14
Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund, Astronomical Observatory, NBIfAFG, Denmark AGU - SPD Conference May, 2005 New Orleans, LA

Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Supergranulation-Scale Solar Convection Simulations

David Benson, Michigan State University, USA

Robert Stein, Michigan State University, USA

Aake Nordlund, Astronomical Observatory, NBIfAFG, Denmark

AGU - SPD Conference May, 2005 New Orleans, LA

Page 2: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Overview

• Purpose

• Computational Methodology (brief)

• Methods for Initializing Simulations

• Preliminary Results: Simulations In-Progress 50Mm x 50Mm x 20Mm (deep) simulations Relaxing thermally and dynamically

• Future Directions

Page 3: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Significance and Questions1. Second Helium Ionization Zone

• Separate the role of second helium ionization zone from the effect of the increasing scale height with depth

2. Helioseismology• Simulations serve as a tool for analyzing local helioseismic inversion techniques

3. Nature of the Surface Shear Layer

4. Development and Maintenance of the Magnetic Network

Page 4: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Computational Domain

• 50Mm x 50Mm x 20Mm

• 5003 grid points

• Grid clustering near visible surface

50 Mm

50 M

m

20 M

m

Computational Domain for the CFD Simulations of Solar Convection

Page 5: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Numerical Method• Spatial differencing

– 6th-order centered f.d.– staggered

• Time advancement– 3rd order Runga-Kutta

• Equation of state– tabular – including ionization– H, He + abundant elements

• Radiative transfer– 3D, LTE– 4 bin opacity distrib. fxn

• Quenching

Page 6: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Computational Information

• Fortran 90• Parallelized - OpenMP

– single parallel region

• Michigan State University – 64 processor Altix

• NCSA– IBM P690

• NASA Ames– Altix (128 processors)

Objective:

layer MPI on top of the OpenMP

Page 7: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Initialization Methods24 Mm and 12 Mm Simulations

• 12 Mm simulation (9 Mm deep)• well-relaxed• extended adiabatically to 20 Mm

• Relax dynamics 12 Mm -- 20 Mm deep• Create 24 Mm wide box - and relax the following

1. 12 Mm stretched to 24Mm• generates large scale structure

2. 12 Mm doubled to 24 Mm

Page 8: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Initialization MethodsConstruction of 50 Mm Initial State

1. Stretch 12 Mm x 20 Mm to 50 Mm• Generates large scale structure• Breaks symmetry

2. Stretch 24 Mm x 20 Mm to 50 Mm• Generates intermediate level structure

3. Quadruple 12 Mm x 20 Mm to 50 Mm• Produces small scale structure

Combine & RelaxCombine & Relax

Page 9: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Initialization SnapshotsComponents + Composite : Uz at 0.25 Mm

Snapshots of methods + composite (?)

Page 10: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Initialization SnapshotsComponents + Composite : Uz at 17.3 Mm

Page 11: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Mean Atmosphere StateTemperature, Density and Pressure

Page 12: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Mean Atmosphere StateIonization of H and He

Page 13: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Energy FluctuationNeed for Relaxation

Page 14: Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,

Future Research Direction

• Relax hydrodynamic simulations (further)

• Implement magnetic field boundary conditions and add Coriolis force terms

• Results will be available to help in answering questions about ...

• Maintenance of magnetic network• f-plane rotation -- Coriolis force• Local helioseismic inversion techniques