2
Physics 2BL Homework Set 01 Taylor Problems: 3.10, 3.28, 3.36, 3.41 3.10: 1 Deck = 52 Cards Thickness of one deck is measured to be: T = 0.590 ± 0.005 inches (A) Thickness of one card = t = (1/52) T  t = 0.0113 ± 0.0001 inches  (B)  N = Number of cards measured to obtain desired uncertainty T = N t δT = N δt  N = δT/ δt = inches inches 00002 . 0 005 . 0  = N = 250 Cards This is 4 decks and 42 cards or about 5 decks. 3.28:  g  L / 2 T  π =  L = 1.40 ± 0.01m , g = 9.81m·sec -2 (A) ) 81 . 9 /( ) 40 . 1 ( 2 2 =  s m m T  π  = 2.37sec ( ) ( )  L  g  g  L  L dL dT T  δ  π δ  δ   = =  / 1 / 2 1 2 2 / 1  ( )  L  L  g  g  δ  π  = / /  ( ) ( )  ( ) ( ) m m  s m  s m 01 . 0 40 . 1 / 81 . 9 81 . 9 / 2 2 =  π  sec 01 . 0 = T δ   T = 2.37 ± 0.01 sec (B) T Measured  = 2.39 ± 0.01 sec so, 2.36 sec  T Predicted   2.38 sec and 2.38 sec  T Measured   2.40 sec These ranges just barely overlap since both share the endpoint at 2.38 seconds. Thus, the predicted and measured values of the pendulum are consistent with one another. 3.36: (A) ( ) ( ) ( ) [ ] 1 10 3 25 1 12  ± ± × ±  ( )  (  )  ( ) ( ) 3 15 1 12 1 3 15 1 12 2 2 ± × ± = + ± × ± =  ( ) ( ) 2 2 12 / 1 15 / 3 180 180  + ± =  = 180 ± 40

Taylor Chap 3

Embed Size (px)

Citation preview

7/24/2019 Taylor Chap 3

http://slidepdf.com/reader/full/taylor-chap-3 1/2

Physics 2BL Homework Set 01

Taylor Problems: 3.10, 3.28, 3.36, 3.41

3.10: 1 Deck = 52 Cards

Thickness of one deck is measured to be: T = 0.590 ± 0.005 inches

(A) Thickness of one card = t = (1/52) T → t = 0.0113 ± 0.0001 inches 

(B)  N = Number of cards measured to obtain desired uncertainty

T = N t

δT = N δt → N = δT/ δt =inches

inches

00002.0

005.0 = N = 250 Cards 

This is 4 decks and 42 cards or about 5 decks.

3.28:  g  L /2T   π =  

L = 1.40 ± 0.01m , g = 9.81m·sec-2

(A) )81.9/()40.1(2 2−⋅=   smmT    π   = 2.37sec

( ) ( )   L g  g  L LdL

dT T    δ  π δ  δ     ⋅⋅⋅==

  −/1/

2

12

2/1 

( )   L L g  g    δ  π    ⋅⋅= //  

( ) ( ) ( ) ( )mm sm sm 01.040.1/81.981.9/ 22 ⋅⋅⋅⋅=   −−π   

sec01.0=T δ    

T = 2.37 ± 0.01 sec

(B) TMeasured = 2.39 ± 0.01 sec

so, 2.36 sec ≤ TPredicted ≤ 2.38 sec

and 2.38 sec ≤ TMeasured ≤ 2.40 sec

These ranges just barely overlap since both share the endpoint at 2.38 seconds.

Thus, the predicted and measured values of the pendulum are consistent with

one another.

3.36: (A) ( ) ( ) ( )[ ]110325112   ±−±×±  

( )   (   )   ( ) ( )3151121315112 22 ±×±=+±×±=  

( ) ( )2212/115/3180180   +±=  

= 180 ± 40

7/24/2019 Taylor Chap 3

http://slidepdf.com/reader/full/taylor-chap-3 2/2

  (B) ( ) ( )1.00.21.00.34163

±±+±  

4161   ±=q ,2

1

8

1

4

1

2

1

16

4

2

1

41

1 =⇒=⎟ ⎠

 ⎞⎜⎝ 

⎛ ==   q

qδ  

δ   

( )3

2 1.00.3   ±=q , 7.2

0.3

1.03

272

2 =⇒=   qq

δ  δ  

, round to 3

( )( )1.00.23273   ±±=q , ( ) ( )2 23 3 0.1

327 2.06.6

54

qq

δ  δ  = + ⇒ = , round to 7

( ) ( ) ( ) ( )22

4 75.0587545.00.4   +±=±+±=q  

→  = 58 ± 7 

(C) ( ) ( )[ ]1.00.1exp220   ±−±  

( )[ ]1.00.1exp1   ±−=q , ( )[ ]   ( ) 04.037.01.00.1exp 11   ±=⇒⋅−−=   qq   δ  δ    

( )( )4.704.037.0220

2

  =±±=q  

( ) ( ) ( ) 1.115.0 2

2

37.004.02

202

24.71 =⇒=+=   qq   δ  δ    

→  = 7.4 ± 1.1

3.41:

i (deg)All ± 1

r (deg)All ± 1

sin(i) sin(r)n=

i

sin

sin

i

i

sin

sinδ   

sin

sinδ   

n

nδ   

δn

10 7 0.174 0.122 1.42 10% 14% 17% 0.2

20 13 0.342 0.225 1.52 5% 8% 9% 0.1430 20 0.5 0.342 1.46 3% 5% 6% 0.09

50 29 0.766 0.485 1.58 1% 3% 3% 0.0570 38 0.940 0.616 1.53 1% 2% 2% 0.03

If we are told by the manufacturer that n = 1.50, we may check this against ourmeasured data. We check that n-δn ≤ 1.50 ≤ n+δn. This is true for each case

except i = 50°. Still, the lower bound is close to 1.50 (differing by 0.03). The

results are fairly consistent with the manufacturer's reported value. As theangles increase, the uncertainties in the angles are constant so their fractional

uncertainties decrease. Thus, the fractional uncertainties in n also decrease as i

increases.