48
Sheet Metal Working: Series of opera+ons that involve cu3ng, bending and drawing sheet metal. Sheet metal (from 0.4mm or 1/64in to 6mm or 1/4in thickness); Plate (from 6mm upwards). Opera+ons are usually performed as cold working. Thickness= 0.4 to 6 mm (1/64 to 1/4 in) Advantages of Sheet Metal: Rela+vely low cost. Good dimensional accuracy and good surface finish. High strength Basic Types of Sheet Metal Opera<ons Cu3ng: It involves processes such as punching, shearing and blanking. Bending: Deform the sheet around a straight axis. Drawing: Deform the sheet into convex or concave shapes.

Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Embed Size (px)

Citation preview

Page 1: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Sheet  Metal  Working:    Series  of  opera+ons  that  involve  cu3ng,  bending  and  drawing  sheet  metal.  Sheet  metal  (from  0.4mm  or  1/64in  to  6mm  or  1/4in  thickness);  Plate  (from  6mm  upwards).    Opera+ons  are  usually  performed  as  cold  working.  

Thickness=  0.4  to  6  mm  (1/64  to  1/4  in)  Advantages  of  Sheet  Metal:  •  Rela+vely  low  cost.    •  Good  dimensional  accuracy  and  good  surface  finish.  •  High  strength  

Basic  Types  of  Sheet  Metal  Opera<ons  

Cu3ng:  It  involves  processes  such  as  punching,  shearing  and  blanking.  Bending:  Deform  the  sheet  around  a  straight  axis.  Drawing:  Deform  the  sheet  into  convex  or  concave  shapes.  

Page 2: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

www.nzsteel.co.nz    

finance.pipex.com  

Mechanical  Proper<es  of  Sheet  Material  

When  subjected  to  a  tensile  force  there  are  three  deforma+ons  to  be  measured:  the  longitudinal  strain,  the  strain  in  the  width  direc+on  and  the  strain  in  the  thickness  direc+on.  The  material  is  anisotropic.  

Page 3: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Shearing:  Shearing  of  sheet  metal  between  two  cu3ng  edges:    (1)  just  before  the  punch  contacts  work  (2)  punch  begins  to  push  into  work,  causing  plas+c  

deforma+on;  (3)  punch  compresses  and  penetrates  into  work  

causing  a  smooth  cut  surface;  (4)  fracture  is  ini+ated  at  the  opposing  cu3ng  

edges  which  separates  the  sheet.  

Forces  in  a  Shearing  Opera<on  

Force = 0.7×UTS × t × L

L  =  Total  length  Sheared  t  =  thickness  

Shearing:  A  cu3ng  metal  opera+on  usually  along  a  straight  line,  between  two  cu3ng  edges.  

Page 4: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Punching  and  Blanking  

Punching  and  blanking  are  very  similar.  In  punching  the  cut  piece  is  scrap,  while  in  blanking  the  cut  piece  is  the  desired  product.  

Page 5: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Conven+onally  sheared  surface  showing  the  dis+nct  regions  of  deforma+on  and  fracture  and  (boYom)  magnified  view  of  the  sheared  edge.  (Courtesy  of  Feintool  Equipment  Corp.,  Cincinna7,  OH.)  

Percent  Penetra<ons  Material   %  Penetra<on  Silicon  Steel   30  Aluminum   60  .10  C  Steel  Annealed   50  .10  C  Steel  Cold  Rolled   38  .20  C  Steel  Annealed   40  .20  C  Steel  Cold  Rolled   28  .30  C  Steel  Annealed   33  .30  C  Cold  Rolled   22  

E.V.  crane,  Plas+c  Working  in  Presses,  John  Wiley  and  Sons,  Inc.,  New  York,  1948,  p.  36  

Penetra+on=Roll  over  +  Burnish  

Characteris<cs  of  a  Die  Cut  edge  Roll  Over  –  Flow  of  material  around  the  punch  and  die  .The  larger  the  clearance  the  greater  the  roll  over  Burnish  –  The  rubbed  or  “cut”  por+on  of  the  edge.  The  sharper  the  punch  the  wider  the  burnish      Fracture  –  The  angled  surface  where  the  material  separates  from  the  parent  material  Burr  –  The  very  sharp  projec+on  caused  by  a  dull  cu3ng  on  the  punch  or  die.      

Page 6: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Fineblanked surface of the same component as shown. (Courtesy of Feintool Equipment Corp., Cincinnati, OH.)

Page 7: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Die  size  determines  blank  size  Db;  punch  size  determines  hole  size  Dh.;  c  =  clearance  

Clearance:  It  is  defined  as  the  distance  between  the  punch  cu3ng  edge  and  the  die  cu3ng  edge.  It  depends  on  the  hardness  and  thickness  of  the  material.  As  the  thickness  increases,  the  clearance  must  increase.  The  clearance  typical  values  ranges  from  4%  to  8%  of  the  thickness  of  the  material.  The  recommended  clearance  is  calculated  by:  c=a.t  where  c=clearance,  t=thickness  and  a=allowance  

Forces  in  a  Punching  Opera<on  

Force = 0.7×UTS × t × L

L  =  Total  length  Sheared  t  =  thickness  

Metal  group                        a        _              aluminum  alloys  (1100,  5052)          0.045  aluminum  alloys  (2024  and  6061);  brass,          0.060  so?  cold  rolled  steel,  so?  stainless  steel    cold  rolled  steel,  stainless  steel,  (hard  &  half-­‐hard)    0.075  

Angular  Clearance:  Allows  the  blank  or  the  slug  to  drop  off  easily.  Typical  values  ranges  from  0.25degrees  to  1.5  degrees  

For  a  round  blank  of  diameter  Db  is  determined  as:    Blank  punch  diameter  =  Db    -­‐  2c    Blank  die  diameter  =    Db      

For  a  round  hole  (piercing)  of  diameter  Dh  is  determined  as:    Hole  punch  diameter  =  Dh    Hole  die  diameter  =  Db  +  2c  

Page 8: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Forming  Proper<es  of  Sheet  Metal  Sheet  metal,  due  to  its  manufacturing  process  is  not  an  isotropic  material.  Anisotropy  is  caused  by  the  thermal  processing  of  the  sheet.  Two  types,  namely  crystallographic  anisotropy  and  mechanical  fibering.  

Typical  Range  of  Average  Normal  Anisotropy  (Ravg)  for  various  Sheet  Metals  

                 

                                                                                                                                                                                   

 

Zinc   0.2  

Hot  rolled  steel         0.8-­‐1.0  

Cold  rolled  rimmed  steel   1.0-­‐1.35  

Cold  rimmed  aluminum–killed  steel   1.35-­‐1.8  

Aluminum   0.6-­‐0.8  

Copper  and  Brass   0.8-­‐1.0  

Titanium   4-­‐6  

Example:  Low  carbon  steel  exhibits  an  upper  and  lower  yield  strength.  As  a  result  during  deforma+on,  it  shows  stretch  strain  bands  (Lueder’s  bands).  These  can  be  eliminated  by  a  reduc+on  of  thickness  of  0.5  to  1.5%  by  cold  rolling.  

Page 9: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Example   Es+mate  the  force  required  for  punching  a  25mm  diameter  hole  through  a  3.2mm  thick  annealed  +tanium  alloy  Ti-­‐6Al-­‐4V  sheet  at  room  temperature.  Data:  UTS  =  1000MPa  

F = 0.7×UTS × t × L = 0.7×1000MPa×0.0032m×π ×0.025=176kN

Page 10: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Cutlery  manufacturing:   Cutlery  manufacture  involves  blanking  the  stainless  steel  or  sterling  silver  to  the  proper  shape.  A  series  of  rolling  opera+ons  then  gives  the  piece  the  correct  thickness.  Aper  heat  treatment  and  trimming,  the  piece  has  a  paYern  embossed  on  it  in  a  stamping  opera+on.  Finally,  the  piece  is  buffed  and  polished.    

Page 11: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Blanking:  The  metal  inside  a  closed  contour  is  the  desired  part  

Punching:  The  metal  inside  the  contour  is  discarded.  

Notching:  Edges  or  corners  of  a  material  is  punched.  

Trimming:  Cu3ng  scrap  or  excess  material  for  a  fully  or  par+ally  shaped  part  

Shaving:  Finishing  opera+on  of  a  previously  cut  edge  by  removing  a  minimum  amount  of  material.  

Page 12: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Progressive  Stamping  Dies  Common  method  to  handle  complex  parts  

Page 13: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Deep  Drawing  Blanking  

Deep  Drawing  

Re-­‐drawing  

Ironing  

Doming  

Necking  

Seaming  

Complex  3D  shapes  can  be  made  out  of  sheet  metal.  

Page 14: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Usually  a  cold  working  process.  A  punch  forces  a  flat  sheet  metal  into  a  deep  die  cavity.    The  die  cavity  is  usually  circular  or  rectangular.  When  the  depth  of  the  product  is  greater  than  its  diameter,  it  is  known  as  Deep  Drawing  and  when  the  depth  of  the  product  is  less  than  is  diameter,  it  is  known  as  Shallow  Drawing.  The  sheet  metal  is  supported  on  both  sides  by  the  blankholder,    to  avoid  wrinkling  If  the  Hold-­‐down  pressure  (blankholder  force)  is  too  high  the  sheet  will  tear  and  if  it  is  too  low  it  will  wrink.          

www.endo-­‐mfg.co.jp  

Draw  beads  may  be  used  to  control  metal  flow.  

Page 15: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper
Page 16: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper
Page 17: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Es<ma<on  of  the  Blank  Diameter  

π4Do2 =

π4d12 +πd1h⇒ Do = d1

2 + 4d1h

Page 18: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Formability  Test:  Deforma+on  in  sheet  materials  are  carried  out  by  either  stretching  and/or  drawing.  The  ability  of  the  sheet  to  withstand  large  degrees  of  streching  or  drawing  deforma+on  (shape  change)  without  failure  is  known  as  formability.    

Erichsen  Test  –  Cupping  Test  

A  round  punch  is  forced  into  a  clamped  sheet  un+l  a  crack  (sudden  drop  in  force)  appears.  

Page 19: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Forming  Limit  Diagram  (FLD)  

Page 20: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

A  FLD  shows  what  combina+ons  of  the  major  and  minor  strains  produce  failure  in  a  sheet  metal.  To  develop  the  FLD,  the  major  and  minor  engineering  strains  are  obtained.    The  curves  represent  the  limits  of  drawing  between  failure  and  safe  regions,  

Page 21: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

By  measuring  the  ellipses  on  the  deformed  paYern,  the  largest  and  shortest  direc+ons  of  the  ellipses  are  the  major  strains  and  minor  strain  respec+vely.  Please  note  that  the  axes  for  these  strains  are  900  apart.  This  can  be  carried  out  at  many  different  loca<ons  in  the  work-­‐piece.  If  both  major  and  minor  strains  are  posi<ve,  the  deforma+on  are  stretching,  and  the  sheet  metal  will  decrease  in  thickness.    If  the  minor  strain  is  nega<ve,  this  contrac<on  may  par+ally  or  whole  compensate  any  posi<ve  stretching  in  the  major  direc<on.  The  combina<on  of  tension  and  compression  is  known  as  drawing,  and  the  thickness  may  decrease,  increase,  or  stay  the  same,  depending  on  rela+ve  magnitude  of  the  two  strains.  

Page 22: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Example:  

A  grid  of  2.5mm  circles  is  electroetched  on  a  blank  of  AK  sheet  steel.  Aper  forming  into  a  complex  shape  the  circle  in  the  region  of  cri+cal  strain  is  distorted  into  an  ellipse  with  major  diameter  of  4.5mm  and  minor  diameter  of  2.0mm.  Is  the  component  close  to  failure??      

Major  strain      Minor  strain      

ε1 =4.5− 2.52.5

⋅100 = 80%

ε2 =2.0− 2.52.5

⋅100 = −20%

The  coordinates  indicate  that  the  part  is  in  imminent  danger.  

Page 23: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper
Page 24: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Limit  Drawing  Ra<o  

It  is  defined  as  the  ra+o  between  the  largest  diameter  of  the  blank  that  can  be  drawn  into  a  specific  punch  diameter  without  failure:  The  recommended  drawing  ra+os  are  the  following:  •  for  the  first  drawing:  ~2  •  for  the  second  drawing:  1.2  –  1.25  •  for  the  third  drawing:  1.15  -­‐1.18  •  for  further  drawings:  1.1  -­‐1.12  

LDR = Maximum−Dblank

Dpunch

DR = Dblank

Dpunch

Reduc<on:  

The  value  of  the  reduc+on  (r)  should  be  less  than  0.5  for  a  cylinder.  

reduction = r =Dblank −Dpunch

Dblank

Thickness  to  Diameter  ra<o  thickness− diameter − ratio = t blank

D blankThe  thickness  of  the  star+ng  blank  divided  by  the  blank  diameter.  The  recommended  values  for  this  ra+o  are  greater  than  1%.  As  the  ra+o  decreases,  the  tendency  for  wrinkling  increases.  

The  star+ng  diameter  of  the  blank  must  be  of  the  right  size  for  the  final  dimensions  of  the  cup  to  be  correct.  Assume  constant  volume  and  neglect  any  thinning  during  the  process.  

Page 25: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Example:   Determine  if  the  following  is  feasible  for  manufacturing:  A  cylindrical  cup  with  an  inside  diameter  of  3.0in  and  height  of  2.0in.  Its  star+ng  blank  size  id  5.5in  and  its  thickness  3/32in.  

DR = Dblank

Dpunch

=5.53.0

=1.833< 2

r =Dblank −Dpunch

Dblank

=5.5−3.05.5

= 0.4545< 0.5

t blankD blank

=332( )5.5

= 0.017 > 0.01The  drawing  opera+on  is  feasible.  

Page 26: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Anisotropy  Ra<o  

There  are  two  different  types  of  anisotropy  ra+o,  namely,  normal  and  planar  anisotropy  ra+o.  Normal  Anisotropy  Ra<o  (R)  :  Measured  in  a  tensile  specimen,  it  is  the  ra+o  between  the  true  strain  in  the  width  direc+on  and  the  true  strain  in  the  thickness  direc+on.    The  tensile  specimen  must  conform  specific  technical  standards.  The  longitudinal  direc+on  of  the  tensile  specimen  can  be  parallel  or  to  a  certain  angle  with  respect  to  the  rolling  direc+on  of  the  sheet.  

R = εwidthεthickness

Raverage =R0 + 2R45 + R90

4

Page 27: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Planar  Anisotropy  Ra<o:  It  determines  the  varia+on  of  the  true  strain  in  the  plane  of  the  sheet  (rolling  plane).   ΔR = R45 −

R0 + R902

The  value  of  the  normal  anisotropy  ra+o  determines  the  limi+ng  drawing  ra+o  and  the  value  of  the  planar  anisotropy  ra+o  correlates  with  the  material  propensity  to  earing.  High  values  of  normal  anisotropy  combined  with  low  values  of  planar  anisotropy  provides  op+mal  drawability.    The  maximum  value  of  the  normal  anisotropy  also  depends  on  the  grain  size  of  the  material.  

Note:  If  ΔR=0,  no  ears  form.  The  height  of  ears  increases  as  Δ  R  increases.  

Page 28: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

The  rela+onship  between  average  normal  anisotropy  and  the  limi+ng  drawing  ra+o  for  various  sheet  metals.    Source:    Aper  M.  Atkinson.  

LDR =Maximum blank diameter

Punch diameter=Db

Dp

Page 29: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Example:  

A  special  deep-­‐drawing  steel  showed  a  30%  longitudinal  elonga+on  and  16%  decrease  in  thickness  when  it  is  subjected  to  a  tensile  test.  Es+mate  the  limi+ng  drawing  ra+o  (LDR)  for  this  steel.  

l − lolo

= 0.3⇒ llo=1.3⇒ ln 1.3( ) = 0.26236

w−wo

wo

= −0.16⇒ wwo

= 0.84⇒ ln 0.84( ) = −0.1743

R =ln wo

w( )ln ho

h( )=ln wo

w( )ln wl

wolo( )=ln 10.84( )ln 0.84 ⋅1.3( )

=1.98

From  the  graph  the  LDR~2.7  

Page 30: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Drawing  Force  

Fmax = πDpt UTS( ) Db

Dp

!

"##

$

%&&− 0.7

(

)**

+

,--

Wrinkling  can  be  reduced  if  a  blankholder  is  loaded  by  maximum  punch  force  The  force  increases  with  increasing  blank  diameter,  thickness,  strength  and  the  ra+o  

Page 31: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Bending  Some  sheet  are  bend  along  certain  lines  to  produce  a  desired  shape.  Bending  introduces  plas+c  deforma+on  to  the  part  and  it  should  remain  in  the  desired  shape  (angle)  aper  the  load  is  released.  Spring-­‐back  is  the  part  of  deforma+on  (the  elas+c  part)  that  recovers  in  the  plas+cally  deformed  material  once  the  load  has  been  released.  

Original  shape   Desired  deformed  shape   Springback  

When  the  load  is  released  there  is  a  decrease  in  the  bending  angle  (Springback)  due  to  the  elas+c  recovery  of  the  material.  

Page 32: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Bend  allowance:  The  amount  of  deforma+on  of  the  neutral  axis  of  the  sheet  depends  on  the  bend  radius  and  bend  angle.  The  final  dimension  of  the  neutral  axis  (in  the  bending  area)  is  used  to  calculate  the  blank  length  for  the  bend  part.  R  is  the  bend  radius,  α  is  the  bend  angle  ,  t  is  the  thickness  and  k  is  a  constant.    In  an  ideal  case,  the  neutral  axis  remains  at  the  center  of  the  sec+on  k=0.5.  In  prac+ce,  k  ranges  from  0.33  (for  R<2t)  to  0.5  (for  R>2t).  

Lb =α R+ kt( ) =αo Ro + kt( ) =α f Rf + kt( )

Page 33: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

As  the  part  is  bended,  the  longitudinal  dimension  of  the  flat  length  is  increased.  The  bend  allowance  is  the  amount  of  material  that  need  to  be  added  to  the  flange  dimensions  (leg  parts)  in  other  to  develop  a  flat  paYern.  Example:  suppose  that  flanges  lengths  of  2”  and  3”  with  an  inside  radius  of  0.250”  at  90degrees  are  required.  Then  the  flat  dimensions  are  (2”-­‐(0.25+0.125))  and  (3”-­‐(0.25+0.125)),  i.e  1.625  and  2.625  respec+vely.  The  length  of  the  flat  sheet  (bend  allowance)  is  1.625  +  2.625  +  0.457  =  4.707”  Bend  deduc<on:  It  is  the  amount  of  material  that  has  to  be  removed  from  the  sum  of  the  flanges  to  obtain  a  flat  paYern.  

Lb =α R+ kt( ) = π90180

!

"#

$

%& 0.250+ 0.33×0.125( ) = 0.457

Page 34: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper
Page 35: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Springback  

Aper  releasing  the  pressure  of  the  forming  tool,  the  deformed  work-­‐piece  experience  a  dimensional  change  (strain)  due  to  the  elas+c  recovery  of  the  material.  

Original  shape   Desired  deformed  shape   Springback  

Sprinback  is  found  in  all  forming  opera+ons,  but  is  is  more  pronounced  in  bending.  As  the  yield  strength  of  the  material  increases  or  as  the  Modulus  of  elas+city  decreases  the  springback  deforma+on  increases.  

Overbending,  i.e.  bending  to  a  smaller  radius  of  curvature  than  the  required  can  compensate  for  the  springback  of  the  material.    

RoRf

= 4Roσ yield

Et!

"#

$

%&

3

−3Roσ yield

Et+1

For  aluminum  alloys  and  austeni+c  steels  the  springback  can  be  approximated  by  the  equa+on  where  Ro  is  the  radius  of  curvature  before  releasing  the  load  and  Rf  is  the  radius  of  curvature  aper  releasing  the  load;  t  is  the  thickness,  E  is  the  Modulus  of  Elas+city  and  σyield  is  the  yield  stress.  

Page 36: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Example  

A  0.0359in  thickness  sheet  (20-­‐gage)  is  bent  to  a  radius  of  0.5in.  Calculate  the  radius  of  the  part  aper  it  is  bent  and  the  required  bend  angle  to  achieve  a  90o  bend  aper  springback  has  occurred.  Data:  Yield  Strength=40000psi;  E=29x106psi  

RoRf

= 4Roσ yield

Et!

"#

$

%&

3

−3Roσ yield

Et+1

0.5Rf

= 4 0.5 ⋅ 4000029 ⋅106 ⋅0.0359!

"#

$

%&3

−3 0.5 ⋅ 4000029 ⋅106 ⋅0.0359

+1= 0.942

Rf = 0.531in

Lb =αo Ro + kt( ) =α f Rf + kt( )

αo 0.5+0.03592

!

"#

$

%&= 90 ⋅ 0.531+

0.03592

!

"#

$

%&

⇒αo = 95.4o

Page 37: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Bending  Force  The  bending  load  can  be  calculated  from  the  following  equa+on:  Where  UTS  is  the  ul+mate  tensile  strength  of  the  material  (psi);    L  is  the  length  of  the  bent  part  (in),  t  is  the  thickness  (in);  W  is  the  width  between  the  contact  points  (in)  or  8t  for  V-­‐bends  K  is  1.3  for  die  opening  of  8t,  1.20  for  die  opening  of  16t,  0.67  for  U-­‐bending,  0.33  for  a  wiping  die  

Fb =K ⋅L ⋅UTS ⋅ t2

W

Page 38: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Example:  

Es+mate  the  force  required  for  a  90  degrees  bending  of  a  St  50  steel  of  thickness  of  2mm  in  a  V  die.  The  die  opening  can  be  taken  as  eight  +mes  the  thickness.  The  length  of  the  part  is  1m.  

Die  Opening  W=8*2=16mm  UTS=500MPa  

Fb =K ⋅L ⋅UTS ⋅ t2

W=1.33⋅1⋅500 ⋅ 0.002( )2

0.016=166.25kN

Page 39: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Minimum  Bend  Radius:       On  the  inside  of  neutral  plane,  the  metal  is  compressed,  while  on  the  outside  of  the  neutral  plane  is  stretched.  The  outer  layers  under  tension  should  not  be  excessively  stretched  as  there  is  the  possibility  of  rupture.  The  amount  of  stretching  depends  on  the  sheet  thickness  and  the  bend  radius.  There  is  a  minimum  bend  radius  that  depends  on  the  material  proper+es.  Minimum  bend  radius  0.5t  for  sop  materials,  3t  for  spring  steels  and  1t  for  the  others.        

Page 40: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Example:  A  sheet  material  is  to  be  bended  according  to  the  dimensions  given  in  the  figure.  Determine  the  following:  (a)  star+ng  blank  size  and  (b)  the  bending  force  necessary  if  a  V-­‐die  will  be  used  with  a  die  opening  dimension  of  W=1.0”.  Data:  E=30000ksi  ;  Yield  Strength=40000psi  and  a  tensile  strength=65000psi.  

Length  L  =  1.75’,  and  the  length  of  the  part  is:  1.5  +1.00  +  BA.    R/t  =  0.187/0.125  =  1.5  <  2.0,  so  Kba  =  0.33  For  an  included  angle  A’  =  1200,  then  A  =  600  

Lb =α R+ kt( ) = π60180

!

"#

$

%& 0.187+ 0.33×0.125( ) = 0.239"

Length =1.5+1.0+ 0.239 = 2.739"

Force:          F=  (KbfTSLt2)/W  =  1.33  (65,000)(1.75)(0.125)2/1.0  =  2,364  lb  

Fb =K ⋅L ⋅UTS ⋅ t2

W=1.33⋅1.75 ⋅65000 ⋅ 0.125( )2

1= 2364lb

Page 41: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Bending  and  Forming  Tubes  

Page 42: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Stretch-­‐Forming  

The  form  die  is  pressed  into  the  work  with  force  Fdie,  causing  it  to  be  stretched  and  bent  over  the  form.  F  =  stretching  force.  It  is  used  extensively  in  the  aircrap  industry  to  produce  parts  of  large  radius  of  curvature.  The  materials  used  are  very  duc+le.  

Page 43: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

www.dissco.co.nz  

Spinning  Ideal  for    •   Lower  produc+on  volumes  •   Large  parts  •   Inexpensive  tooling    

www.tradi+onal-­‐building.com  www.ashfordmetalspinning.co.uk  

Page 44: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

(a)    Schema+c  illustra+on  of  the  shear-­‐spinning  process  for  making  conical  parts.    The  mandrel  can  be  shaped  so  that  curvilinear  parts  can  be  spun.    (b)  and  (c)    Schema+c  illustra+ons  of  the  tube-­‐spinning  process  

Page 45: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Large  metal  sheets  and  plates  are  formed  into  curved  sec+ons  using  rolls    

Roll  Bending  

Con+nuous  bending  process  in  which  opposing  rolls  produce  long  sec+ons  of  formed  shapes  from  coil  or  strip  stock  

Roll  Forming  

Page 46: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

High  Energy  Rate  Forming   Short  +me  –  High  Energy  forming  processes.  It  includes  explosive  forming,  electrohydraulic  forming  and  electromagne+c  forming.  

Use  of  explosive  charge  to  form  sheet  (or  plate)  metal  into  a  die  cavity.  Explosive  charge  causes  a  shock  wave  whose  energy  is  transmiYed  to  force  part  into  cavity.  Applica+ons:  large  parts,  typical  of  aerospace  industry.  

Explosive  Forming  

Page 47: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Electromagne<c  Forming  

Sheet  metal  is  deformed  by  mechanical  force  of  an  electromagne+c  field  induced  in  the  work-­‐piece  by  an  energized  coil.  Presently  the  most  widely  used  HERF  process  Applica+ons:  tubular  parts  

A  pinched  aluminum  can,  produced  from  a  pulsed  magne+c  field  created  by  rapidly  discharging  2  kilojoules  from  a  high  voltage  capacitor  bank  into  a  3-­‐turn  coil  of  heavy  gauge  wire.  Source:  Bert  Hickman,  Stoneridge  Engineering.  

Page 48: Sheet%Metal%Working:%% - UPRMacademic.uprm.edu/pcaceres/Courses/ManufProc/MP-SheetMetal.pdf · Forming%Proper

Hydroforming  

Hydroforming  uses  water  at  high  pressure  to  force  the  piece  into  a  specific  shape.