22
Thermal energy storage using rocks, from Paleolithic to CSP technologies. Speaker: Pr Xavier Py Col. : Régis Olives, Vincent Goetz, Quentin Falcoz, Najim Sadiki Doc. : A. Meffre, A. Kere, G. Dejean, J.F. Hoffmann, N. Calvet, T. Nahhas PROMES laboratory UPR 8521 CNRS University of Perpignan Via Domitia AMREN-2 E-MRS EURO-MEDITERRANEAN COOPERATION ON RESEARCH & TRAINING IN SUN BASED RENEWABLE ENERGIES (EUROSUNMED)

Thermal energy storage using rocks, from Paleolithic to

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermal energy storage using rocks, from Paleolithic to

Thermal energy storage using rocks, from Paleolithic to CSP technologies.

Speaker: Pr Xavier Py

Col. : Régis Olives, Vincent Goetz, Quentin Falcoz, Najim Sadiki

Doc. : A. Meffre, A. Kere, G. Dejean, J.F. Hoffmann, N. Calvet, T. Nahhas

PROMES laboratory

UPR 8521 CNRS

University of Perpignan Via Domitia

AMREN-2 E-MRS

EURO-MEDITERRANEAN COOPERATION ON RESEARCH & TRAINING IN SUN BASED RENEWABLE ENERGIES (EUROSUNMED)

Page 2: Thermal energy storage using rocks, from Paleolithic to

Introduction : the PROMES lab UPR 8521 CNRS UPVD

At a glance

created 43 years ago by Felix Trombe,

170 persons involved,

50 PhD students,

the largest solar furnace of the world,

a CSP tower power plant at pilot scale.

Activities

Materials for energy under extreme conditions

Concentrated Solar processes and components

Alternative fuels, waste and pollutants

Space issues (Mars)

4 MW

560°C

ancestor of Gemasolar

Page 3: Thermal energy storage using rocks, from Paleolithic to

Thermal Energy Storage :

one of the major distinctive advantage of CSP before other Renewable Energies

- ditpatchability

- process optimization

- process protection

Introduction : needs in thermal energy storage in CSP

GEMASOLAR

Granada Spain

2011

20 MWe

15h TES

NaNO3/KNO3

ANDASOL

Sevilla Spain

2006

50 MWe

7h.5 TES

28 000 t

NaNO3/KNO3

Page 4: Thermal energy storage using rocks, from Paleolithic to

50 MWe

625 collecteurs (12m long, 6m ouverture)

260 millions euros

195 hectares

152 000 tonnes CO2/an

50 MWe - 7.5 h storage

(28 000 t molten salt binary nitrate)

291 – 384 °C

A mix between SEGS and Themis/Solar Two

ANDASOL Granada Spain 2009 : today’s « standard » for trough CSP

Introduction : thermal energy storage in CSP Solar trough CSP plants

Page 5: Thermal energy storage using rocks, from Paleolithic to

Gemasolar 2011: 15h of TES 20 MWe, 195 ha, 230 M€

DT 290 to 565°C

Crescent Dune USA 110 MWe (2015)

500 GWh/y

The first industrial 24h/day Solar CSP Tower

Introduction : thermal energy storage in CSP Central receiver CSP approach

Page 6: Thermal energy storage using rocks, from Paleolithic to

Effects of TES on financial issues:

Increase in investment costs by the added TES

and the increased size of the solar field

The whole energy cost changes only marginally.

The main merit of the TES:

Not to reduce the cost of electricity

But increase in plant capacity factor

Supply of base-load power competing with fossil-fuel

TES in a state of the art CSP plant - Financial issues

50 MWe

200 M€

Page 7: Thermal energy storage using rocks, from Paleolithic to

J. J. Burkhardt, G. a Heath, and C. S. Turchi,

Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives.

Environmental science & technology, vol. 45, no. 6, pp. 2457–64, Mar. 2011.

GHG

TES 19.3%

CED

TES 18%

ANDASOL like

Trough CSP

103 MWe

6.3 h TES :

Mined nitrate salt

TES in a state of the art CSP plant - Environmental issues

0.19

0.028

0.17

0.0019

0.0098

0.4

19.5%

36%

9.4%

1.5%

89.8%

Cumulative

Energy demand

12

1.7

10

0.12

2.1

26

23%

38%

1%

1.6%

32%

Green House Gaz

Emissions

Page 8: Thermal energy storage using rocks, from Paleolithic to

TES in a state of the art CSP plant - Material availability

Page 9: Thermal energy storage using rocks, from Paleolithic to

today 0.8 Mt

About 800 €/t

Before CSP needs

10% CSP in 2050 :

9 to 21 Mt/year

of nitrates !

The Natural Nitrates from Chile to keep as HTF but not as TESM

133 Mm3 wastes

417 km² polluted surface

> 100 ghost plants

(P. Marr 2007)

Raw Material availability : the nitrate salts

Page 10: Thermal energy storage using rocks, from Paleolithic to

France: Les Eyzies 32.000 BP

West North America 10.500 BP

1. Thermal capacity of stones

2. Management of fast fuels

3. Steam or boiling water production

Iterative process

with TES !

Paleolithic heritage: pyrotechnologies using stones as TESM

Page 11: Thermal energy storage using rocks, from Paleolithic to

700 °C

Thermal behaviour of stones: Basalt stone

Tamar Nahhas

Non reactive stone

Stable up to 800°C

Page 12: Thermal energy storage using rocks, from Paleolithic to

Thermal behaviour of stones: Basalt stone

Tamar Nahhas

heating

cooling

Page 13: Thermal energy storage using rocks, from Paleolithic to

Pyrotechnologies at Paleolithic:

72 000 BP – 20 000 BP South Africa and West Europe

Intentional heating treatments of flint stones

to help or even allow flint-stone tools manufacturing.

High skills in controled heating treatment…

Observed from 1908 but …

Used protocoles: Mercieca 2008

Involved mechanisms : Schmidt et al. 2012

Still preliminary studies, need deeper efforts

Solutrean (- 20.000)

Boulazac in Dordogne

« Feuilles de laurier »

shaped in

heat treated flints

P2 Alternative approach: reactive natural rocks on the paleolithic side

Research Prg CNRS « Paleostock »

Page 14: Thermal energy storage using rocks, from Paleolithic to

•SA: Salinelles (Gard)

•ML: St Martin de Londres (Hérault)

•CG: Costières du Gard - St Gilles (Gard)

•NS: Narbonne-Sigean- Presqu'il du Doul (Aude)

Reactive stone

TESM below 400°C

H2O free

Open

porosity Conversion

silanols

Fracturation

H20

departure

Thermal behaviour of unstable stones: flint stone P2

Tamar Nahhas

Page 15: Thermal energy storage using rocks, from Paleolithic to

Thermal behaviour of unstable stones: flint stone P2

Rather high values

Basalt : 2 at 400°C

Great range

Page 16: Thermal energy storage using rocks, from Paleolithic to

Test at pilot scale: Basalt and Quartzite 325 kg

Parameter PROMES-CNRS

Energy 8.3 kWhT

HTF Rapeseed oil

TESM Quartzite rock

Tank height 1.8 m

Tank diameter 0.4 m

Porosity 0.41

Particles diameter 0.04 m

Volume 0.25 m3

Mass 325 kg

High temperature 210°C

Low temperature 160°C

Basalt: igneous rock Quartzite: metamorphic rock

JF Hoffmann

PhD 3 dec. 2015

P2

Page 17: Thermal energy storage using rocks, from Paleolithic to

STORAGE CAPACITY : density recycled ceramics versus rocks

E.C. Robertson Thermal properties of rocks, Open File Report 88-441, 1988,

U.S. Department of the Interior, Geological Survey. Rocks properties :

ACW ceramics FAW ceramics

0 500 1000 1500 2000 2500 3000 3500 4000

Wollastonite CaSiO3

Augite Ca(Mg Fe Al)(AlSi)2O6

Gehlenite Ca2Al2SiO7

Spinel MgAl2O4

Granite (Igneous)

Quartz mica schist (metamorphic)

Shale (sedimentary)

ACW Ceram

MSWIFA Ceram

r = 3100 kg/m3

r = 2975 kg/m3

rocks

min

era

ls

Comparison with recycled ceramics in terms of density

Page 18: Thermal energy storage using rocks, from Paleolithic to

Comparison with recycled ceramics in terms of Cp

STORAGE CAPACITY : Cp

0

200

400

600

800

1000

1200

0 250 500 750 1000

Cp

(J/k

g K

)

T (°C)

ACW ceramics

785 - 1072

MSW FA

Page 19: Thermal energy storage using rocks, from Paleolithic to

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400

Co

nd

uct

ivit

y W

/(m

K)

T (°C)

poor feldspar

rich in feldspar

quartzite

poor in quartz

carbonates

clastic sediments

conduc dom

radiat dom

ACW Ceram

MSWIFA Ceram

CFA Ceram

THERMAL CONDUCTIVITIES : recycled ceramics versus rocks

ACW ceramics

l 1.5 W/(m K)

Plutonic rocks

Metamorphic rocks

Sedimentary rocks

Volcanic rocks

C. Clauser, E. Huenges. Thermal conductivity of Rocks and Minerals. 1995,

A Handbook of Physical Constants, AGU Reference Shelf 3, the Americal Geophysical Unions. Rocks properties :

Comparison with recycled ceramics in terms of thermal conductivity

Page 20: Thermal energy storage using rocks, from Paleolithic to

Calcium carbonates

wastes : shell, rocks

BIC BF : Ca(OH)2 from

acethylene industry

Coal Fly Ash

SiO2: 45%

Al2O3: 22%

CaO: 6%

SiO2: 45% to 3%

Al2O3: 5 to 30%

Fe203 : 15 to 70%

Laterites

Area of

Expected ceramics

Formulation :

To get a specific ceramic

Elaboration:

To control the internal structure and

then, the expected properties

Technological bottlenecks and next challenges

K. N'TSOUKPOE, Y. K AZOUMAH , E. W RAMDE, Y. A FIAGBE P. NEVEU, X. PY, M. GAYE ; A. JOURDAN.

Integrated design and construction of a micro central tower power plant. (2015) Energy for Sustainable Development, 31 (2016) 11-13..

Page 21: Thermal energy storage using rocks, from Paleolithic to

Rocks :

High acceptability

Some directly available

Some need initial stabilisation

Mostly restricted to granular bed

Recycled ceramics :

Sustainable issue preserving still on site natural resources

Controled structure (refractory behavior)

Complex geometry for process optimization

Self supported storage packing

Needs related industrial facilities and costs

Embodied energy for elaboration (E pay back time < 2 years)

Comparison between rocks and recycled ceramics

Corrugated TES plate of TESM from metalurgic slag Flat TES plate made of vitrified ACW

P3

Page 22: Thermal energy storage using rocks, from Paleolithic to

Thank you for your attention