58
Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the thermoelectric effect which is the direct conversion of a temperature gradient across two dissimilar materials into electricity. The materials used are known as thermoelectric materials. The thermoelectric effect is reversible i.e. it directly converting electricity into a temperature gradient. The thermoelectric effect is based on a combination of two different effects, namely, the Seebeck effect and the Peltier effect. Water/Beer Cooler

Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the thermoelectric effect which is the direct conversion of a temperature gradient across two dissimilar materials into electricity. The materials used are known as thermoelectric materials. The thermoelectric effect is reversible i.e. it directly converting electricity into a temperature gradient.

The thermoelectric effect is based on a combination of two different effects, namely, the Seebeck effect and the Peltier effect.

Water/Beer Cooler

Page 2: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

What is thermoelectricity?Thermoelectricity is the conversion of heat differentials into electricity and viceversa. Thermoelectric energy conversion is one of the direct energy conversion technologies that rely on the electronic properties of the material (semiconductor) for its efficiency. It is based on the Seebeck (Power Generation) and Peltier effects (Heat Pumping).

Page 3: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Seebeck EffectIn 1821, Thomas Seebeck a German Estonian physicist found  that  an  electric  current  would  flow continuously  in  a  closed  circuit  made  up  of  two dissimilar metals,  if  the  junctions of  the metals were maintained at two different temperatures. If the temperature gradient  is reversed, the direction of the current is reversed.

TV

TTV

=−

= 2,1

12

2,1Where S is the Seebeck coefficient. It is defined as the voltage generated per degree of temperature difference between the two points.

S is positive when the direction of the current is the same as the direction of the 

Page 4: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

The basis of the Seebeck effect is electron mobility in conductors and semiconductors, which is a function of temperature

When two different metals are joined, the relative difference in electron mobility in each of the metals will make that the electrons from the more “mobile” metal jump to the less mobile metal.

A potential difference is created between the two conductors. In the absence of a circuit, this causes charge to accumulate in one  conductor, and charge to be depleted in the other conductor.

Example: Type K thermocouple

Measure ?

Page 5: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

The Seebeck EffectThe Seebeck effect is the conversion of heat differences directly into electricity. When two dissimilar materials with different carrier densities are connected to each other by an electrical conductor and heat is applied to one side of the connectors, some of the heat input is converted to electrical current, as the higher energy  matter releases energy and cools to a lower energy state. The net work is proportional to the temperature difference and Seebeck coefficient. 

Page 6: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

The simplest thermoelectric generator consists of a thermocouple, comprising a p‐type and n‐type thermo‐element connected electrically in series and thermally in parallel. 

Heat is pumped into one side of the couple and rejected from theopposite side. An electrical current is produced, proportional to the temperature gradient between the hot and cold junctions 

Page 7: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Explanation of Seebeck EffectIn a thermoelectric material there are free carriers which carry both charge and heat. 

If a material is placed in a temperature gradient, where one side is cold and the other is hot, the carriers at the hot end will move faster than those at the cold end. The faster hot carriers will diffuse further than the cold carriers and so there will be a net build up of carriers (higher density) at the cold end. In the steady state, the effect of the density gradient will exactly counteract the effect of the temperature gradient so there is no net flow of carriers. The buildup of charge at the cold end will also produce a repulsive electrostatic force (and therefore electric potential) to push the charges back to the hot end.

Page 8: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

The electric potential produced by a temperature difference is known as the Seebeck effect and the proportionality constant is called the Seebeck coefficient (α or S).If the free charges are positive (the material is p‐type), positive charge will build up on the cold which will have a positive potential. Similarly, negative free charges (n‐typematerial) will produce a negative potential at the cold end.

If the hot ends of the n‐type and p‐typematerial are electrically connected, and a load connected across the cold ends, the voltage produced by the Seebeck effect will cause current to flow through the load, generating electrical power. 

Page 9: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

LAT

RVVIPower

ALRR

TVVoltage

L

ThermoL

⋅⋅Δ⋅==⋅=

⋅==

Δ⋅==

σασ

α

222

α2σ is the materials property known as the thermoelectric power factor. For efficient operation, high power must be produced with a minimum of heat (Q).κ= Thermal conductivity. The thermal conductivity acts as a thermal short and reduces efficiency.

Page 10: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the
Page 11: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Peltier EffectIn 1834, a French scientist Jean Peltier found that  a thermal difference can be obtained at the junction of two metals, if an electric current is made to flow in them. 

Opposite of the Seebeck Effect. The heat current (q) is proportional to the charge current (I) and the proportionality constant is the Peltier Coefficient (Π).

Iq ×Π=

Page 12: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

When two materials are joined together, there will be an excess or deficiency in the energy at the junction because the two materials have different Peltier coefficients. The excess energy is released to the lattice at the junction, causing heating, and the deficiency in energy is supplied by the lattice, creating cooling. 

The Seebeck and the Peltier coefficients are related to each other through the Kelvin relationship – T is the absolute temperature.

TS ×=ΠΠ >0 ; Positive Peltier coefficient. High energy holes move from left to right. Thermal current and electric current flow in same direction.

Page 13: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Π < 0 ; Negative Peltier coefficient

High energy electrons move from right to left.

Thermal current and electric current flow in opposite directions.

If an electric current is applied to the thermocouple as shown, heat is pumped from the cold junction to the hot junction. The cold junction will rapidly drop below ambient temperature provided heat is removed from the hot side. The temperature gradient will vary according to the magnitude of current applied.

Page 14: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

When two dissimilar materials with different carrier densities are connected to each other by an electrical conductor, electrical current (work input), forces the matter to approach a higher energy state and heat is absorbed (cooling). The energy is released (heating) as the matter approaches a lower energy state. The net cooling effect is proportional to the electric current and Peltier Effect coefficient.

The Peltier Effect

Page 15: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Thompson  Effect

William Thompson (1824‐1907) also known as Lord Kelvin. He observed that when an electric current flows through a conductor, the ends of which are maintained at different temperatures (gradient temperature), heat is evolved at a rate approximately proportional to the product of the current and the temperature gradient.

dxdTI

dxdQ

××= λ

Thompson Effect = Seebeck Effect + Peltier Effect

λ is the Thomson coefficient in Volts/Kelvin

The relationships between the different effects are called the Kelvin relationships.

Page 16: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

First Kelvin relationship: T

S Π=

Second Kelvin relationship: TTS λ

δδ

=

Page 17: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

11/1

COPmax ++−+

−=

m

chm

ch

czT

TTzTTT

T

Coefficient of Performance

where 

Thermoelectric Figure of Merit (ZT)

TSZTκσ2

Seebeck coefficientElectrical conductivity

Thermal conductivity

Temperature0

1

2

0 1 2 3 4 5ZT

CO

P max

Bi2Te3

FreonTH = 300 KTC = 250 K

Page 18: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Requirements for a Good Thermoelectric Material

• General considerations for the selection of materials for thermoelectric applications involve:– High figure of merit   – large Seebeck coefficient α (or S)– high electrical conductivity σ– low thermal conductivity κLattice+κelectrons

– Possibility of obtaining both n‐type and p‐type thermoelements.– No viable superconducting passive legs developed yet

• Good mechanical, metallurgical and thermal characteristics– Capable of operating over a wide temperature range. Especially true for high temperature applications.

– To allow their use in practical thermoelectric devices– Materials cost can be an important issue!

phononselectrons

Sκκ

σ+

=2

Z

Page 19: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

TSphononselectrons

×+

=κκ

σ2

ZT

Page 20: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Thermal conductivity consists of two parts: lattice conductivity (lattice vibrations = phonons), κLattice, and thermal conductivity of charges (electrons and holes), κelectrons:

Currently, most of the research efforts are devoted to minimizing the lattice conductivity of new phases.

Minimizing thermal conductivity

rsFreeCarrieLattice κκκ +=

Some ways to reduce the lattice conductivity:(1) use of heavy elements, e.g. Bi2Te3, Sb2Te3 and PbTe; (2) a large number N of atoms in the unit cell: the fraction of vibrational modes (phonons) that carry heat efficiently to 1/N;(3) rattling of the atoms, e.g. filled skutterudite CeFe4Sb12; disorder in atomic structure: random atomic distribution and deficiencies. 

Page 21: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

The last approach is nicely realized in "Zn4Sb3", which can be called an "electron‐crystal and phonon‐glass" according to Slack. This material has electrical conductivity typical for heavily doped semiconductors and thermal conductivity typical for amorphous solids. In fact, its thermal conductivity is the lowest among state‐of‐the art thermoelectric materials:

Page 22: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Minimize thermal conductivity and maximize electrical conductivity has been the biggest dilemma for the last 40 years.�

Bismuth telluride is the standard with  ZT=1to match a refrigerator you need  ZT= 4 ‐ 5 to recover waste heat from car  ZT = 2

Can the conflicting requirements be met by nano‐scale material design?

Page 23: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Reduce the lattice thermal conductivity by:

•Complex crystal structure of high atomic number materials.

•Rattlers in the structure (Atomic Displacement Parameter – ADP).

•NanostructuredThermoelectrics

Page 24: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Complex Crystal Structures

Page 25: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Rattlers:These are weakly bound atoms that 

fill cages.They have unusually large values of 

Atomic Displacement ParametersProperties of many clathrate‐like 

compounds can be understood by treating “rattler” atoms as Einstein oscillators and framework atoms as a Debye solid.Skutterudites, LaB6, Tl2SnTe5A Characteristic Einstein temperature 

(or frequency) can be assigned to each rattler

XE20XE24

Eu8‐eGa16Ge30 Phase With the Ba8Ga16Sn30Clathrate Structure Type: a = 10.62 Å

Page 26: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Eu Nuclear Density Map at Center of Large Cage

Tunneling States !

Sr Nuclear Density Map at Center of Large Cage Tunneling States?

Ba Nuclear Density Map at Center of Large Cage ( 6d site of 

clathrate structure)

X8Ga16Ge30 (X= Ba, Sr, Eu)

Page 27: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

ADP Data (<u2> �) From 6d Site

0.00

0.05

0.10

0.15

0 50 100 150 200 250 300

X8Ga16Ge30U eq

(Å2 )

T (K)

Eu

Sr

Ba

Page 28: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Advantages of Thermoelectrics•Absence of moving parts•High reliability•Quietness•Lack of vibrations•Low maintenance•Simple start up•No pollution•Small•Light weight•No noise•Precise temperature control: within +/‐ 0.1C

Disadvantages of Thermoelectrics•High cost•Low efficiency•Typically about 3 to 7%

Page 29: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Applications of Thermoelectric

• Consumer Applications

• Automobile Applications

• Industrial Applications

• Military and Space Applications

Page 30: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Consumer Applications

Beer Cooler

TE Fridge

Chocolate Cooler

Page 31: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Automobile Applications

Seat Cooler/WarmerCan Cooler

Page 32: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Industrial Applications

Electronic Cooler TE Dehumidifier

Page 33: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Military and Space Applications

Night Vision

Page 34: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Thermal Properties of MaterialsThermal Properties of Materials

Basic Principles•Macroscopic Thermal Transport Theory– Diffusion 

‐‐ Fourier’s Law‐‐ Diffusion Equation

•Microscale Thermal Transport Theory – Particle Transport

‐‐ Kinetic Theory of Gases‐‐ Electrons in Metals‐‐ Phonons in Insulators‐‐ Boltzmann Transport Theory

Page 35: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Basic PrinciplesTQC

δδ

=

Heat is a form of energy. The thermal properties describe how a solid responds to changes in its thermal energy.

The heat capacity (C) of a solid quantifies the relationship between the temperature of the body (T) and the energy (Q) supplied to it.

The measured value of the heat capacity is found to depend on whether the measurement is made at constant volume (CV) or at constant pressure (CP).

Page 36: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Thermal conductivity

HotTh

ColdTc

L

Q (heat flow)

Fourier’s Law for Heat Conduction

dxdTkA

LTTkAQ ch =

−=

Page 37: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Heat Diffusion Equation

xTk

tTC 2

2

∂∂

=∂∂

Specific heat

Heat conduction = Rate of change of energy storage

1st law (energy conservation)

•Conditions: t >> t ≡ scattering mean free time of energy carriersL >> l ≡ scattering mean free path of energy carriers

Breaks down for applications involving thermal transport in small length/ time scales, e.g. nanoelectronics, nanostructures, NEMS,ultrafast laser materials processing…

Page 38: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Length Scale

1 m

1 mm

1 mm

1 nm

Human

Automobile

Butterfly

1 km

Aircraft

Computer

Wavelength of Visible Light

MEMS

Width of DNA

MOSFET, NEMS

Blood Cells

Microprocessor Module

Nanotubes, Nanowires

Particle transport100 nm

Fourier’s law

l

Page 39: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

D

D

Mean Free Path for Intermolecular Mean Free Path for Intermolecular Collision for GasesCollision for Gases

Total Length Traveled = L

Total Collision Volume Swept = πD2 L

Number Density of Molecules = n 

Total number of molecules encountered inswept collision volume = nπD2L

Average Distance betweenCollisions,  mc = L/(#of collisions)

Mean Free Path

σπ nLDnL

mc1

2 ==

σ: collision cross‐sectional area

Page 40: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Mean Free Path for Gas MoleculesMean Free Path for Gas Molecules

Number Density ofMolecules from IdealGas Law:                    n = P/kBT

kB: Boltzmann constant1.38 x 10‐23 J/K

Mean Free Path:  

σσ PTk

nB

mc ==1

Typical Numbers:

Diameter of Molecules, D ≈ 2 Å = 2 x10‐10 mCollision Cross‐section: σ ≈ 1.3 x 10‐19 m

Mean Free Path at Atmospheric Pressure:  

m0.3or m103103.110

3001038.1 7195

23μ−

−×≈

××××

≈mc

At 1 Torr pressure,  mc ≈ 300 mm;  at 1 mTorr,  mc ≈ 30 cm

Page 41: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Wall

Wall

b: boundary separation

Effective Mean Free Path:  

Effective Mean Free PathEffective Mean Free Path

bmc

111+=

Page 42: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Kinetic Theory of Energy TransportKinetic Theory of Energy Transport

z

z - z

z + z

u(z- z)

u(z+ z)

θ ( ) ( )[ ]zzzz zuzuvq +−−=21'qz

Net Energy Flux / # of Molecules

( )dzduv

dzduvq zzz θ2cos' −=−=

through Taylor expansion of u

u: energy

dzdTk

dzdTCv

dzdT

dTduvqz −=−=−=

31

31

Integration over all the solid angles total energy flux

Cvk31

=

Specific heat Velocity Mean free path

Thermal conductivity:

Page 43: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Free Electrons in Metals at 0 KFree Electrons in Metals at 0 K

EF

F:  Work Function

Energy

Fermi Energy – highest occupied energy state:

Fermi Velocity:

( )

( ) 312

322

222

3

322

eF

eF

F

mv

mmkE

ηπ

ηπ

=

==

Element Electron Density, ηe [1028 m-3]

Fermi Energy EF [eV]

Fermi Temperature TF [104 K]

Fermi Wavelength λF [Å]

Fermi Velocity vF [106 m/s]

Work Function Φ [eV]

Cu 8.47 7.00 8.16 4.65 1.57 4.44 Au 5.90 5.53 6.42 5.22 1.40 4.3 Fe 17.0 11.1 13.0 2.67 1.98 4.31 Al 18.1 11.7 13.6 3.59 2.03 4.25

VacuumLevel

Band Edge

Fermi Temp:B

FF k

ET =

Metal

Page 44: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Effect of TemperatureEffect of Temperature

( )⎟⎠

⎞⎜⎝

⎛ −+=

TkEE

Ef

B

Fexp1

1Fermi‐Dirac equilibrium distributionfor the probability of electron occupation of energy level E at temperature T

0

1

EFElectron Energy, E

Occup

ation Prob

ability, f

Work Function, F

Increasing T

T = 0 K

k TB

Vacuum Level

Page 45: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

( ) ( )

( ) ( )dEEDEEfVE

dEEDEfVN

ee

e

ee

∫==∈

∫==

0

0;η

Number and Energy DensitiesNumber and Energy Densities

Density of States -- Number of electron states available betweenenergy E and E+dE

( ) 2222mEmEDe π

=

Number density:

Energy density:

in 3D

Page 46: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Electronic Specific Heat and Thermal ConductivityElectronic Specific Heat and Thermal Conductivity

( )dEEDdTdfE

dTdC e

e ∫∞

=∈

=0

BeF

Be k

ETk

C ηπ⎟⎟⎠

⎞⎜⎜⎝

⎛=

2

2

eFeeFee vCvCk τ231

31

==

Specific Heat

Thermal Conductivity

Electron Scattering Mechanisms• Defect Scattering• Phonon Scattering• Boundary Scattering (Film Thickness,

Grain Boundary)

Grain Grain Boundary

e

Temperature, T

Defect Scattering

PhononScattering

IncreasingDefect Concentration

Bulk Solids

Mean free time:te = le / vF

in 3D

Page 47: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

10 310 210 110 010 0

10 1

10 2

10 3

Temperature, T [K}

Ther

mal

Con

duct

ivity

, k [

W/c

m-K

]

Copper

Aluminum

Defect Scattering Phonon Scattering

11

eFeeFee vCvCk τ231

31

==Matthiessen Rule:

Thermal Conductivity of Cu and AlThermal Conductivity of Cu and Al

phononboundarydefecte

phononboundarydefecte

1111

1111

++=

++=ττττ

Electrons dominate k in metals 

Page 48: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Crystalline vs. Glasslike Thermal Conductivity

P. W. Anderson, B. I. Halperin, C. M. Varma, Phil. Mag. 25, 1 (1972).

Page 49: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Crystal VibrationCrystal Vibration

Energy

Distancero

Parabolic Potential of Harmonic Oscillator

Eb

Interatomic Bonding

a

Spring constant, g Mass, m

xn xn+1xn-1

Equilibrium Position

Deformed Position

1‐D Array of Spring Mass System

( )nnnn xxxg

dtxdm 2112

2−+= −+

Equation of motion withnearest neighbor interaction

( ) ( )inKatixx on expexp ω−=

Solution

Page 50: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Dispersion RelationDispersion Relation

( ) ( )[ ] ( )

( ) 21

cos12

cos12expexp22

Kamg

KagiKaiKagm

−=

−=−−−=

ω

ω

Freq

uency, ω

Wave vector, K0 π/a

Longitudina

l Acou

stic (LA

) Mode

Transv

erse A

coustic

 (TA) Mo

de

Group Velocity:

dKdvg

ω=

Speed of Sound:

dKdv

Ks

ω0

lim→

=

Page 51: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Lattice Constant, a

xn ynyn‐1 xn+1

( )

( )nnnn

nnnn

yxxgdt

ydm

xyygdt

xdm

2

2

12

2

2

12

2

1

−+=

−+=

+

Two Atoms Per Unit CellTwo Atoms Per Unit Cell

Freq

uency, ω

LATA

Wave vector, K0 π/a

LO

TO

OpticalVibrationalModes

Page 52: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

0 0.2 0.4 0.6 0.8 1.00.20.40

2

4

6

8

(111) Direction (100) DirectionΓ XL Ka/π

LA

TATA

LA

LO

TO

LO

TO

Freq

uenc

y (1

0 H

z)12

Phonon Dispersion in GaAsPhonon Dispersion in GaAs

Page 53: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Energy Quantization and PhononsEnergy Quantization and Phonons

Energy

Distance

Total Energy of a QuantumOscillator in a Parabolic Potential

ω⎟⎠⎞

⎜⎝⎛ +=

21nu

n = 0, 1, 2, 3, 4…;   w/2:  zero point energy

Phonon: A quantum of vibrational energy, w, which travels through the lattice

Phonons follow Bose‐Einstein statistics.

Equilibrium distribution: 

1exp

1

−⎟⎟⎠

⎞⎜⎜⎝

⎛=

Tk

n

B

ω

In 3D, allowable wave vector K: ,....6,4,2LLLπππ

Page 54: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Lattice EnergyLattice Energy

( ) pKpKp

l nE ,, 21 ωω∑∑ ⎥⎦

⎤⎢⎣⎡ +=

K

p: polarization(LA,TA, LO, TO)K: wave vector

Dispersion Relation:  ( )ωgK =

Energy Density:  ( ) ( ) ωωωω dDnVE

p

ll ∫ ⎥⎦

⎤⎢⎣⎡ +∑==∈

21

( ) ( )ωπ

ωωddggD 2

2

2=

Density of States: Number of vibrational states between w and w+dw

Lattice Specific Heat: ( ) ωωω dDdT

nddTdC

p

ll ∫∑=

∈=

in 3D

Page 55: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Debye ModelDebye Model

Freq

uency, w

Wave vector, K0 p/a

Kvs=ωKvs=ωDebye Approximation:

( ) ( )32

2

2

2

22 svddggD

πω

ωπωω ==Debye Density 

of States:

( )B

sD k

v 3126 ηπθ =

C(dimnd) 1860 Ga 240Si 625 NaF 492Ge 360 NaCl 321B 1250 NaBr 224Al 394 NaI 164

Debye Temperature [K]

Specific Heat in 3D:

( ) ⎥⎥

⎢⎢

−⎟⎟⎠

⎞⎜⎜⎝

⎛= ∫

TD

x

x

DBl

e

dxxeTkC

θ

θη

02

43

19

In 3D, when T << θD, 

34, TCT ll ∝∝∈

Page 56: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Phonon Specific HeatPhonon Specific Heat

10 410 310 210 110 1

10 2

10 3

10 4

10 5

10 6

10 7

Temperature, T (K)

Spec

ific

Hea

t, C

(J/

m -

K)3

C ∝ T 3

C = 3ηkB = 4.7 ×106 Jm3 −K

θD =1860 K

Diamond

ClassicalRegime

In general, when T << qD, 

dl

dl TCT ∝∝∈ + ,1

d =1, 2, 3: dimension of the sample 

Each atom has a thermal energy of 3KBT

Specific Heat (J/m

3 ‐K)

Temperature (K)

C ∝ T3

3ηkBT

Diamond

Page 57: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

Phonon Thermal ConductivityPhonon Thermal Conductivity

lsllsll vCvCk τ231

31

==Kinetic Theory

l

Temperature, T/qD

BoundaryPhononScatteringDefect

Decreasing BoundarySeparation

IncreasingDefectConcentration

Phonon Scattering Mechanisms

• Boundary Scattering

• Defect & Dislocation Scattering

• Phonon‐Phonon Scattering

0.01 0.1 1.0

Temperature, T/θD

0.01 0.1 1.00.01 0.1 1.0

kl

dl Tk ∝

BoundaryPhononScatteringDefect

Increasing DefectConcentration

Page 58: Thermoelectric Materialsacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8A.pdf · 2007-11-30 · Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the

10 310 210 110 010 -2

10 -1

10 0

10 1

10 2

10 3

Temperature, T [K]

Ther

mal

Con

duct

ivity

, k [W

/cm

-K]

Diamond

BoundaryScattering

DefectScattering

IncreasingDefect Density

• Phonons dominate k in insulators 

Thermal Conductivity of InsulatorsThermal Conductivity of Insulators