11
Suitability of Superregenerative Nuclear Quadrupole Resonance Detector R. Cumby, N. Sullivan

Suitability)of)Superregenerative) …Abstract:!! Nuclearquadrupoleresonance(NQR)resultswhenquadrupolarnucleiare excited!by!an!AC!magnetic!field!at!the!NQRfrequency,inducingtransitions!in

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

                         

Suitability  of  Superregenerative  Nuclear  Quadrupole  Resonance  

Detector      

     

R.  Cumby,  N.  Sullivan                                            

   

Abstract:    

Nuclear   quadrupole   resonance   (NQR)   results  when   quadrupolar   nuclei   are  excited  by  an  AC  magnetic  field  at  the  NQR  frequency,  inducing  transitions  in  quadrupole  energy  levels.  The  energy  of  the  transition  is  proportional  to  the  product   of   the   nuclear   quadrupole   moment   and   the   electric   field   gradient  (EFG)  at  the  site  of  the  nucleus.  Because  EFGs  are  properties  of  their  crystals,  no   external   DC   magnetic   field   is   needed   to   detect   resonance.   A  superregenerative   detector   was   designed   with   hopes   of   being   used   in   a  laboratory  setting   for  NQR.  Unfortunately,   the  device  proved  too  difficult   to  tune  and  too  sensitive  to  be  used  in  a  general  lab  setting.  

   

I. Introduction  

 

  Nuclear  quadrupole  resonance  (NQR)  results  when  quadrupolar  nuclei  are  

excited  by  an  AC  magnetic  field  at  the  NQR  frequency.  As  NQR  is  a  material  specific  

property,  no  external  DC  magnetic  field  is  needed  to  detect  NQR  spectra.  Because  of  

this  nuclear  quadrupole  resonance  detection  has  a  broad  range  of  applications,  from  

bomb  detection  to  the  discovery  of  oil  wells.1  

  NQR  detection  has  been  performed  with  a  number  of  different  devices  which  

irradiate  a  sample  with  an  AC  magnetic  field  at  radio  frequency  (RF)  and  measure  

the  response  in  some  way.2  One  major  tool  that  may  be  suitable  for  this  is  a  

superregenerative  receiver.  Superregenerative  receivers  function  by  using  an  active  

component  such  as  a  transistor  to  simulate  a  negative  impedance  and  thus  amplify  a  

signal  across  a  tank  circuit  consisting  of  a  capacitor  and  inductor  in  parallel.3,4,5    

When  the  voltage  across  the  tank  reaches  a  certain  cutoff,  it  must  be  “quenched”  and  

allowed  to  return  to  zero  in  order  to  receive  a  signal.3,4,5  This  can  be  accomplished  

by  an  external  signal  or  by  means  of  an  internal  signal  such  as  a  colpitt’s  oscillator.3,6  

A  superregenerative  device  for  NQR  detection  was  developed  earlier  by  Bruin  and  

Khunaysir.6    However,  they  believed  their  device  to  be  more  useful  as  a  classroom  

demonstration  than  as  a  laboratory  tool.6  The  purpose  of  the  project  was  then  to  

develop  a  supperregnerative  NQR  detector  to  be  used  in  a  lab  environment,  

specifically  to  determine  the  resonances  of  Cl35  and  Cl37  in  DTN,  an  organic  

quantum  magnet.  The  detector  design  developed  by  this  lab  proved  to  be  too  

sensitive  and  difficult  to  tune  to  be  of  use  for  scientific  purposes,  and  it  has  been  

determined  that  significant  improvements  must  be  made  in  the  design  and  use  of  

these  receivers  in  order  to  get  useful  results  from  them  in  the  future.  

II. Methods  

The  design  used  was  inspired  by  the  receiver  design  of  Ranmuthu  and  Bruin  

and  Khunaysir.6,7  The  final  design  is  shown  in  Fig  1.  

 

Fig  1:  Circuit  diagram  of  superregnerative  detector  

  The  device  was  powered  at  12V  by  a  standard  laboratory  power  supply.  The  

sample  was  contained  in  a  3  turn  coil  of  approximately  7/8  “  in  diameter  and  2”  

long.  The  length  of  the  coil  was  adjusted  to  help  tune  the  circuit.  Quenching  

frequency  was  determined  by  R4  and  C1.  An  MPF  102  Field  Effect  Transistor  (FET)  

was  selected  as  the  active  component  of  the  circuit,  although  similar  n-­‐channel  FETs  

such  as  the  J309  proved  adequate.  The  variable  capacitor  across  the  collector  and  

emitter  was  adjusted  to  both  tune  the  circuit  and  cause  the  circuit  to  

superregenerate.  The  circuit  could  also  be  tuned  using  C9,  although  too  much  

adjustment  of  the  capacitance  frequently  caused  the  circuit  to  stop  displaying  the  

superregenerative  characteristics.  The  detection  circuit  consisted  of  a  series  of  low  

pass  filters  connected  to  another  FET,  which  acted  as  an  amplifier.  This  was  

connected  to  the  oscilloscope  by  means  of  s  short  length  of  BNC  cable.  The  AC  

voltage  from  the  transformer  provided  the  AC  magnetic  field  across  the  sample  to  

induce  transition  in  the  quadrupole  energy  levels.  

  In  order  to  test  a  sample,  the  circuit  was  first  tuned  to  the  desired  frequency.  

Tuning  was  achieved  by  adjusting  R2,  C1,  the  length  of  the  sample  coil,  and/or  the  

varicap  across  Q1.  In  order  to  test  the  frequency,  a  high-­‐accuracy  RF  generator  was  

used.  The  RF  frequency  on  the  generator  was  moved  until  a  response  was  viewed  on  

the  screen  of  the  oscilloscope.    The  RF  generator  was  then  switched  off  and  the  

sample  placed  in  the  coil.  If  a  similar  response  on  the  screen  of  the  oscilloscope  was  

viewed,  then  the  NQR  frequency  was  the  same  as  the  frequency  on  the  RF  generator.  

Further  confirmation  that  the  observed  effect  was  NQR  could  be  observed  by  

bringing  a  magnet  near  the  sample.  If  the  “dip”  on  the  screen  disappeared,  then  the  

frequency  the  receiver  was  tuned  to  was  indeed  the  NQR  frequency  of  the  sample.  

 

III.     Results  and  Discussion  

  The  detection  circuit  proves  capable  of  picking  up  radio  signals  quite  well.  

Fig  2  displays  the  oscilloscope  screen  for  the  de-­‐tuned  circuit,  while  Fig  3  shows  the  

results  of  tuning  the  circuit  to  its  resonant  frequency.  When  the  correct  frequency  is  

selected,  there  is  a  noticeable  drop  off  in  the  amount  of  noise  in  the  signal.  The  

introduction  of  AM  modulation  from  the  frequency  generator  shows  very  clearly.  Fig  

4  shows  the  introduction  of  I  kHz  wave  to  the  signal,  While  Fig.  5  shows  the  

introduction  of  a  400  Hz  signal.  In  both  cases,  the  modulation  is  visible  and  would  

clearly  be  audible  were  one  to  attach  a  speaker  to  the  output.  The  detector  functions  

as  a  very  good  radio  receiver.  

Fig  2.  Output  of  de-­‐tuned  circuit  on  oscilloscope.  Noise  dominates  the  signal.  The  AC  modulation  is  

only  slightly  visible.  

Fig  3.  Output  of  tuned  circuit.  AC  modulation  is  now  clearly  visible  and  there  is  almost  no  noise  in  the  

signal.  

Fig  4.  Output  of  tuned  circuit  with  1kHz  modulation.  Signal  is  now  clearly  modulates  by  the  signal.  

Due  to  good  clarity  and  relatively  little  noise  reception  is  quite  good.  

Fig  5.  Output  of  tuned  circuit  with  400  Hz  modulation.  The  AM  modulation  is  clearly  visible  and  has  

almost  no  noise  obscuring  the  signal.  

  The  detector  was  unable  to  pick  up  NQR.  The  issue  lies  primarily  in  two  

areas.  First,  the  lack  of  ability  to  tune  the  circuit  accurately  over  a  broad  range  of  

frequencies  prevents  one  from  adequately  being  able  to  dial  in  a  very  specific  

frequency  as  is  needed  in  NQR  detection.  While  some  change  in  frequency  is  

possible  from  adjusting  either  of  the  variable  capacitors  and  the  potentiometer,  too  

much  adjustment  leads  to  the  circuit  no  longer  superregnerating.  Second,  the  circuit  

is  far  too  sensitive  to  external  factors.  The  signal  on  the  screen  changes  dramatically  

when  a  person  moves  towards  the  receiver  and  detects  a  host  of  other  objects  in  the  

vicinity  of  the  device.  These  signals  are  far  greater  than  any  signal  that  could  be  

received  from  the  sample,  and  completely  overwhelm  the  desired  signal.  

 

  IV.     Conclusion  

  The  device  proved  to  be  unsuitable  for  the  purposes  intended.  The  issues  of  

tuning  and  sensitivity  were  too  great  for  to  be  used  to  detect  resonances  that  are  too  

complicated  to  be  calculated  from  first  principles  alone.  In  order  to  improve  the  

design  of  the  detector  a  better  way  of  isolating  the  sample  and  the  circuit  must  be  

made  to  accurately  tune  to  a  broader  range  of  frequencies.  It  is  possible  that  

isolating  the  sample  in  some  kind  of  box  or  shielding  might  be  able  to  solve  the  

sensitivity  issue,  although  the  issue  of  tuning  might  not  be  as  easy  to  solve.  

However,  the  positive  attributes  of  this  device  means  that  it  may  be  a  helpful  tool  in  

the  future  if  its  problems  are  addressed.    

Acknowledgement  

  Lab  and  materials  provided  by  University  of  Florida.  This  work  was  

supported  by  the  UF  Material  Physics  REU  Program  through  NSF  grant  DMR-­‐

1156737.  Much  help  was  given  by  Allen  Majewski.  

References  

1  A  Garroway  Nav.  Rsch.  Lab.  (2003)  

2  Taken  from  the  lecture  notes  of  N.  Sullivan  

3  E  Insam,  Electronics  World  (2002)  

4  C  Kitchin,  AARL  handbook  (1998)  

5  F.  Xavier  Moncunill-­‐Geniz,  P.  Pala-­‐Schonwalder,  C.  Dehollain,  N.  Joehl,  and  M.  

Declercq,  IEEE  Trans.  Microw.  Theory  Techn.  55  6  (2007)  

6  F.  Bruin,  and  H.  Khunaysir,  Am.  J  Phys.  38  12  (1970)  

7  N.  Ranmuthu,  qsl.net  (1999)