRYHUDURWDWLQJGLVN'LVVHUWDWLRQ'HSDUWPHQWRI0HFKDQLFDO(QJLQHHULQJ8QLYHUVLW\RI6DVNDWFKHZDQ6DVNDWRRQ6DVNDWFKHZDQ, 8QLYHUVLW\RI6DVNDWFKHZDQ6DVNDWRRQ6DVNDWFKHZDQ&DQDGD61$5RELQVN\(,7KLFNHQHG7DLOLQJV'LVSRVDOLQWKH0LQLQJ,QGXVWU\4XHEHFRU3ULQWSDN7RURQWR&DQDGD5RXGQHY$66OXUU\SXPSVXFWLRQSHUIRUPDQFHFRQVLGHUDWLRQV3URFWK,QW&RQIHUHQFHRQ+\GURWUDQVSRUW%+5*URXS6DQWLDJR&KLOHSS6D\HUV$7+\GUDXOLFDQGFRPSUHVVLEOHIORZWXUERPDFKLQHV0F*5$:+,//6HOOJUHQ$$GGLH*

  • 7/29/2019 Thord Wennberg Lic2010

    43/112

    :HQQEHUJ7DQG6HOOJUHQ$3XPSLQJHYDOXDWLRQVZLWKSDVWHWDLOLQJVWKLFNHQHGFORVHWRWKHVXUIDFHGLVSRVDODUHD3URFHHGLQJV7KHWK,QW&RQIRQWKH+\GUDXOLF7UDQVSRUWRI6ROLGV&DSHWRZQ6RXWK$IULFD0D\SS:HQQEHUJ76HOOJUHQ$:KLWORFN/3UHGLFWLQJWKHSHUIRUPDQFHRIFHQWULIXJDO

    SXPSVZKHQKDQGOLQJFRPSOH[VOXUULHV3URFHHGLQJVWK,QWHUQDWLRQDO&RQIHUHQFHRQ7UDQVSRUW6HGLPHQWDWLRQRI6ROLGVSDUWLFOHV-XQH6DLQW3HWHUVEXUJ5XVVLDSS:HQQEHUJ76HOOJUHQ$*ROGNXKO,5KHRORJLFDODQG'HSRVLWLRQDOFKDUDFWHULVDWLRQRISDVWHOLNHWDLOLQJVVOXUULHV3URFHHGLQJV&RQIHUHQFHLQ0LQHUDOV(QJLQHHULQJ)HEUXDU\/XOHn6ZHGHQ:LOVRQ.&$GGLH*56HOOJUHQ$DQG&OLIW56OXUU\WUDQVSRUWXVLQJFHQWULIXJDOSXPSVUG(G%ODFNLH$FDGHPLFDQG3URIHVVLRQDO&KDSPDQDQG+DOO/RQGRQ8.:LOVRQ.&DQG6HOOJUHQ$(IIHFWRIVWURQJO\QRQ1HZWRQLDQVOXUULHVRQWKHKHDGDQGHIILFLHQF\RIFHQWULIXJDOSXPSV, 3URFHHGLQJVWK,QWHUQDWLRQDOFRQIHUHQFHRQWUDQVSRUWVHGLPHQWDWLRQRIVROLGSDUWLFOHV*HRUJLD6HSWHPEHU:LQWHUZHUS-&GH*URRW0%0DVWEHUJHQ'5DQG9HUZRHUW++\SHUFRQFHQWUDWHGVDQGZDWHUPL[WXUHIORZVRYHUDIODWEHG-+\GU(QJ9ROSS;X-7LSPDQ5*LOOLHV56KRRN&$&HQWULIXJDOSXPSSHUIRUPDQFHZLWK1HZWRQLDQDQGQRQ1HZWRQLDQVOXUULHV3URFHHGLQJV7KHWK,QW&RQIRQWKH+\GUDXOLF7UDQVSRUWRI6ROLGV%DQII&DQDGD%+5*URXS8.0D\SS

  • 7/29/2019 Thord Wennberg Lic2010

    44/112

  • 7/29/2019 Thord Wennberg Lic2010

    45/112

    10. NOTATIONSNomenclature

    $ $YHUDJHVHFWLRQDUHD P

    % :LGWK P%(3 %HVWHIILFLHQF\SRLQW & 9ROXPHWULFFRQFHQWUDWLRQRIVROLGV &Z 6ROLGVFRQFHQWUDWLRQE\PDVV ' 'LDPHWHU P'+ +\GUDXOLFGLDPHWHU PG $YHUDJHSDUWLFOHVL]H P(5 (IILFLHQF\UHGXFWLRQ J *UDYLWDWLRQDODFFHOHUDWLRQ PV+ 7RWDOSXPSLQJKHDG P

    +I &RQGXLWIORZIULFWLRQORVV P+R +HDGLQPHWHUVRIZDWHU P+5 +HDGUHGXFWLRQ +V 6KRFNORVVHV PM )ULFWLRQJUDGLHQWLQKHLJKWRIPL[WXUHOHQJWKRISLSH PP

    / &KDQQHOVHJPHQWOHQJWK P0 0DVVIORZUDWHRIZDWHU WRQQHVK0V 0DVVIORZUDWHRIGU\VROLGV WRQQHVK1 5RWDU\VSHHG UHYPLQn 6ORSH(T 136+5 1HWSRVLWLYHVXFWLRQKHDGUHTXLUHG P

    S [ 3UHVVXUHJUDGLHQW 3DP4 9ROXPHWULFIORZUDWH PV5+ +HDGUHGXFWLRQIDFWRU 5 (IILFLHQF\UHGXFWLRQIDFWRU 9 0HDQYHORFLW\ PV97 9DOXHRIPHDQYHORFLW\DWWUDQVLWLRQSRLQW PV6E 6ORSHRIRSHQFKDQQHO 6V 5HODWLYHGHQVLW\RIVROLGV 4%(3 9ROXPHWULFIORZDWEHVWHIILFLHQF\SRLQW P

    V\ )ORZGHSWK P\G 'RZQVWUHDPGHSWK P

    \X 8SVWUHDPGHSWK P 6KHDUUDWH V 3XPSHIILFLHQF\ M 0RWRUDQGWUDQVPLVVLRQHIILFLHQF\ 0 3XPSZDWHUHIILFLHQF\ T 7RWDOHIILFLHQF\ 1HZWRQLDQYLVFRVLW\ 3DV

    a $SSDUHQWYLVFRVLW\ 3DV

    P 3ODVWLFYLVFRVLW\ 3DV $SSDUHQWYLVFRVLW\DWODUJHVKHDUUDWHV 3DV

    'HQVLW\RIVOXUU\ NJP

  • 7/29/2019 Thord Wennberg Lic2010

    46/112

    s 'HQVLW\RIVROLGV NJP

    0 'HQVLW\RIZDWHU NJP

    6KHDUVWUHVV 3Dy

  • 7/29/2019 Thord Wennberg Lic2010

    47/112

    Paper A

    Predicting the performance of centrifugal pumps when handling complex slurries

    Wennberg T, Sellgren A and Whitlock L

    Proceedings, 14th International Conference on Transport & Sedimentation of Solids particles,

    June 23-25 2008, Saint Petersburg, Russia

  • 7/29/2019 Thord Wennberg Lic2010

    48/112

  • 7/29/2019 Thord Wennberg Lic2010

    49/112

    PREDICTING THE PERFORMANCE OF CENTRIFUGAL PUMPS

    WHEN HANDLING COMPLEX SLURRIES

    Thord Wennberg1, Anders Sellgren

    2, Lee Whitlock

    3

    1Luossavaara-Kiirunavaara AB, Sweden,[email protected] University of Technology ,Sweden ,[email protected] Industries Inc., U.S.A.,[email protected]

    Abstract: The term complex here refers to the intermediate area between homogeneously andheterogeneously flowing slurries. Typical examples are residual products (tailings) from the

    mining industry with average particle sizes of 20 to 100 microns. The performance derating are ofspecial interest when centrifugal slurry pumps are applied to these slurries at high solids

    concentrations. The Hydraulic Institutes slurry (ANSI/HI 2005) and viscous Newtonian liquid(ANSI/HI 2004) standards are briefly covered with focus on applicable viscosities for non-Newtonian slurry behaviour. Various experimental results are discussed and found to givemaximum deratings in head and efficiency of about 10 and 15 %, respectively, provided stablehead curves can be maintained. Magnified shock losses, circulatory flows and blockage ofslurry and possibly vapour tendencies in the pump entrance region may be considered asmechanisms behind unstable head curves together with the flow behaviour of the slurry.

    KEY WORDS: complex slurries, pump performance derating, entrance losses

    1. INTRODUCTION

    The term complex here refers to the intermediate area between homogeneously andheterogeneously flowing slurries or non-settling and settling types of mixtures,respectively. Typical examples are residual products (tailings) from the miningindustry with normal average particle sizes of 20 to 100 microns, see for exampleWennberg and Sellgren (2007). Today there is an increased interest in using less water,which means handling of tailings slurries at high solids concentrations. Criteria forthickening and pumpability are often referred to in rheological terms, for example yield

    stress, i.e. homogeneous flow. It is known that these slurries may not behave in acompletely non-settling way flowing homogeneously during pipeline transportationbecause larger particles may show settling tendencies.

    The performance of centrifugal pumps is influenced by the solids in the slurrythrough deratings of the clear water head and efficiency. The Hydraulic Institute hasdeveloped a new standard (ANSI/HI 2005) for centrifugal slurry pumps were guidelinesare given to predict the performance when handling typical settling or non-settlingslurries.

  • 7/29/2019 Thord Wennberg Lic2010

    50/112

    The performance of a centrifugal pump is affected when handling slurries. Therelative reduction of the clear water head and efficiency for a constant flow rate androtary speed may be defined by the ratios and factors shown in Fig. 1.

    Water

    Slurry

    H

    HoH

    Head ratio: HR = H/HoHead reduction factor: RH = 1- HR

    Efficiency ratio: ER = / oEfficiency reduction factor: R = 1-ER

    o

    Fig. 1. Sketch defining the reduction in head and efficiency of a centrifugal pump pumping a solid

    water mixture. H and H0 are heads in slurry and water service, respectively. The correspondingefficiencies are and 0.

    A generalized diagram for estimation of the performance derating in head for settlingslurries is given in Figure 2, see ANSI/HI (2005) or Addie et al.(2007)

    HR

    RH

    (%)

    Fig. 2 Generalised solids-effect diagram for pumps of various sizes (impeller diameters).For solidsconcentration by volume 15% with relative density of solids, 2.65, and a negligible amount of fine

    particles smaller than 75 micron. From ANSI/HI (2005).

    Abritrary HR or RH values from Fig. 2 are then obtained through concurrentcorrections for solids concentration, relative density and content of particles smaller than75 micron, for details see ANSI/HI (2005) or Addie et al. (2007).

  • 7/29/2019 Thord Wennberg Lic2010

    51/112

    Typical pump performance effects when pumping viscous Newtonian liquids are

    shown Fig. 3.

    Flow rate

    HHigher viscosityWater viscosity

    Fig. 3. Schematic sketch on pump characteristics depending on fluid viscosity

    ANSI/HI (2004) provides a generalized derating method of the water performancewhen pumping viscous Newtonian liquids (Fig. 3), i.e. when the property can be definedby a constant viscosity value. It can be seen from Fig. 3 how both the efficiency and thebest efficiency region is influenced, indicating that the pump behaves as a smaller unit.Correction factors for head, flow rate and efficiency are based on viscosity, head, flowrate and rotary speed.

    Non-settling type of slurries means that the liquid contains solids in the form of verysmall particles, practically giving no segregation or settling tendencies during thehandling in pumps and pipelines. These mixtures behaves often in a non-Newtonian wayand exhibit a yield stress which is defined as the minimum stress required causing theslurry to flow. Highly concentrated industrial slurries can often be approximatelyrepresented by a yield stress and a straight line for larger shear strains in a rheogram. Theslope of the line is often denoted tangent viscosity. If the linear relationship prevails tozero shear strain then the slurry is a Bingham type of medium, for which the slope(tangent viscosity) is termed plastic viscosity or coefficient of rigidity.

    Pump performance derating results for two non-Newtonian slurries fluids causingunstable head curves are shown in Figs. 4 and 5.

  • 7/29/2019 Thord Wennberg Lic2010

    52/112

    Fig. 4. The effect of slurry on the pump head and efficiency at solids concentrations by volume of31 and 35 % of a scrubber sludge product. Impeller diameter 0.63m. y =35 Pa and =0.03 Pas

    for 35%. From Sellgren et al.(1999).

    30

    25

    20

    15

    0 25 50 75 100

    Flow rate (l/s)

    Hea

    d(m)

    Fig. 5.Kaolin, y =240 Pa,= 0.034 Pas. A 0.15 by 0.1m pump with a 5-vane metal impeller with

    diameter 0.365m. BEP at about 50 l/s. From Kabamba (2007).

    The flow rates for which the head cannot be maintained for the fine-particle slurriesin Figs. 4 and 5 are about 50% of the flow at the best efficiency flow rate (BEP).Theresults in the figures show how the head diverges for low flow rates, which is opposite towhat is shown in Figure 3 for viscous Newtonian liquids. The deratings in Figure 3 arecaused by increased flow resistance within the pump due to an increased liquid viscosity.The slurries in Figs 4 and 5 are composed of small solid particles which takes up 20 to35% of the volume. Most of the kaolin particles are smaller than about 2 microns and thesuspension can be considered to be fully homogeneous.

  • 7/29/2019 Thord Wennberg Lic2010

    53/112

    The ANSI/HI (2005) slurry pump standard relates for non-settling slurries that

    corrections can be based on a characteristic viscosity, for example the tangent viscositydefined above or other viscosity concepts. With industrial non-settling slurries typicalderatings in head and efficiency may not exceed 5 to 10% when operating close to the

    best efficiency point of the pump. However, with respect to the complex behavioursometimes observed for lower flows, it is suggested in the standard that the pumpmanufacturer should be consulted for guidance regarding non-Newtonian effects onpump performance.

    1.1 MODELLING

    Apparent viscosity is the viscosity at a particular rate of shear expressed in terms of aNewtonian fluid. With a non-Newtonian fluid with a yield stress, the apparent viscosityincreases dramatically for small shear rates. Most modelling approaches of theprogressively derating with decreasing flow rates have been based on assumptions abouta representative shear rate within the pump. The corresponding apparent viscosity is thenused with the Hydraulic Institute Newtonian liquid method to calculate the deratingfactors. Sellgren and Addie (1994) simply used the bulk shear rate 8V/D (V is velocity)calculated for the pump suction pipeline diameter, D, to simulate the reduction in head inFig.4. The agreement was good for the conditions covered in Fig 4, however theapproach does not represent conditions in the pump entrance region and it could not bevalidated when compared to other data, for example Walker and Goulas (1984).

    Pullum et al. (2007) related an apparent viscosity to a characteristic geometric sectionwithin the pump, thus representing a characteristic shear rate. The detailed section

    geometry is so far mainly determined by experimental data, however results correspondto realistic main pump dimensions and the approach seems promising for generalisations.

    A different modelling approach by Wilson and Sellgren (2006),directly linked to theyield behaviour simulated well the experimentally observed dramatic drop in pumpinghead at flow rates less than about 50 % of BEP in Fig.4. They expressed a dimensionlessyield stress parameter to the actual flow rate over the flow rate at BEP. Build-uptendencies of material within the pump have been documented in pictures with an acrylicpump, Pullum (2006). These attached lumps can occlude fractions of the passages withinthe pump which may seriously influence the head produced.

    2. OBJECTIVES

    The objective in this paper is to characterize the effect of solids on the performance ofcentrifugal slurry pumps for various industrial slurries with a complex behaviour asdefined above. The effect on the performance is often moderate to low when the headcurves are fully maintained. Experimental results will be presented and variousmechanisms causing the effect of solids will be discussed.

  • 7/29/2019 Thord Wennberg Lic2010

    54/112

    3. CHARACTERISATION

    Values of HR and ER in the range of 0.9 to 1 were presented by Cooke( 2007) fromresults obtained for various high-density tailings products with yield stresses of up to100 Pa and from 0.01 to 0.07. He related the derating parameter to a chart that goes

    back to Walker and Goulas (1984) and a pump Reynolds number.

    K

    UZ miD2

    Re 1

    where is rotational speed, Di, impeller size ,m slurry density and and plastic ortangent viscosity Cooke (2007) recommended that installations are not designed for Re0.95.With Re in excess of 107 any derating can be neglected. One of the tailingsproduct investigated by Cooke had 70% of the particles larger than 75 micron with a d50

    here estimated to about 0.1mm. Even if the settling slurry diagram in Fig.2 has not beenintended for this type of mixtures, it gave HR values of about 0.95, i.e. in accordancewith observations and Eq.1.

    3.1 SIMULATED TAILINGS DATA

    A simulated a tailings product was characterized by a fully sheared yield stress ofabout 100 Pa., Addie and Sellgren (2007). The rheology was evaluated from the pipelineloop results and expressed in terms of the yield stress and a tangent viscosity. Thecorresponding tangent viscosity was estimated to 0.055 Pas. Resulting pump deratingsare given in Fig. 7.The pump was a modified 3-vane metal unit with an open shroud 0.3

    m diameter impeller having a simple auger-like inducer.

    0

    2

    4

    6

    8

    10

    12

    14

    16

    30 40 50 60 70 80

    Flowrate (m3/hr)

    Hea

    d(m)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    Efficiency

    (%)

    Head, Water Head, Slurry Efficiency, Water Efficiency, Slurry Fig.7 Pump performance derating for a simulated tailings product characterized by a yield stress of

    about 100 Pa. From Addie and Sellgren (2007).

    It follows from Fig. 7 that the estimated head curve was stable HR and ER werefound to be 0.95 and 0.86, respectively. These values agreed reasonably well with the

  • 7/29/2019 Thord Wennberg Lic2010

    55/112

    Re-criterion in Eq.1 and the HI-method based on Newtonian fluids. Whitlock andSellgren (2002) reported tests with a paste-like slurry with solids concentration byvolume, C=38 % in the 0.3 m impeller pump described in connection with Figure 7,seeTable 1. It follows that values of HR and ER were 0.9 and 0.85.

    Table 1Resulting HR and ER fory =240 Pa and=0.07 Pas. Whitlock and Sellgren (2002)

    Product CRotary

    speed

    Impeller

    diameterHR ER

    Pump type,

    comments and

    reference

    Clay-sand

    38 1300-2000 0.3 0.9 0.850.1 by 0.075 m open

    shrouded 3-vaneimpeller

    3.2KAOLIN AND CMC DATA

    Bootle (2006) investigated the derating effects for high and low yield stress kaolinslurries with C= 28 and 37% with a 4-vane semi open 0.244-m impeller pump. Achemical additive was used to reduce the yield stress from 200 Pa to 7.5 Pa, see results inTable 2.

    Table 2For C=28%, y =200 Pa ,=0.14 Pas. For 37%, y =7.5 Pa ,=0.018 Pas after adding a chemical.

    Product CRotary

    speed

    Impeller

    diameterHR ER

    Pump type, comments

    and reference

    Kaolin2837

    1500 0.2440.990.99

    0.830.82

    0.186 by 0.1 m semi-open 4-vane impeller,

    Bootle (2006)

    It follows from Table 2 that the performance is not affected despite the big change inyield stress in this case and the values for HR 0.99 and ER 0.82/0.83. Any derating effectwas not observed on the head.Results by Kabamba with a CMC fluid is shown in Fig.8. CMC is a non-Newtonianliquid with pseudoplastic properties and no yield behaviour.

    50

    40

    30

    20

    0 20 40 60 80 100 120

    Flow rate (l/s)

    Head(m)

    Fig. 8. Head curve for a CMC fluid with pseudoplastic coefficients 3.69 and 0.598. Bingham

    parametrar for large shear rates gave y= 50 Pa and =0.2Pas. Pump and pumping conditions as inFig.5. From Kabamba (2007).

  • 7/29/2019 Thord Wennberg Lic2010

    56/112

    The tendency of a lowering head in Fig.8 indicates that a yield stress not necessarily

    is a determining factor for the development of an unstable head curve.

    4. DISCUSSION

    With the exception of Bootles high-yield stress results in Table 2, it was found thathead could not be fully maintained at lower flow rates as shown here for results fromvarious non-settling fine particle slurries in Figs. 4 and 5 and a yield-free power lawliquid in Fig. 8. These media show various degrees of non-Newtonian behaviourexpressed by an apparent viscosity that increases for decreasing flow rates.

    The observed set-in of destabilisation effects was related to how far away from theBEP-region the pump operates. The further to the left of BEP the more recirculation andshock losses which basically increase with the square of the flow rate at BEP minus the

    actual flow rate. An increase in rotary speed in this domain for a constant flow rate maycontribute to the destabilisation because the distance away from BEP increases, seeschematic example in Fig.9.

    1.5 N

    N

    B

    A

    Relative flow rate

    Relative

    head BEP- Line

    1

    21

    2

    Fig. 9. An increase in rotary speed from A to B through an increase in rotary speed, N, for aconstant flow rate means operation further away from the BEP-region.

    The head curve was stable for the data in Table 1 at C=38%. However, with C = 41 %and a yof about 350 Pa the situation in Fig.9 occurred when a tendency of a drop inhead was met with an increase in rotary speed. Detailed evaluation of experimental datashowed that HR dropped from 0.84 to 0.70 in the BEP-region when N increased from

  • 7/29/2019 Thord Wennberg Lic2010

    57/112

    1775 to 1925 rpm for practically constant values of flow rate, C, and pipeline frictionlosses during about 7 minutes, Fig. 10.

    0.6

    0.7

    0.8

    0.9

    1

    1750 1800 1850 1900 1950

    N (rpm)

    HRan

    dER

    ER

    HR

    Fig.10. Decrease in head and efficiency ratio for C= 41% ( y about 350 Pa) when N increases with

    practically constant flow rate and pipeline friction losses during about 7 minutes.

    This situation may be caused by progressive build-up of material within the pumpwith geometrical modifications of flow passages within the pump that promote losses andaffects the suction performance. With a constant flow rate the effect of the apparentviscosity is not caused by a decreased flow rate, only of the change in local flow patternassociated with the increase in rotary speed. Following Eq.1, an increase in N shouldincrease Re and thus contribute to a stabilisation. However, the situation is complex, thecause of the increase in N may also be an increase in . In addition, Sery et al. (2006)reported from kaolin tests a slightly smaller drop in head when the rotary speedincreased.

    The 4-vane semi open 0.244-m impeller pump used by Bootle (2006) for kaolin wasmodified with an enlarged suction inlet from 0.1 to 0.186 m and integrated flow inducerscoops, which project into the enlarged inlet. The suction performance is stronglyinfluenced by the detailed configuration of the entry of the impeller inlet with the vanes.The rapid changes in direction along the flow path cause shock losses which togetherwith recirculation dominates the losses for low flow rates compared to the BEP-region.

    Roudnev (2004) found that NPSHR can be several times larger than the water valuebased on experimental results from several Russian references from 1972 to 1986 withBingham-type of slurries, for example heavy media magnetite products. The greaterrequirement was related to blockage tendencies in the entrance region by the yield behaviour resulting in higher velocities and thus lower pressure. It is not known if thefindings reported by Roudnev was associated with any unstable head curve for low flowrates. However, the discussed mechanisms have some similarities to possible blockagefrom vapour in the entrance region sometimes observed for liquid pumping at low flow

  • 7/29/2019 Thord Wennberg Lic2010

    58/112

    rates with strong local recirculation causing cavitational conditions, Girdhar and Moniz(2004).

    An unstable head curve at low slurry flow rates may be the combined effects ofrecirculation with strong local eddy currents and vortexing together with a complex

    solid-liquid mixture or fluid that magnifies the entrance shock losses to an extend that thepump head cannot be maintained.

    5. CONCLUSION

    Various experimental results are discussed and found to give maximum deratings inhead and efficiency of about 10 and 15 %, respectively, provided stable head curves canbe maintained. Magnified shock losses, circulatory flows and blockage of slurry andpossibly vapour tendencies in the pump entrance region may be considered asmechanisms behind unstable head curves together with the flow behaviour of the slurry.

    REFERENCES1. Addie G.R. and Sellgren A.2007.A first slurry pump standard and some

    implications for paste applications. Proceedings of the Tenth InternationalSeminar on Past and Thickened Tailings 13-15 March 2007, Perth, Australia.

    2. Addie G.R., Roudnev A.S. and Sellgren A.2007.The new ANSI/HI centrifugalslurry pump standard, Proceedings, The 17 th Int. Conference on the HydraulicTransport of Solids, Cape Town, South Africa,pp.205-218

    3. ANSI/HI 12.1-12.6. 2005.standard for rotodynamic (centrifugal) slurry pumps.4. ANSI/HI 9.6.7. 2004. Effect of liquid viscosity on rotodynamic (Centrifugal and

    vertical) pump performance 9.6.7,2004.

    5. Bootle M.J., 2006. Practical aspects of Transporting Past with RotodynamicSlurry Pumps. Proceedings of the Ninth International Seminar on Past andThickened Tailings 3-7 April 2006, Limerick Ireland. pp. 413-427.

    6. Cooke R. Thickened and paste tailings pipeline systems-Design procedure, part2. Proceedings of the Tenth International Seminar on Past and ThickenedTailings 13-15 March 2007, Perth, Australia.pp.129-140.

    7. Girdhar P. and Moniz O. 2004: Practical centrifugal pumps. Design, operationand maintenance. Elsevier.

    8. Kabamba B.M. 2007.Evaluation of derating procedures for centrifugal pumpperformance, Magister Technologiae thesis, Cape Peninsula University of

    Tecnology, South Africa.9. Pullum, L., 2006. Personal communication: courtesy of the Thermal and FluidsEngineering Group, CSIRO, Australia, 2006.

    10. Pullum, L., Graham.L, J, W., Rudman, M., 2007. A De-Rating Method forCentrifugal Pumps Pumping Paste: Proceedings of the Tenth International

    Seminar on Past and Thickened Tailings 13-15 March 2007, Perth, Australia.pp. 175-184.

    11. Roudnev,A.S.2004 Slurry pump suction performance considerations,Proc.16 thInt. Conference on Hydrotransport, BHR Group,Santiago,Chile,pp137-150

  • 7/29/2019 Thord Wennberg Lic2010

    59/112

    12. Sellgren A. and Addie G.1994. Pump solids effect when handling non-settlingslurries, Proceedings, Hydro-mechanisation 9. Miskolc, Aug. 29-31,Hungary.

    13. Sellgren, A., Addie, G. & Yu, W.C., 1999. Effects of non-Newtonian mineralsuspensions on the performance of centrifugal pumps, Journal of MineralProcessing and Extraction Metallurgy Review, 1999. Vol. 20, pp 239-249.

    14. Sery G., Kabamba B., Slatter P., 2006. Paste pumping with centrifugal pumps:Evaluation of the Hydraulic Institute Chart De-Rating Procedures. Proceedingsof the Ninth International Seminar on Past and Thickened Tailings 3-7 April2006, Limerick Ireland. Australian Centre for Geomechanics, Perth, 2006. pp.403-412.

    15. Walker, C.I. & Goulas, A.,1984. Performance characteristics of centrifugalpumps when handling non-Newtonian homogeneous slurries, Proc. Instn. Mech.Engrs. Vol. 198A, No. 1, 1984.pp. 41-49.

    16. Whitlock L. and Sellgren A.,2002. Pumping a simulated paste-like sludge with amodified centrifugal pump, Proceedings, The 7th European Biosolids Organic

    Residuals Conference, November 17-17,Wakefield, UK,2002.17. Wilson K.C., and Sellgren A.,2006. Effect of strongly non-Newtonian slurrieson the head and efficiency of centrifugal pumps, Proceedings, 11th Internationalconference on transport & sedimentation of solid particles., Georgia, September,2006.

    18. Wennberg, T., Sellgren A. 2007. Pumping evaluations with paste tailingsthickened close to the surface disposal area. Proceedings,The 17th Int.Conference on the Hydraulic Transport of Solids, Cape Town, South Africa.

  • 7/29/2019 Thord Wennberg Lic2010

    60/112

  • 7/29/2019 Thord Wennberg Lic2010

    61/112

    Paper B

    Pumping evaluations with paste tailings thickened close to the surface disposal area

    Wennberg T and Sellgren A

    The 17th international conference on the hydraulic transportation of solids in pipes,

    Hydrotransport 17, 2007, Cape Town, South Africa

  • 7/29/2019 Thord Wennberg Lic2010

    62/112

  • 7/29/2019 Thord Wennberg Lic2010

    63/112

    Thord Wennberg, Anders Sellgren

    The South African Institute of Mining and Metallurgy

    The 17th

    International Conference on the Hydraulic Transport of Solids Hydrotransport 17

    Pumping evaluations with paste tailings thickened close to the surface disposal area 1

    PUMPING EVALUATIONS WITH PASTE TAILINGS

    THICKENED CLOSE TO THE SURFACE DISPOSAL AREA

    Thord WennbergLuossavaara-Kiirunavaara AB, Sweden

    Anders SellgrenLule University of Technology, Sweden

    Abstract

    Elevated location of a paste-thickener on a ridge close to the disposal area is considered at a Swedish ironore mine. About 0.7 Mtonnes of thickened tailings are planned to be layered as paste in the vicinity of thethickener during several years with distribution up to 900m after about 20 years. In order to clarify the

    pipeline pumping characteristics of the tailings product for volumetric solids concentration from 40 to50%, experiments in loop systems with pipeline inner diameters from 0.063 to 0.152m have been carriedout with various types of pumps. The results and comparisons carried out here showed that the rheologycannot simply be related to the performance of centrifugal pumps, factors related to pump design and

    built up tendencies of material within the pump and other particle properties may be of equal importance.During the first years of operation in the considered application only one thickener underflow pump isrequired. Therefore the reliability and performance for various pump configurations are planned to besystematically investigated in order to meet the most effective long-term solution for paste thickeneroperation, pipeline distribution and placement in the disposal area.

    Introduction

    Luossavaara-Kiirunavaara AB (LKAB), an iron ore company with mines in the northern part of Swedenis continuously considering new technologies for the handling, transportation and disposal of waste rockand tailings. In the LKAB concentrator in Svappavaara about 0.7 Mtonnes of dry tailings per year istransported nearly 1 km as a slurry in parallel pipelines connected to a flume discharging into a tailings

    pond. In order to limit the cost of tailings management in the existing area surface disposal of a highlythickened slurry at slopes of 5% has been considered. The thickening may take place adjacent to the plantor close to the disposal area about 1.5 km away, Fig.1, Wennberg and Sellgren (2005).

    The location of the thickener is mainly a balance of the cost for high pressure pumping and thedisadvantage of having the thickening facility remote from the rest of the processing taking place in the

    concentrator. Today, it seems that a location of the thickening at 2 in Fig.1 is the most attractivealternative.

    Various design features related to the underflow pump, the downstream distribution system and thegeotechnical behaviour when the paste is in place are in the literature coupled to characteristic paste yieldstresses. Values related to unsheared and fully sheared conditions goes back to the effect of appliedshear and exposure time, i.e. the shear history. As will be discussed later there are some uncertainty aboutshear history effects.

    Objective and Scope

    The objective here is to present experimental results from various loops with inner diameters of 63, 75,101, and 152mm with centrifugal and positive displacement pumps, the latter of screw or piston type.These diameters are expected to be representative for various parts of the distribution system. Due to the

    thickener location close to the disposal area, the discussion will be focused on the performance ofcentrifugal pumps when handling high concentration slurries.

  • 7/29/2019 Thord Wennberg Lic2010

    64/112

    Thord Wennberg, Anders Sellgren

    The South African Institute of Mining and Metallurgy

    The 17th

    International Conference on the Hydraulic Transport of Solids Hydrotransport 17

    Pumping evaluations with paste tailings thickened close to the surface disposal area 2

    D

    S

    W

    + 365

    + 342

    LegendC: ConcentratorD: Disposal area

    S: Settling pond

    W: Clarification pond

    N

    + 436

    + 369

    C

    1

    + 359

    2

    + 411

    0 0.5 1 km

    Emergency

    tailings line

    WaterTailings

    Thickened tailings

    Figure 1. Schematic sketch of the two alternative locations of the high-density thickener.

    It was not possible to do on-site large-scale pipeline pumping testing and direct shear history observationsat the time of pilot-scale paste generation because of low production rates. Therefore, the pipeline looptests were carried out with the actual thickened product at suitable locations with stored, transported and

    re-mixed pastes. During the first years of operation in the considered application only one thickenerunderflow pump together with a short distribution pipeline is required. Therefore questions raised in thisstudy and shear history effects are planned to be systematically investigated on-site in order to meet themost effective long-term solution for paste thickener operation, pipeline distribution and placement in thedisposal area.

    Experimental Study

    The average particle size distribution was 25 % less than 10 microns with average particle size, d50 ,about27 microns and with about 80% of particles finer than 90 microns. Figure 2 shows schematically the testloop procedure, most often with segments with two pipeline diameters where simple gauges wereinstalled for pressure drop readings. The gauges were at times mounted close to the pump and sometimesa soft pipeline bend was included in the pressure readings. The flow rate was simply measured with a

    barrel and a stop watch and the slurry density was obtained from a volumetrically calibrated tank anddried samples.

    4 m 4 m50 m

    Barrel for

    flow control

    Figure 2. Schematic description of one of the used loop systems. Truck feeding of a displacementpump in a 120m long loop with 0.15- and 0.10m- diameter pipelines.

  • 7/29/2019 Thord Wennberg Lic2010

    65/112

    Thord Wennberg, Anders Sellgren

    The South African Institute of Mining and Metallurgy

    The 17th

    International Conference on the Hydraulic Transport of Solids Hydrotransport 17

    Pumping evaluations with paste tailings thickened close to the surface disposal area 3

    The measured pressure gradient dp/dx along a pipe is related to the wall shear stress w and the frictionloss gradient j (m slurry/m) through the following relationship.

    44

    )/( gjDDdxdp

    w

    g (1)

    where and D is the slurry density and pipeline diameter, respectively.

    The performance of a centrifugal pump is affected when handling slurries. The relative reduction of theclear water head and efficiency for a constant flow rate and rotary speed may be defined by the ratios andfactors shown in Figure 3.

    Head ratio: HR = H/H0Head reduction factor: RH = 1- HR

    Efficiency ratio: ER = 0Efficiency reduction factor: R = 1-ER

    Figure 3. Sketch defining the reduction in head and efficiency of a centrifugal pump pumping a

    solid water mixture. H and H0 are heads in slurry and water service, respectively. The

    corresponding efficiencies are and 0.

    In order to compare pump performance results with various rotary speeds, n, and literature data,dimensionless head and flow rate parameters were used, see for example Wilson et al. (2006).

    Head:22

    iDn

    gH Flow rate:

    3

    inD

    Q(2)

    whereH is the head and Q is the flow rate and Di is the impeller diameter.

    Results

    Pipe wall stress results (Eq.1) versus the viscous scaling parameter 8V/D (V is velocity) for various

    diameters and volumetric solids concentration ,C= 40.4%, are shown in Fig. 4 and compared to largerdiameter data from Saurmann (1982) for a tailings product with similar particle size distribution as usedhere.

    Results for various diameters up to 0.152 m for C-values of about 48 and 50% are shown in Fig. 5 wheredirect yield measurements also were available for 48 %. This is the value considered for pipeline pumpingdesign which here has been estimated to be on the conservative side with respect to paste qualityrequirements.

    The line in Fig. 5 for 48% is considered to represent an average representative design shear stress. Forexample, with D=0.15 m and 92 tonnes/h (0.7 Mtonner/y) then the flow rate is 68 m3/h with V about 1.1m/s and 8V/D = 57 s-1 giving w about 200 Pa in Fig.5. The corresponding pressure requirement fromEq.1 will be 530 kPa/100m or head losses of about 30m slurry per 100m horizontal pipeline.

  • 7/29/2019 Thord Wennberg Lic2010

    66/112

    Thord Wennberg, Anders Sellgren

    The South African Institute of Mining and Metallurgy

    The 17th

    International Conference on the Hydraulic Transport of Solids Hydrotransport 17

    Pumping evaluations with paste tailings thickened close to the surface disposal area 4

    0

    100

    200

    300

    400

    500

    600

    0 100 200 300

    8V/D (sec

    -1

    )

    Shearstress

    w(

    Pa) 0.063 m

    0.076 m

    0.101 m

    0.2 m, Saurmann (1982)

    Pipeline diameter

    Figur 4. Shear stresses versus the rheological scaling parameter 8V/D from pipeline test whith aconcentration of 40.4 per cent by volume.

    0

    100

    200

    300

    400

    500

    600

    0 100 200 300

    8V/D (sec-1

    )

    Shearstress

    w(

    Pa)

    0.063 m

    0.076

    0.101 m

    0.152 m

    Vane-type viscometer

    Pipeline diameter

    47.7 %

    50 %

    Figur 5. Shear stresses versus the rheological scaling parameter 8V/D from pipeline test with

    solids concentrations by volume of about 48 and 50 %.

    The pipeline results in Figs. 4 and 5 were based on rough measurements and represent re-mixed andmildly to strongly circulated slurry or a product that had been stored for one to several weeks and then

    brought into a loop system. It was not possible to evaluate any obvious rheological trends related pipelinediameter, age or exposure time in the loop system.

    Operation in a 40 m long 0.065 m diameter hose was also used for indicative performance measurementsand observations for a centrifugal pump with a 0.065 m-suction and a 0.05 m-discharge diameter with a4-vane semi-open impeller with diameter 0.23 m. A few pump efficiency values ( ) were estimated fromthe variable speed unit. The flow rate at the start corresponded to a velocity of 1.55 m/s at 1480 rpm forC=45.5% with the intention to successively increase the concentration at approximately the same flowrate.

  • 7/29/2019 Thord Wennberg Lic2010

    67/112

    Thord Wennberg, Anders Sellgren

    The South African Institute of Mining and Metallurgy

    The 17th

    International Conference on the Hydraulic Transport of Solids Hydrotransport 17

    Pumping evaluations with paste tailings thickened close to the surface disposal area 5

    With C about 48%, it was not possible to maintain the flow through increased rotary speeds, however thesystem operated for a long time in a semi-stable way at extremely low velocities of 0.1 to 0.3 m/s forrotary speeds of 1840 to 1940 rpm.

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0 0.002 0.004 0.006 0.008 0.01

    Q/nDi3

    gH/n

    2D

    i2

    0

    50

    100

    (%)

    H Slurry

    h SlurryHead water

    Efficiency water

    H Slurry

    Slurry

    Figur 6. Dimensionless representation of high concentration slurries derating result.

    Discussion

    Indicative measurements at an early stage with gravity flow in a 11 m long 25mm-diameter hose from apilot scale thickener at C=44% showed a yield stress slightly above 100 Pa, which make sense incomparison to the results in Figures 4 an 5 for about 40 and 48%,respectively, and the scatter related tothe various testing conditions.

    Parts of the underflow in paste thickeners are today often circulated back into the base through pumpingin order to agitate the paste. Pilot scale thickening and trench deposition tests for a similar tailings productas investigated here with and without circulation with a centrifugal pump showed that the agitated pasteflowed more easily down the slope resulting in a lower deposition angle, Engman et al. (2004)

    The thickened and flocculated slurry flows by gravity in the base of the thickener to the pump.Centrifugal pumps are known to impart high shear intensities resulting in a reducedslurry yield stress.Furthermore, the slurry is exposed to aging and various degrees of shear in the downstream pipelinedistribution system. Published results are difficult to evaluate and sometimes contradictory. For example,Schaan et al. (2005) reported for a flocculent-dosed coarse sand-silt/clay tailings paste that the dominatingrelative yield stress reduction took place in the 300 m long 0.075 m-diameter pipeline after twocentrifugal pumps where the yield stress decreased about 50%. An 80% decrease in yield stress through

    pump passages for a red mud tailings slurry with no pipeline effect was reported by Sofra (2006).Arbuthnot and Triglavcanin (2005) found that a centrifugal pump in the underflow approximately halvedthe yield stress with a gold tailings paste. They found a similar effect for an underflow circulatingarrangement in the thickener. High pressure systems with positive displacement pumps are normally alsofed with centrifugal pumps. Therefore, independent of the system configuration, slope formingmechanisms can be considered to be related to shear stresses that are much lower than those observed inthe thickener underflow.

    The reported shear history experiences and the observation of a slope dimishing effect related to pastecirculation in the thickener, raise questions related to system effectiveness and flexibility. With a long-term fixed overall slope requirement in the disposal area, flexibility can be promoted with a split of the

    pipeline flow into several streams just before the discharge end, giving higher slopes following anindicative criterion, Engman et al. (2004). In order to plan for investigational procedures related to system

    effectiveness during the first years of operation with simple underflow pumping arrangements, the initial

  • 7/29/2019 Thord Wennberg Lic2010

    68/112

    Thord Wennberg, Anders Sellgren

    The South African Institute of Mining and Metallurgy

    The 17th

    International Conference on the Hydraulic Transport of Solids Hydrotransport 17

    Pumping evaluations with paste tailings thickened close to the surface disposal area 6

    choice of equipment will be important. Therefore the rest of the discussion will be focused on centrifugalpump performance derating when handling high concentration slurries.

    The pump performance results in Fig.6 addresses the problem of maintaining steady state operation whenpumping a paste with various solids concentrations. Walker and Goulas (1984) presented results with an

    unstable head curve for coal and kaolin clay slurries with yield stresses of about 8 Pa. Results for a four-vane closed impeller with diameter 0.352 m and a constantrotary speed of 1200 rpm are shown in Figure7.