26
Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Solar TurbulenceFriedrich Busse

Dali Georgobiani

Nagi Mansour

Mark Miesch

Aake Nordlund

Mike Rogers

Robert Stein

Alan Wray

Page 2: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Solar Dynamics is driven by Turbulent Convection

Page 3: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Convection transports energy toward the surface through the outer 1/3 of the Sun

QuickTime™ and aCompact Video decompressorare needed to see this picture.

Page 4: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Courtesy M. DeRosa

Convection produces magnetic fields by dynamo action

Page 5: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Convection generates waves by Reynolds stress & entropy fluctuations

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 6: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Waves probe the solar interior

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 7: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Magnetic fields control the behavior of the solar atmosphere QuickTime™ and a

YUV420 codec decompressorare needed to see this picture.

Page 8: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

QuickTime™ and aSorenson Video decompressorare needed to see this picture.

Magnetic fields control the Sun-Earth interaction

Page 9: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

We therefore Model Solar Turbulent

Magneto-Convection• Solve the equations of mass, momentum &

energy conservation + induction equation

• Model both deep & surface regions of the convection zone [Time scale too disparate to model jointly]

Page 10: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Global Modeling:spherical simulations of deep convection zone

QuickTime™ and aVideo decompressor

are needed to see this picture.

Page 11: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Boundary Sensitivities

• A: Stable zone below convective envelope• B: “control”• C: Larger entropy gradient at the upper boundary

Convection structure appears similar, has narrower & more homogeneous downflow network

in case C

A B C

Page 12: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Boundary Sensitivities (cont.)

both convective overshoot & more vigorous driving at top reduces angular velocity gradients!

BA C

Page 13: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Unperturbed

Acoustic Wave PropagationSolve linearized equations in background state

QuickTime™ and aVideo decompressor

are needed to see this picture.

QuickTime™ and aVideo decompressor

are needed to see this picture.

Gaussian bump in T

Will be used to develop improved methodsfor helioseismic imaging of structures below the

surface or on the far-side of the sun

Page 14: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Surface Convection:Boundary Sensitivities - horizontal field

Page 15: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Boundary Sensitivities - vertical field

Page 16: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Radiation drives solar convection &determines what we observe

Test radiative solution algorithms to improve simulations

• Develop moment models for computing the solar atmosphere

• Estimate the anisotropy to test closures and stiffness • Calculate accurate radiative pressures to derive/test closure models• Determine the best frequency binning and averaging techniques

• Determine angular resolution for good accuracy and speed

• Test possible improvements in the solvers: discretization, quadradures, binning, etc…

Questions to be addressed

Page 17: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Supergranulation scale convection: first relax 24x24x9 Mm, then 50x50x20 Mm

Vertical velocity

•Origin of supergranulation

•Role of HeII ionization

•Role of magnetic field

•Emergence of magnetic flux

•Maintenance of magnetic network

•Boundary condition for coronal heating simulations

Page 18: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Solar velocity spectrum ~ scale free

MDI doppler (Hathaway) TRACE

correlation tracking (Shine)

MDI correlation tracking (Shine)

3-D simulations (Stein & Nordlund)

V ~ k

V~k-1/3

Page 19: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Scale Free Spectrum?Doppler Image of the Sun

Michelson Doppler Interferometer (SOHO/MDI)

Page 20: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Solar horizontal velocity (observed)Scales differ by factor 2 – which is which?

400 Mm

200 Mm

100 Mm

50 Mm

Page 21: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Solar velocity spectrum24 Mm simulation will fill gap

Page 22: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Convection: Temporal Spectrumis function of spatial scale

k=9

k=3

k=1

Page 23: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Width & Power

Page 24: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Onset of Magneto-Convection

• Toy model: uniform twisted horizontal field, with direction a function of height only

• Critical Rayleigh number, Ra = gd4/for onsetg=gravity, =T/d, =thermal expansion, d=height, =kinematic viscosity, =thermal diffusivity)– Independent of the layer height if based on the local scale of

convection

– Inversely proportional to vertical scale of background field

– Proportional to B2

Page 25: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

Convective Scale, @ onset

L ~ (h/B)1/2 ()1/4

if L small, independent of layer height

h = height for 180 twist

= conductivity

Page 26: Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray

The End