28
The Solar Activity

The Solar Activity

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Solar Activity

The Solar Activity

Page 2: The Solar Activity

CME  vs.  Flares  

•  CMEs  usually  happen  with  flares,  which  are  much  ho'er  (up  to  10  Million  K,  some>mes  ho?er  than  sun’s  core)  

•  Flares  produce  many  more  X-­‐rays  and  radio  waves  •  CMEs  produce  more  energe5c  par>cles  (mostly  protons  -­‐  

SEPs)  through  shock  waves  

Page 3: The Solar Activity

Coronal Mass Ejections :

Coronal Mass Ejections are among the most powerful active events on the Sun.

•  CMEs jettison a huge volume of trapped plasma (about  10  billion  tons,  roughly  0.1  the  coronal  mass)  

•  During peak solar activity, 2-3 CMEs occur every day on average.

•  A special type of CME is a called a ‘halo event’. These occur when the CME is directed right at the Earth….

Page 4: The Solar Activity

Solar  flares  and  the  Magne>c  Field  Flares occur in regions of rapid magnetic field re-alignment.

1.  Coronal  loop  2.  Field  begins  to  inflate  3.  Field  twists  as  sunspots  move  at  

different  speeds  due  to  differen>al  rota>on  

4.  Field  begins  to  pinch  inwards  (field  lines  of  opposite  sign  a?ract)  

5.  Magne>c  field  breaks  due  to  shear  forces  

6.  Plasma  blob  is  accelerated  upward  and  addi>onal  plasma  is  accelerated  back  towards  the  chromosphere  

Page 5: The Solar Activity

Sunspot  Forma>on  and  Solar  Flare  Magne>c  Reconnec>on  and  Solar  Flares  

Page 6: The Solar Activity

The  11  Year  Cycle  

Corona  X-­‐ray  Emissions  Magne>c  Field  Map  

Page 7: The Solar Activity

Classification of Solar Flares:

GOES  satellite  at  looks  light  intensity  between  0.1  –  0.8  nm  and  0.5  –  4  nm  

Class   Peak  Intensity  (W/m2)  between  0.1  and  0.8  nm  

Effect  on  Earth  

B   I  <  10-­‐6  

C   10-­‐6  ≤  I  <  10-­‐5   Minor  events  –  few  no>ceable  consequences  

M   10-­‐5  ≤  I  <  10-­‐4   Medium  events  –brief  radio  blackouts  near  poles  

X   I  ≥  10-­‐4   Major  events  –  planet  wide  radio  blackouts  

Each  category  is  subdivided  1-­‐9  (ex:  X1,  X2…X9)  

Page 8: The Solar Activity

Solar Energetic Particles:

SEPs are constitute a significant radiation hazard to anything in space… and we can’t predict when they will happen.

A.  Al-­‐Sawad  et  al.,  ObservaCon  of  a  solar  energeCc  parCcle  event  behind  previous  coronal  mass  ejecCon,  A&A,  2009  

Page 9: The Solar Activity

Active Features: SDO Movie

•  Active features produce structures that can detached from the Sun’s surface. The plasma carries away the magnetic field into space.

h?p://youtu.be/Yx6sON13ywg    

Page 10: The Solar Activity

Erup>ng  Prominence  

Page 11: The Solar Activity

Activity: July 7, 2011

Page 12: The Solar Activity

X-ray Flare: July 7, 2011

Page 13: The Solar Activity

Coronal Mass Ejection: July 7, 2011

Page 14: The Solar Activity

Coronal Mass Ejections (Revisited):

Coronal Mass Ejections are among the most powerful active events on the Sun.

•  Related to flares – magnetic reconnection event

•  Responsible for most (if not all) energetic protons reaching Earth.

It is a shock wave that can accelerate

particles via scattering.

•  Large scale restructuring of the coronal magnetic field  

Page 15: The Solar Activity

Coronal Mass Ejections (Revisited):

Coronal Mass Ejections are among the most powerful active events on the Sun.

•  Main distinction between flares and CMEs is where they occur

•  CMEs are seen in the visible and associated with the release of plasma.

• Flares are observed in the X-rays and are associated with the acceleration and release of the plasma.

Page 16: The Solar Activity

Solar  flares  vs  CMEs  

CME  

Flare  

Page 17: The Solar Activity

Warning  of  Flares,  Erup>ons    and  CMEs  

•  Cooler  plasma  takes  about  3-­‐4  days  to  reach  Earth  (travels  at  100s  of  km/sec)  

•  X-­‐rays,  UV,  Radio  Waves,  and  Light  take  about  8  min  (travels  at  c)  

•  X-­‐ray  and  UV  emissions  dim  with  large  removal  of  material  

•  Energe>c  par>cles  (protons)  take  a  ~  hour  (travel  a  li?le  slower  than  c)    

Faster  moving  photons  and  energe1c  par1cles  warn  us  that  billions  of  tons  of  plasma  might  be  on  its  way  here.  

Page 18: The Solar Activity

The Sun in Interplanetary Space:

You may have noticed that many of these processes produce plasma streams that leave the Sun.

•  In fact, much of the corona is escaping the Sun altogether!

•  This stream of material is diffuse, but energetic. It defines interplanetary space and plays a role in the near-space environment of every object we can observe in the solar system.

•  We call this flow of material the SOLAR WIND.

18  

Page 19: The Solar Activity

Evidence  of  Solar  Wind:  Comets  

19  

Page 20: The Solar Activity

Evidence  of  Solar  Wind:  Comets  

20  

Page 21: The Solar Activity

Solar  Wind  

•  Solar wind is the corona neutral plasma (equal number of electrons and protons) expanding into space at a high velocity.

•  Sun’s magnetic field is embedded in this plasma.

21  

Page 22: The Solar Activity

Where  does  the  solar  wind  stop?  

•  Other stars have winds too, called stellar winds

•  Hence, interstellar space is not really a vacuum.

•  Tenuous magnetized plasma (and a little dust) known as the local interstellar medium (LISM) fills interstellar space.

•  But “near” to our sun, the solar wind dominates over the LISM.

•  This bubble where the solar wind dominates is known as the heliosphere

22  

Page 23: The Solar Activity

Where  is  our  solar  system?  

Speed            ~  220  km/s    Transit  >me        ~  225-­‐250              million  years  

Light  years  

Page 24: The Solar Activity

The  boundary  between  the  solar  wind  and  interstellar  medium  

1.  Bow shock: region

where the LISM begins to slow

2.  Termination shock: region where the solar wind begins to slow

3.  Heliopause: region where the solar wind and LISM are in balance

The two magnetized plasmas “bounce” off of each other in the outer solar system. At the boundary:

24  

Page 25: The Solar Activity

Heliopause  is  well  past  orbit  of  Pluto  

25  1  AU  =    149,598,000  km  

Page 26: The Solar Activity

IBEX  Observa>ons  

Page 27: The Solar Activity

Do  we  know  exactly  where  the  heliopause  is  located?  

•  Voyager I and II spacecraft •  Launched in 1977 •  Winter 2012 about 120 and

98 AU from earth (or 16/13 light hours)

•  Voyager II passed the termination shock five times in 2007.

•  The boundaries depend on solar activity (solar wind, CMEs…)

27  

Page 28: The Solar Activity

Do  we  know  exactly  where  the  heliopause  is  located?  

•  June  2010:  Voyager  1  finds  solar  wind  speed  goes  to  zero.  

•  Did  the  solar  wind  stop  or  turn?  

•  Es>mate  3-­‐5  years  to  exit  heliosheath  

•  Pu-­‐238  power  source  will  last  through  2020  -­‐  2025  

28