43
TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS) The standard model Testing the standard model Problems Beyond the standard model Where are we going? The Standard Model and Beyond

The St anda rd Mo del and Bey ond

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

The Major Problems in Particle Physicsand How We Hope to Address Them

• The standard model

• Testing the standard model

• Problems

• Beyond the standard model

• Where are we going?

NYS APS (October 15, 2004) Paul Langacker (Penn)

The Standard Model and Beyond

Fundamental Neutron Physics (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Page 2: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

The New Standard Model

• Standard model, supplemented with neutrino mass (Dirac orMajorana):

SU(3)×SU(2)×U(1)×classical relativity

• Mathematically consistent field theory of strong, weak,electromagnetic interactions

• Gauge interactions correct to first approximation to 10−16 cm

• Complicated, free parameters, fine tunings ⇒must be new physics

WIN 05 (June 11, 2005) Paul Langacker (Penn)

Page 3: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• Many special features usually not maintained in BSM

– mν = 0 in old standard model (need to add singlet fermion and/or

triplet Higgs and/or higher dimensional operator (HDO))

– Yukawa coupling h ∝ gm/MW ⇒ flavor conserving and smallfor light fermions (partially maintained in MSSM and simple 2HDM)

– No FCNC at tree level (Z or h); suppressed at loop level(SUSY loops; Z′ from strings, DSB)

– Suppressed off-diagonal #CP ; highly suppressed diagonal (EDMs)(SUSY loops, soft parameters, exotics)

– B, L conserved perturbatively (B − L non-perturbatively)(GUT (string) interactions, "Rp)

– New TeV scale interactions suggested by top-down(Z′, exotics, extended Higgs)

Physics at LHC (July 16, 2004) Paul Langacker (Penn)

Page 4: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Quantum Chromodynamics (QCD)

Modern theory of the strong interactions

NYS APS (October 15, 2004) Paul Langacker (Penn)

10 16. Structure functions

Table 16.1: Lepton-nucleon and related hard-scattering processes and theirprimary sensitivity to the parton distributions that are probed.

Main PDFsProcess Subprocess Probed

!±N → !±X γ∗q → q g(x 0.01), q, q!+(!−)N → ν(ν)X W ∗q → q′

ν(ν)N → !−(!+)X W ∗q → q′

ν N → µ+µ−X W ∗s → c → µ+ s

pp → γX qg → γq g(x ∼ 0.4)pN → µ+µ−X qq → γ∗ q

pp, pn → µ+µ−X uu, dd → γ∗ u − d

ud, du → γ∗

ep, en → eπX γ∗q → q

pp → W → !±X ud → W u, d, u/d

pp → jet +X gg, qg, qq → 2j q, g(0.01 x 0.5)

all polarized PDFs. These polarized PDFs may be fully accessed via flavor tagging insemi-inclusive deep inelastic scattering. Fig. 16.5 shows several global analyses at a scaleof 2.5 GeV2 along with the data from semi-inclusive DIS.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

x f

(x)

Figure 16.4: Distributions of x times the unpolarized parton distributions f(x)(where f = uv, dv, u, d, s, c, g) using the MRST2001 parameterization [29,13](withuncertainties for uv, dv, and g) at a scale µ2 = 10 GeV2.

June 16, 2004 14:04

Quantum Chromodynamics (QCD)

Modern theory of the strong interactions

• Quark model/ color/confinement

• Low energy symmetries(+ realization, breaking)(SU(3)L×SU(3)R)

• Hadronic models: Yukawa,Regge, dual resonance (→strings)

• Asymptotic freedom (weakcoupling at high energy)

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 5: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

9. Quantum chromodynamics 7

0.1 0.12 0.14

Average

Hadronic Jets

Polarized DIS

Deep Inelastic Scattering (DIS)

! decays

Z width

Fragmentation

Spectroscopy (Lattice)

ep event shapes

Photo-production

" decay

e+e

- rates

#s(MZ)

Figure 9.1: Summary of the value of αs(MZ) from various processes. The valuesshown indicate the process and the measured value of αs extrapolated to µ = MZ .The error shown is the total error including theoretical uncertainties. The averagequoted in this report which comes from these measurements is also shown. See textfor discussion of errors.

extracted [44,45] are consistent with the theoretical estimates. If the nonperturbativeterms are omitted from the fit, the extracted value of αs(mτ ) decreases by ∼ 0.02.

For αs(mτ ) = 0.35 the perturbative series for Rτ is Rτ ∼ 3.058(1+0.112+0.064+0.036).The size (estimated error) of the nonperturbative term is 20% (7%) of the size of theorder α3

s term. The perturbation series is not very well convergent; if the order α3s term

is omitted, the extracted value of αs(mτ ) increases by 0.05. The order α4s term has been

estimated [46] and attempts made to resum the entire series [47,48]. These estimates canbe used to obtain an estimate of the errors due to these unknown terms [49,50]. Weassign an uncertainty of ±0.02 to αs(mτ ) from these sources.

Rτ can be extracted from the semi-leptonic branching ratio from the relationRτ = 1/(B(τ → eνν) − 1.97256); where B(τ → eνν) is measured directly or extractedfrom the lifetime, the muon mass, and the muon lifetime assuming universality of leptoncouplings. Using the average lifetime of 290.6 ± 1.1 fs and a τ mass of 1776.99 ± 0.29

September 8, 2004 15:07

9. Quantum chromodynamics 17

required, for example, to facilitate the extraction of CKM elements from measurementsof charm and bottom decay rates. See Ref. 169 for a recent review.

0

0.1

0.2

0.3

1 10 102

µ GeV

!s(µ

)

Figure 9.2: Summary of the values of αs(µ) at the values of µ where they aremeasured. The lines show the central values and the ±1σ limits of our average.The figure clearly shows the decrease in αs(µ) with increasing µ. The data are,in increasing order of µ, τ width, Υ decays, deep inelastic scattering, e+e− eventshapes at 22 GeV from the JADE data, shapes at TRISTAN at 58 GeV, Z width,and e+e− event shapes at 135 and 189 GeV.

9.13. Conclusions

The need for brevity has meant that many other important topics in QCDphenomenology have had to be omitted from this review. One should mention inparticular the study of exclusive processes (form factors, elastic scattering, . . .), thebehavior of quarks and gluons in nuclei, the spin properties of the theory, and QCDeffects in hadron spectroscopy.

We have focused on those high-energy processes which currently offer the mostquantitative tests of perturbative QCD. Figure 9.1 shows the values of αs(MZ) deduced

September 8, 2004 15:07

• Quark model/ color

• Low energy symmetries(+ realization, breaking)(SU(3)L×SU(3)R)

• Hadronic models: Yukawa,Regge, dual resonance (→strings)

• Asymptotic freedom (weakcoupling at low energy)

Relation of “running” αs at different scales

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 6: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Quantum Electrodynamics

Experiment Value of α−1 Difference from α−1(ae)

Deviation from gyromagnetic 137.035 999 58 (52) [3.8 × 10−9] –

ratio, ae = (g − 2)/2 for e−

ac Josephson effect 137.035 988 0 (51) [3.7 × 10−8] (0.116 ± 0.051) × 10−4

h/mn (mn is the neutron mass) 137.036 011 9 (51) [3.7 × 10−8] (−0.123 ± 0.051) × 10−4

from n beam

Hyperfine structure in 137.035 993 2 (83) [6.0 × 10−8] (0.064 ± 0.083) × 10−4

muonium, µ+e−

Cesium D1 line 137.035 992 4 (41) [3.0 × 10−8] (0.072 ± 0.041) × 10−4

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Quantum Electrodynamics

Experiment Value of α−1 Difference from α−1(ae)

Deviation from gyromagnetic 137.035 999 58 (52) [3.8 × 10−9] –

ratio, ae = (g − 2)/2 for e−

ac Josephson effect 137.035 988 0 (51) [3.7 × 10−8] (0.116 ± 0.051) × 10−4

h/mn (mn is the neutron mass) 137.036 011 9 (51) [3.7 × 10−8] (−0.123 ± 0.051) × 10−4

from n beam

Hyperfine structure in 137.035 993 2 (83) [6.0 × 10−8] (0.064 ± 0.083) × 10−4

muonium, µ+e−

Cesium D1 line 137.035 992 4 (41) [3.0 × 10−8] (0.072 ± 0.041) × 10−4

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 7: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

The Electroweak Theory

• QED and weak charged currentunified

• Weak neutral current predicted

• Stringent tests of wnc, Z-poleand beyond

• Fermion gauge and gauge selfinteractions

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 8: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

10-2

10-1

1

10

75 100 125 150 175

LEP combined: e+e! " hadrons(#)

$s%

[GeV]

&hadro

n [n

b]

LEP1 $s%

´/%s%

> 0.10LEP2 $s

%´/%s%

> 0.10LEP2 $s

%´/%s%

> 0.85

Page 9: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Measurement Fit |Omeas

!Ofit|/"

meas

0 1 2 3

0 1 2 3

#$had

(mZ)#$

(5)0.02758 ± 0.00035 0.02767

mZ [GeV]m

Z [GeV] 91.1875 ± 0.0021 91.1874

%Z [GeV]%

Z [GeV] 2.4952 ± 0.0023 2.4959

"had

[nb]"0

41.540 ± 0.037 41.478

Rl

Rl

20.767 ± 0.025 20.742

Afb

A0,l

0.01714 ± 0.00095 0.01643

Al(P

&)A

l(P

&) 0.1465 ± 0.0032 0.1480

Rb

Rb

0.21629 ± 0.00066 0.21579

Rc

Rc

0.1721 ± 0.0030 0.1723

Afb

A0,b

0.0992 ± 0.0016 0.1038

Afb

A0,c

0.0707 ± 0.0035 0.0742

Ab

Ab

0.923 ± 0.020 0.935

Ac

Ac

0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480

sin2'

effsin

2'

lept(Q

fb) 0.2324 ± 0.0012 0.2314

mW

[GeV]mW

[GeV] 80.410 ± 0.032 80.377

%W

[GeV]%W

[GeV] 2.123 ± 0.067 2.092

mt [GeV]mt [GeV] 172.7 ± 2.9 173.3

Page 10: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• SM correct and unique to zerothapprox. (gauge principle, group,representations)

• SM correct at loop level (renormgauge theory; mt, αs, MH)

• TeV physics severely constrained(unification vs compositeness)

• Consistent with light elementaryHiggs

• Precise gauge couplings (gaugeunification)

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

0

1

2

3

4

5

6

10030 300

mH [GeV]

!"

2

Excluded

!#had

=!#(5)

0.02758±0.00035

0.02749±0.00012

incl. low Q2 data

Theory uncertainty

Page 11: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

sin 2!

sol. w/ cos 2!

! 0

(excl. at CL "

0.95)

exclu

ded a

t CL " 0

.95

"

"

#

#

$md

$ms # $m

d

%K

%K

$Vub

/Vcb$

sin 2!

sol. w/ cos 2!

! 0

(excl. at CL "

0.95)

exclu

ded a

t CL " 0

.95

#

!"

&

'

excluded area has CL "

0.95

C K Mf i t t e r

EPS 2005

• Heavy B decays and CPviolation

– CKM (quark mixing) → CPbreaking

– Unitarity triangle

– Search for new physics

– Anomalies in electroweakpenguins?

– Baryogenesis?

• Universality?

– |Vud|2 + |Vus|2 + |Vub|2 = 1

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Page 12: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Problems with the Standard Model

Lagrangian after symmetry breaking:

L = Lgauge + LHiggs +∑

i

ψi

(i !∂ − mi −

miH

ν

)ψi

−g

2√

2

(Jµ

W W −µ + Jµ†

W W +µ

)− eJµ

QAµ −g

2 cos θWJµ

ZZµ

Standard model: SU(2)×U(1) (extended to include ν masses) +QCD + general relativity

Mathematically consistent, renormalizable theory

Correct to 10−16 cm

Physics at LHC (July 16, 2004) Paul Langacker (Penn)

Page 13: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

However, too much arbitrariness and fine-tuning: O(27) parameters(+ 2 for Majorana ν) and electric charges

• Gauge Problem

– complicated gauge group with 3 couplings

– charge quantization (|qe| = |qp|) unexplained– Possible solutions: strings; grand unification; magnetic

monopoles (partial); anomaly constraints (partial)

• Fermion problem

– Fermion masses, mixings, families unexplained– Neutrino masses, nature? Probe of Planck/GUT scale?– CP violation inadequate to explain baryon asymmetry– Possible solutions: strings; brane worlds; family symmetries;

compositeness; radiative hierarchies. New sources of CPviolation.

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 14: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• Higgs/hierarchy problem

– Expect M2H = O(M2

W )– higher order corrections:

δM2H/M2

W ∼ 1034

Possible solutions: supersymmetry; dynamical symmetry breaking;large extra dimensions; Little Higgs; anthropically motivated fine-tuning (split supersymmetry) (landscape)

• Strong CP problem

– Can add θ32π2g

2sF F to QCD (breaks, P, T, CP)

– dN ⇒ θ < 10−9, but δθ|weak ∼ 10−3

– Possible solutions: spontaneously broken global U(1) (Peccei-Quinn) ⇒ axion; unbroken global U(1) (massless u quark);spontaneously broken CP + other symmetries

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 15: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• Graviton problem

– gravity not unified

– quantum gravity not renormalizable

– cosmological constant: ΛSSB = 8πGN〈V 〉 > 1050Λobs (10124

for GUTs, strings)– Possible solutions:

∗ supergravity and Kaluza Klein unify∗ strings yield finite gravity.∗ Λ? Anthropically motivated fine-tuning (landscape)?

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 16: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• Necessary new ingredients

– Mechanism for small neutrino masses

∗ Planck/GUT scale?

– Mechanism for baryon asymmetry?

∗ Electroweak transition (Z′ or extended Higgs?)

∗ Heavy Majorana neutrino decay (seesaw)?

∗ Decay of coherent field? CPT violation?

NYS APS (October 15, 2004) Paul Langacker (Penn)

Page 17: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

– What is the dark energy?

∗ Cosmological Constant? Quintessence?

∗ Related to inflation? Time variation of couplings?

– What is the dark matter?

∗ Lightest supersymmetric particle? Axion?

– Suppression of flavor changing neutral currents? Proton decay?Electric dipole moments?∗ Automatic in standard model, but not in extensions

NYS APS (October 15, 2004) Paul Langacker (Penn)

Page 18: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Beyond the Standard Model

• The Whimper: A new layer at the TeV scale

• The Hybrid: low fundamental scale/large extra dimensions

• The Bang: unification at the Planck scale, MP = G−1/2N ∼ 1019

GeV

NYS APS (October 15, 2004) Paul Langacker (Penn)

Page 19: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

TypicalModel scale (GeV) MotivationNew W s, Zs, fermions, Higgs 102–1019 Remnant of something else

Family symmetry 102–1019 Fermion (No compelling models)

Composite fermions 102–1019 Fermion (No compelling models)Composite Higgs 103–104 Higgs (No compelling models)Composite W , Z (G, γ?) 103–104 Higgs (No compelling models)Little Higgs 103–104 Higgs

Large extra dimensions (d > 4) 103–106 Higgs, graviton

New global symmetry 108–1012 Strong CP

Kaluza–Klein 1019 GravitonHiggs (0) ⇔ gauge (1) ⇔

Graviton (2) (d > 4)

Grand unification 1014–1019 GaugeStrong ⇔ electroweak

Supersymmetry/supergravity 102–1019 Higgs, gravitonFermion ⇔ boson

Superstrings 1019 All problems!?Strong ⇔ electroweak ⇔

gravityFermion ⇔ boson (d > 4)

Page 20: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Compositeness

• Onion-like layers

• Composite fermions, scalars (dynamical sym. breaking)

• Not like to atom → nucleus +e− → p + n → quark

• Other new TeV layer: Little Higgs

• At most one more layer accessible (Tevatron, LHC, ILC)

• Rare decays (e.g., K → µe)

• Typically, few % effects at LEP/SLC, WNC (challenge for models)

• anomalous V V V , new particles, future WW → WW , FCNC,EDM

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 21: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Large extra dimensions (deconstruction, brane worlds)

• Can be motivated by strings, butnew dimensions much larger thanM−1

P ∼ 10−33 cm

• Fundamental scale MF ∼1 − 100 TeV # MP l =1/

√8πGN ∼ 2.4 × 1018 GeV

– Assume δ extra dimensionswith volume Vδ & M−δ

F

M2P l = M2+δ

F Vδ & M2F

(Introduces new hierarchy problem)

NYS APS (October 15, 2004) Paul Langacker (Penn)

Page 22: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• Black holes, graviton emission atcolliders!

• Macroscopic gravity effects

• Astrophysics

NYS APS (October 15, 2004) Paul Langacker (Penn)

Particle Physics Probes Of Extra Spacetime Dimensions 29

Figure 7: 95% confidence level upper limits on the strength α (relative to Newtonian gravity)as a function of the range λ of additional Yukawa interactions. The region excluded by previousexperiments (55,56,61) lies above the curves labeled Irvine, Moscow and Lamoreaux, respectively.The most recent results (60) correspond to the curves labeled Eot-Wash. The heavy dashed line isthe result from Ref. (60), the heavy solid line shows the most recent analysis that uses the totaldata sample.

Page 23: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Unification

• Unification of interactions

• Grand desert to unification (GUT) or Planck scale

• Elementary Higgs, supersymmetry (SUSY), GUTs, strings

• Possibility of probing to MP and very early universe

NYS APS (October 15, 2004) Paul Langacker (Penn)

Page 24: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Supersymmetry

• Fermion ↔ boson symmetry

• Motivations

– stabilize weak scale ⇒ MSUSY < O(1 TeV) (but recent high scale

ideas)

– supergravity (gauged supersymmetry): unification of gravity(non-renormalizable)

– coupling constants in supersymmetric grand unification

– decoupling of heavy particles (precision)

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 25: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• Consequences

– additional charged and neutralHiggs particles

– M2H0 < cos2 2βM2

Z+ H.O.T.(O(m4

t)) < (150 GeV)2,consistent with LEP

∗ cf., standard model: MH0 <1000 GeV

NYS APS (October 15, 2004) Paul Langacker (Penn)

100 120 140 160 180 200mt [GeV]

10

20

50

100

200

500

1000

MH [

GeV

]

ΓZ, σhad, Rl, Rqasymmetriesν scatteringMWmt

excl

uded

all data90% CL

Page 26: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• Superpartners

– q ⇒ q, scalar quark

– ! ⇒ !, scalar lepton

– W ⇒ w, wino

– typical scale: several hundredGeV

– LSP: cold dark mattercandidate

– SUSY breaking ⇔ large mt

– May be large FCNC, EDM,∆(gµ − 2)

NYS APS (October 15, 2004) Paul Langacker (Penn)

0

100

200

300

400

500

600

700

800

m [GeV]

lR

lLνl

τ1

τ2

χ0

1

χ0

2

χ0

3

χ0

4

χ±1

χ±2

uL, dRuR, dL

g

t1

t2

b1

b2

h0

H0, A0 H±

Page 27: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Grand Unification

• Unify strong SU(3) andelectroweak SU(2)×U(1)in simple group, broken at∼ 1016 GeV

• Gauge unification (only insupersymmetric version)

NYS APS (October 15, 2004) Paul Langacker (Penn)

0

10

20

30

40

50

60

105

1010

1015

1 µ (GeV)

!i-1

(µ)

SMWorld Average!

1

!2

!3

!S(M

Z)=0.117±0.005

sin2"

MS__=0.2317±0.0004

0

10

20

30

40

50

60

105

1010

1015

1 µ (GeV)

!i-1

(µ)

MSSMWorld Average68%

CL

U.A.W.d.BH.F.

!1

!2

!3

Page 28: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

1636

mode exposure !Bm observed B.G. (ktï yr) (%) event

p " e+ + #

092 40 0 0.2 54

p " µ+ + #

092 32 0 0.2 43

p " e+ + $ 92 17 0 0.2 23

p " µ+ + $ 92 9 0 0.2 13

n " %__

+ $ 45 21 5 9 5.6p " e

+ + & 92 4.2 0 0.4 5.6

p " e+ + ' 92 2.9 0 0.5 3.8

p " e+ + ( 92 73 0 0.1 98

p " µ+ + ( 92 61 0 0.2 82

p " %__

+ K+

92 22K

+"%µ

+ (spectrum) 34 -- -- 4.2

prompt ( + µ+

8.6 0 0.7 11K

+"#

+#

0 6.0 0 0.6 7.9

n " %__

+ K0

92 2.0K

0"#

0#

0 6.9 14 19.2 3.0

K0"#

+#

- 5.5 20 11.2 0.8

p " e+ + K

092 10.7

K0"#

0#

0 9.2 1 1.1 8.7

K0"#

+#

-

2-ring 7.9 5 3.6 4.0 3-ring 1.3 0 0.1 1.7

p " µ+ + K

092 13.9

K0"#

0#

0 5.4 0 0.4 7.1

K0"#

+#

-

2-ring 7.0 3 3.2 4.9 3-ring 2.8 0 0.3 3.7

1031

1032

1033

1034

p " e+ #

0

e+ $

e+ '

e+ &

0

e+ K

0

µ+ #

0

µ+ $

µ+ '

µ+ &

0

µ+ K

0

%__

#+

%__

&+

%__

K+

n " e+ #

-

e+ &

-

µ+ #

-

µ+ &

-

%__

#0

%__

$%__

'%__

&0

%__

K0

lifetime limit (years)

KAMIMB3SK

Soudan2

Fig. 1. The obtained lifet ime limit of nucleons from SK–I (left figure) and their

comparisons with other experiments (right figure).

6. References

1. J. Ellis et al., Nucl. Phys. B202, 43 (1982)

2. Y.Fukuda et al., Phys. Rev. Let t . 81, 1562 (1998)

3. Y.Fukuda et al., Nucl. Instr. Meth. A501, 418 (2003)

4. H. Georgi and S. L. Glashow, Phys. Rev. Let t . 32, 438 (1974)

5. Y. Hayato et al., Phys. Rev. Let t . 83, 1529 (1999)

6. Jogesh C. Pat i and Abdus Salam, Phys. Rev. Let t . 31, 661 (1973)

7. For example, Jogesh C. Pat i, hep-ph/ 0005095.

8. N. Sakai and T. Yanagida, Nucl. Phys. B197, 533 (1982)

9. M. Shiozawa et al., Phys. Rev. Let t . 81, 3319 (1998)

10. M. Shiozawa, PhD thesis, University of Tokyo (1999)

11. S. Weinberg, Phys. Rev. D26, 287 (1982)

• Seesaw model for small mν (but

why are mixings large?)

• Quark-lepton (q − l) unification(⇒ charge quantization)

• q − l mass relations (work only for

third family in simplest versions)

• Proton decay? (simplest versions

excluded) Neutron oscillations?

• Doublet-triplet problem?

• String embedding? (breaking,

families may be entangled in extra

dimensions)

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Page 29: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Superstrings

• Finite, “parameter-free” “theoryof everything” (TOE), includingquantum gravity

– 1-d string-like object

– Appears pointlike for resolution> M−1

P ∼ 10−33 cm

– Vibrational modes → particles

– Consistent in 10 space-time dimensions → 6 mustcompactify to scale M−1

P

– 4-dim supersymmetric gaugetheory below MP

– May also be solitons (branes),terminating open strings

NYS APS (October 15, 2004) Paul Langacker (Penn)

Page 30: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• Problems

– Which compactification manifold?

– Supersymmetry breaking? Cosmological constant?

– Many moduli (vacua). Landscape ideas - is there anypredictability left?

– Relation to supersymmetric standard model, GUT?

• Need theoretical progress and hints from experiment

– TeV scale remnants, such as Z′, extended Higgs, exotics

– SUSY breaking patterns

– Need very precise masses and couplings →International LinearCollider

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 31: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Future/present Experiments

• High energy colliders: the primary tool

– TEVATRON; Fermilab, 1.96 TeV pp, exploration

– Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity,discovery (Discovery machine for supersymmetry, Rp violation, string

remnants (e.g., Z′, exotics, Higgs); or compositeness, dynamical symmetry

breaking, Higgless theories, Little Higgs, large extra dimensions, · · ·)

– International Linear Collider (ILC), in planning;500 GeV-1 TeV e+e−, cold technology, high precision studies(Precision parameters to map back to string scale)

• CP violation (B decays, electric dipole moments), CKM universality,flavor changing neutral currents (e.g., µ→eγ, µN→eN, B→φKs),B violation (proton decay, n − n oscillations), neutrino physics

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Page 32: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Neutrinos as a Unique Probe: 10−33 − 10+28 cm

• Particle Physics

– νN, µN, eN scattering: existence/ properties of quarks, QCD

– Weak decays (n → pe−νe, µ− → e−νµνe): Fermi theory, parityviolation, mixing

– Neutral current, Z-pole, atomic parity: electroweak unification,field theory, mt; severe constraint on physics to TeV scale

– Neutrino mass: constraint on TeV physics, grand unification,superstrings, extra dimensions; seesaw: mν ∼ m2

q/MGUT

Xalapa (August, 2004) Paul Langacker (Penn)

Page 33: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• Solar/atmosphericneutrino experiments

– Neutrinos have tinymasses (but largemixings)

– Standard Solar modelconfirmed

– First oscillation dipsobserved! (QM onlarge scale)

NYS APS (October 15, 2004) Paul Langacker (Penn)

00.20.40.60.8

11.21.41.61.8

1 10 102 103 104 00.20.40.60.811.21.41.61.8

1 10 102 103 104

L/E (km/GeV)

Data

/Pre

dict

ion

(nul

l osc

.)

Page 34: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

3 ν Patterns

– Solar: LMA (SNO,KamLAND)

– ∆m2! ∼ 8×10−5 eV2,

nonmaximal

– Atmospheric:|∆m2

Atm| ∼ 2×10−3

eV2, near-maximal mixing

– Reactor: Ue3 small

Page 35: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

12

3

3

12

normal inverted

!

!

!"#$

νL

h

NR

v = 〈φ〉

mD = hv

Dirac

!

!

""##

##""

νL

νcR

$

!

""##

##""

νL

νL

Majorana

NYS APS (October 15, 2004) Paul Langacker (Penn)

Neutrino Implications/questions

• Key constituent of the Universe

• Why are the masses so small?

– Planck/GUT scale? e.g., seesawor generalization, mν ∼ m2

D/MN

(may not be generic in strings)

• Are the neutrinos Dirac orMajorana?

– No SM gauge symmetry forbidsMajorana (but string, extended?)

– Neutrinoless double beta decay(ββ0ν) (inverted or degeneratespectra)

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 36: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

12

3

3

12

normal inverted

!

!

!"#$

νL

h

NR

v = 〈φ〉

mD = hv

Dirac

!

!

""##

##""

νL

νcR

$

!

""##

##""

νL

νL

Majorana

NYS APS (October 15, 2004) Paul Langacker (Penn)

degenerate

NYS APS (October 15, 2004) Paul Langacker (Penn)

• What is the spectrum: number,mass scale/pattern, mixings

– Scale: β decay (KATRIN), ββ0ν,large scale structure (SDSS)

– Mixings and CP: reactor, longbaseline oscillation experiments,Solar

– Pattern: long baseline, ββ0ν,supernova

– Number: LSND? MiniBooNE

• Leptogenesis?

• Relic neutrinos?

– Indirect: Nucleosynthesis, largescale structure. Direct? (Z-burst?)

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 37: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

The Universe

• The concordance

– 5% matter (including darkbaryons): CMB, BBN, Lymanα

– 25% dark matter (galaxies,clusters, CMB, lensing)

– 70% dark energy (Acceleration(Supernovae), CMB (WMAP))

NYS APS (October 15, 2004) Paul Langacker (Penn)

Page 38: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Perlmutter, Physics Today (2003)

Expansion History of the Universe

0.0

0.5

1.0

1.5

–20 –10 0

Billions Years from Today

10

0.05 today futurepast

Sca

le o

f the

Uni

vers

eR

elat

ive

to T

oday

's S

cale

After inflation,the expansion either...

collapsesexp

ands

forever

10.1

0.01

0.00

1

0.00

01relativebrightness

reds

hift

0

0.25

0.50.75

1

1.5

2.52

3

...or

alw

ays

dece

lera

ted

fir

st decelerated, th

en accelerated

• What is the dark matter?

– Lightest neutralino insupersymmetry (if R parityconserved)? Axion?

– Direct searches: LHC, ILC;cold dark matter searches; highenergy annihilation ν’s

– Gravitation lensing (SNAP),CMB (Planck)

• What is the dark energy?

– Vacuum energy (cosmological constant);time varying field (quintessence)?

– High precision supernova survey (SNAP);CMB (Planck)

NYS APS (October 15, 2004) Paul Langacker (Penn)

Page 39: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

101 10210−43

10−42

10−41

10−40

WIMP Mass [GeV]

Cros

s−se

ctio

n [c

m2 ] (

norm

alise

d to

nuc

leon

)• What is the dark matter?

– Lightest neutralino insupersymmetry (if R parityconserved)? Axion?

– Direct searches: LHC, ILC;cold dark matter searches; highenergy annihilation ν’s

– Axion searches (resonantcavities)

– Gravitation lensing (SNAP),CMB (Planck)

• What is the dark energy?

– Vacuum energy (cosmological constant);time varying field (quintessence)?

– High precision supernova survey (SNAP);CMB (Planck)

NYS APS (October 15, 2004) Paul Langacker (Penn)

Page 40: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

broken phase

becomes our world

unbroken phase

vWall

= 0φ

>> H

0CP CP_~ΓB + L

Sph

ΓB + L

Sph

q_q

qq

_

q_q

qq

_

• Why is there matter and notantimatter?

– nB/nγ ∼ 10−10, nB ∼ 0

– Electroweak baryogenesis(extensions of MSSM)? Leptogenesis?Decay of heavy fields? CPTviolation?

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 41: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

• Why is there matter and notantimatter?

– nB/nγ ∼ 10−10, nB ∼ 0– Electroweak baryogenesis?

Leptogenesis? Decay of heavyfields? CPT violation?

• The very beginning (inflation)

– Relation to particle physics, strings, Λ?

– CMB (Planck); gravity waves (LISA)

NYS APS (October 15, 2004) Paul Langacker (Penn)

Page 42: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Second extreme example: time varying couplings and parameters

(Murphy et al, astro-ph/0209488)

TASI (June 5, 2003) Paul Langacker (Penn)

Far-Out Stuff

• LIV, VEP (e.g., maximum speeds, decays, (oscillations) of HE γ, e, gravity

waves (ν’s))

• LED, TeV black holes

• Time varying couplings

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Page 43: The St anda rd Mo del and Bey ond

The Standard Model and Beyond

TPFNP (October, 2005) Paul Langacker (FNAL/Penn/IAS)

Conclusions

• The standard model is the correct description of fermions/gaugebosons down to ∼ 10−16 cm ∼ 1

1 TeV

• EWSB: consistent with light elementary Higgs but not proved

• Standard model is complicated → must be new physics

• Precision tests severely constrain new TeV-scale physics

• Promising theoretical ideas at Planck scale

• Promising experimental program at colliders, accelerators, lowenergy, cosmology

• Challenge to make contact between theory and experiment

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)