49
Study of mass sensitive parameters for AMIGA and AERA cosmic ray detectors Relatori: Prof. Bertaina Mario Edoardo Dr. Haungs Andreas Corelatore: Mr. Stuani Pereira Luiz Augusto 1 Daniele Proverbio - a.a. 2015/16 - UNITO A.A. 2015/2016 Università degli Studi di Torino – Dipartimento di Fisica Luglio 2016 Candidato: Proverbio Daniele

Studyof mass sensitive parametersfor AMIGA and AERA ...personalpages.to.infn.it/~bertaina/tesi-scaricate/... · Studyof mass sensitive parametersfor AMIGA and AERA cosmicraydetectors

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Study of mass sensitive parameters for AMIGA and AERA cosmic ray detectors

Relatori: Prof. Bertaina Mario Edoardo

Dr. Haungs Andreas

Corelatore: Mr. Stuani Pereira Luiz Augusto

1Daniele Proverbio - a.a. 2015/16 - UNITO

A.A. 2015/2016Università degli Studi di Torino – Dipartimento di Fisica

Luglio 2016

Candidato: Proverbio Daniele

Where: Karlsruhe Institute of TechnologyErasmus Traineeship Project

Karlsruhe, Baden-Württemberg, Germany

KIT – Campus North

2Daniele Proverbio - a.a. 2015/16 - UNITO

Who

The Institut für Kernphysik Group

Add photo

3Daniele Proverbio - a.a. 2015/16 - UNITO

Introduction: Cosmic Rays 1 : SPECTRUM

4

Directly detected Detected by studiyng secondary rays

Auger

Daniele Proverbio - a.a. 2015/16 - UNITO

Introduction: Cosmic Rays 2: AIR SHOWERS

5

Lateral air shower profile

Shower components

Daniele Proverbio - a.a. 2015/16 - UNITO

Introduction: Cosmic Rays 3: HADRONIC AND MUONIC COMPONENTS at the GROUND

• Hadronic component:• Accounts only 1%

• Mostly absorbed or decayed before reaching the ground: it feeds the othercomponents

• Muonic component:• Constitutes a narrow cone which is the shower core

• 10% of total, but 80% of what’s detected

6

Possible muonic creation decays:

Daniele Proverbio - a.a. 2015/16 - UNITO

Introduction: Cosmic Rays 4: ELECTROMAGNETIC COMPONENT

• Created mostly via bremsstrahlung (pair production, Compton scattering, photoelettric effect and ionization can be neglected)

• Fed by other processes: 90% among all

• High values of lateral spread due to Coulomb

scattering

• Produces detectable radio waves through:• Geomagnetic field deflection (left)

• Askarian effect (charge excess) (right)

7Daniele Proverbio - a.a. 2015/16 - UNITO

Introduction: Tools and Softwares

• Simulation Softwares:• CoREAS

• CORSIKA QGS-JET II-04

• Geant4

• Data analysis softwares:• Cern ROOT

• Off Software

• EventBrowser

• Self-written C++ code

8

line

Components of an air shower simulated with CORSIKA

Daniele Proverbio - a.a. 2015/16 - UNITO

Intoduction: the Auger Observatory 1

9Daniele Proverbio - a.a. 2015/16 - UNITO

• Sited in Pampa Amarilla, Argentina• 3,000 km2 detection area• Officially completed in 2008• Designed to detect secondary air shower

particles with E > 1018 eV

• Detectors:• Surface Detectors (SD) • Fluorescence Detectors (FD)• High Elevation Auger

Telescopes (HEAT)• Auger Engineering Radio Array

(AERA)• Auger Muons and Infill for the

Ground Array (AMIGA)

AMIGA

Considered Auger Detectors: Auger EnhancementAERA•

AMIGA•

Daniele Proverbio - a.a. 2015/16 - UNITO 10

AERA

Energy RangeAERA LPDA Antenna

AMIGA scintillatordeployment

GoalCombine AERA and AMIGA • measurements

Look for • correlations between Erad and Nμ

Combine • results with simulations

Study• mass estimator parameters

11

Exploit combined measurementsto figure out the mass composition of primary cosmic rays

using mass estimators

Here we start Daniele Proverbio - a.a. 2015/16 - UNITO

Introduction: ParametresGENERAL:•

E: • energy [eV]

• θ: zenith angle [°]

• φ: azimuth angle [°]

• α : angle in respect to the geomagnetic field [°]

• β: slope of Lateral Distribution Function (LDF)

AERA:•• Erad : detected Radio Energy [eV]

• Srad = Erad

𝑠𝑖𝑛α+0.14 2 [eV] Askarian effect correction

AMIGA:•• Nμ

ref: number of muons at reference distance on LDF [ m-2]

CORSIKA:•• Nμ

TOT: simulated real number of muons reaching the ground• Einc : Energy of Incident Particle [eV]

New:•

• ℵ = ൗSrad

12

Offline LDF fit

Daniele Proverbio - a.a. 2015/16 - UNITO

Quantitative separation estimator:

η = |⟨𝐴⟩−⟨𝐵⟩|

σ𝐴2+σ𝐵

2Merit Factor

Lateral Distribution Function (LDF)

Nμref

Introduction: hybrid measurements

13Daniele Proverbio - a.a. 2015/16 - UNITO

- Nμ ≈ 1.69 ∙ 𝑨𝟎.𝟏 ∙ 102,25 ∙𝐸

1017.5

0.9

- Erad ∝ Ne ∝ A-0.046

- ൗ𝑆𝑟𝑎𝑑 𝑁𝜇∝ 𝑨−𝟎.𝟏𝟓

(Blümer 2009)

Quality Cuts:

• Time Period: 03/2013 – 11/2015: Full AMIGA detecting period

• E ≥ 1017,5 eV : lower limit for full efficiency of the AMIGA infill (see Appendix A for graphic)

• θ ≤ 55° : efficiency threshold for significant η

• Core within UC

• Erad > 0 : we want Erad reconstructed

• α ≥ 10° : geomagnetic effect ≫ Askarian effect

• No MD saturation

Is theory well founded?• CORSIKA sim study

• Contrast NμTOT/Einc and Nμ

TOT/Ecalorimetric

• Look for best mass discrimination

Daniele Proverbio - a.a. 2015/16 - UNITO 14

η = 1,75 η = 1,89

7% improvement!

- Nμ ≈ 1.69 ∙ 𝑨𝟎.𝟏 ∙ 102,25 ∙𝐸

1017.5

0.9

- Erad ∝ Ne ∝ A-0.046

- ℵ = ൗ𝑆𝑟𝑎𝑑 𝑁𝜇

∝ 𝑨−𝟎.𝟏𝟓

Au

ger

2016

Pre

limin

ary

First Analysis

Daniele Proverbio - a.a. 2015/16 - UNITO 15

Primary Energy: Relaxed

Provided by Ewa Holt

Nμref = 450 m

Srad

Problem!

Auger 2016 Preliminary

Work Plan

• DEBUGGING: look for the reason(s) why the masscomposition estimation is failing

• IMPROVING: overcome the problem and get the correctparameters

• ANALYSING: re-try the analysis with the correctedparameters and evaluate the massdiscrimination power

• GOING FURTHER

Daniele Proverbio - a.a. 2015/16 - UNITO 16

Looking for unexpected features: DEBUGGING

Mass • separation fails: causes?Different• methods or bias from CoRSIKA QSG-JET II-04 (Shower simulation) to Offline (Detectors’ reconstruction)?

Reference • distance fixed at r0 = 450 m: is it ok?

• Erad behavior?

Therefore• : Compare • simulations with reconstructions, applying quality cuts and contrasting main parameters (namely Nµ

ref vs NµTOT and Erad vs Einc)

Compare • r0 with literature.

Daniele Proverbio - a.a. 2015/16 - UNITO 17

Offline Reconstructions – Applying Quality Cuts• Sample:

• #events: 205 Proton, 210 Iron• Omogeneous distribution of Log10(E) and ϑ

Daniele Proverbio - a.a. 2015/16 - UNITO 18

Au

ger

2016

Pre

limin

ary

Crossed analysis – ERAD vs EINC

Daniele Proverbio - a.a. 2015/16 - UNITO 19

Proton

Iron

● rPearson too low → need to apply AERA quality cuts● Ang. Coeff ̴ 1 (Test Z guarantees) but not-so-good correlation● Erad = 𝑆𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 ∙ 𝐸𝑖𝑛𝑐 according to hypotesis → doesn't account much in the ratio behavior

(graph 2 and 3 in slide 23)

● Erad poor mass discriminator (from Theory: Erad ∝ A-0.046 )

Both

rPearson = 0,37

rPearson = 0,38

Au

ger

2016

Pre

limin

ary

Crossed Analysis - Nµref(450) vs Nµ

TOT

Daniele Proverbio - a.a. 2015/16 - UNITO 20

- Nµref α Nµ

TOT according to hypothesis (further on: study of rPearson)

But no discrimination between P and Fe - → Nμref(450) not good

Au

ger

2016

Pre

limin

ary

Debugging: results

• ERAD poorly related to the energy → Improvements are needed

• Nµref should have been more sensitive to the mass → problem

What• about ref = 450m?From • literature: distance that minimize

the fluctuations of LDF → good for energy study

Study• if it maximize the link

between Nµref and Nµ

TOT

Change • ref and look for the best

mass sensitive one

Daniele Proverbio - a.a. 2015/16 - UNITO 21

450m minimize LDF fluctuations

Improving: focus on AMIGAMain problem: N● μ

Ref(450) not good

Change Distance ● → change NμRef(x) → should be more mass sensitive

Study• Nµref(x) vs Nµ

TOT → focus on rPearsonfrom theory N• µ

TOT ∝ 𝐴0.1

From • CoRSIKA: clear separation

I • obtain Nµref(x) using MLDF expression:

𝑵𝝁 𝒙 = 𝑁μ 450(𝑥

𝑟0

)−α∙(1+𝑥

𝑟0

)−β∙(1+(𝑥

10𝑟0

)2)−γ

3−α∙4−β∙1.09−γ

withα =• 1 ; γ =1.85 ; r0 =150 m from Monte Carlo simulations

• Nμ(450), β extracted from Offline ADST files

x = {• 300,350,400,450,500,550,600,650} m distance from shower axis

Deep• study of MLDF behavior, but loss of Poissonian shower-to-sower fluctuations

Daniele Proverbio - a.a. 2015/16 - UNITO 22

(𝑁μ 𝑥 reconstructed are listed in Appendix C)

Clear separation using simulation

Au

ger

2016

Pre

limin

ary

Correlation Coefficient and χ2

Daniele Proverbio - a.a. 2015/16 - UNITO 23

Critical χ2

r ↑ as x ↑ χ2 ↓ as x ↑

All Fit in Appendix D1 and D2

Fit example

Au

ger

2016

Pre

limin

ary

Discrimination between P and Fe: analysis

Daniele Proverbio - a.a. 2015/16 - UNITO 24

Example for x = 600m (one of the best ones with 650m) [All in Appendix E]

A bit - better than for 450m (slide 16)Following- rPearson, the distribution separation slightly gets better for 𝑥 ≥ 500 𝑚By - following MLDF starting from Nμ

ref(450) we propagate its fluctuations → still big ones

Worth - studying Nμref(x) for 𝒙 ≥ 𝟓𝟎𝟎𝒎, but it’s necessary to exploit directly-taken-from-Offline data

(fluctuation reduction?, Poisson, Errors, ecc…)

Au

ger

2016

Pre

limin

ary

Ratio ℵ Behaviour

Daniele Proverbio - a.a. 2015/16 - UNITO 25

Everything - is mixed up

- ℵ = ൗ𝑆𝑟𝑎𝑑 𝑁𝜇∝ 𝑨−𝟎.𝟏𝟓 seems to be overwhelmed by the (amplified by ratio) poor correlation of reconstructed data

with original ones (see previous analyses)

- ℵ doesn’t seem to be a good mass sensitive parameter so far

Au

ger

2016

Pre

limin

ary

Conclusions: mass estimationNecessary• to change ref → Nμ

ref > 500m ;

As• seen from simulations, ℵ = ൗ𝑆𝑟𝑎𝑑 𝑁

𝜇is worth studying, but it must be

improved

Suggested• improvements:• Erad → AERA quality cuts, noise packages

• Nμref

Consider• data directly extracted from Offline

Change• ref and determine the most sensitive one crossing rPearson, χ2 results and real MLDFfluctuation and μ detection

Consider• other AMIGA parameters e.g. 300

+∞𝑀𝐿𝐷𝐹 𝑑𝑥

Other• strategies

Daniele Proverbio - a.a. 2015/16 - UNITO 26

Going Further: new hypothesis for mass estimation?

Daniele Proverbio - a.a. 2015/16 - UNITO 27

• Focus first on Nμ (less fluctuations than ℵ)

• NμTOT ≈ 1.69 ∙ 𝑨𝟎.𝟏 ∙ 102,25 ∙

𝐸

1017.5

0.9→ Nμ

ref≈ 𝐶 ∙ 𝑨𝟎.𝟏 ∙𝐸

1017.5

𝑘

when performing double Log10 → linearization

log10(Nμref ) ≈ log10 𝐶 ∙ 𝑨𝟎.𝟏 + 𝑘 ∙ log10

𝐸

1017.5≈ 𝑝0+ 𝑝1 ∙ log10(𝐸𝑛𝑜𝑟𝑚)

where 𝒑𝟎 contains mass dependance → Fit

• Study behaviour and Merit Factor for p0proton and p0

iron

• Way of mass estimating?• Decide a fixed distance 500 ≤ 𝑥 ≤ 750 (AMIGA physical limit)

• Figure of Merit

• ‘’Battleship’’

Log10(Nμref ) vs 𝑳𝒐𝒈𝟏𝟎(𝑬𝒏𝒐𝒓𝒎) Fit Results

• p0proton < p0

iron always (as in theory)

• p1proton ~ p1

iron (Z < Zcritical starting from 500m) (as in theory)

Merit• Factor η ~ 2 always → good discrimination power

Worth • studying with direct data (taking errors into account, reducingfluctuations…)

Daniele Proverbio - a.a. 2015/16 - UNITO 28

Fit Examples 600m

See tables in Appendix F

Au

ger

2016

Pre

limin

ary

Direct Data: Fit Results

• p1 should be compatible → Z test

• p2 should be separated → ‘’inversed’’ Z test (Discriminator Factor)

• Results:• Best Z test: 600m

• High Discriminator Factor in average

• Best visual trend: 600m

• Considering also previous results

(rpearson, ecc) → 600m best distance

Daniele Proverbio - a.a. 2015/16 - UNITO 29

All in Appendix G

600m : best division

(Tables in Appendix G)

Au

ger

2016

Pre

limin

ary

Figure of Merit• [Log10(Nμ

ref(600) ) vs Log10(𝐸𝑛𝑜𝑟𝑚)] chart

• Valid for [Log10(ℵ) vs 𝑳𝒐𝒈𝟏𝟎(𝑬𝒏𝒐𝒓𝒎)] chart too → consequent hybrid improvement

• σ = σ𝑛=1𝑁 [𝑦𝑛−(𝑎+𝑏∙𝑥𝑛)]2

𝑁−2

• η(E) = |𝑎𝐹𝑒+𝑏𝐹𝑒∙𝐿𝑜𝑔

10𝐸𝑛𝑜𝑟𝑚

−𝑎𝑃−𝑏𝑃∙𝐿𝑜𝑔10 𝐸𝑛𝑜𝑟𝑚

|

σ𝐹𝑒2 +σ𝑃

2

Daniele Proverbio - a.a. 2015/16 - UNITO 30

(Calculation in Appendix H)

Slightly +Fe -P

Slightly +P -FeMore Iron

More Proton

η(E)

Au

ger

2016

Pre

limin

ary

Conclusions• First it’s needed to improve our parameters as explained in the previous

section

• By performing the fit for Log10(Nμref ) vs Log10(𝐸𝑛𝑜𝑟𝑚) we extracted p0,

parameter that contains mass dependence

• Region division and Figure of Merit for• [Log10(Nμ

ref ) vs Log10(𝐸𝑛𝑜𝑟𝑚)] chart

• [Log10(ℵ) vs 𝑳𝒐𝒈𝟏𝟎(𝑬𝒏𝒐𝒓𝒎)] chart

• User Guide

Daniele Proverbio - a.a. 2015/16 - UNITO 31

Thanks for your attention

Daniele Proverbio - a.a. 2015/16 - UNITO 32

Appendix and Credits

Daniele Proverbio - a.a. 2015/16 - UNITO 33

Appendix A: Quality cuts and errors

Daniele Proverbio - a.a. 2015/16 - UNITO 34

Dependency of η on θ

Errors: not going to take error bars into account:We’re interested in general correlation behaviourUsing MLDF method will lead to systematic error over-estimation due to uncertainty propagation → we’ll consider errors after Offline direct extraction

Appendix B: CoRSIKA Simulations• Already performed, stored in

/gluster/aera/public/simulations/AERA/library/mdrdStudy

• Need to write a C++ codex for fetching needed data (NµTOT reaching the ground)

→ /home/proverbio/simDatas/run.cpp

• Comparing with Offline simulations: few missing files (not reconstructed)

Daniele Proverbio - a.a. 2015/16 - UNITO 35500 Proton, 500 Iron 445 Proton, 440 Iron

Au

ger

20

16

Pre

limin

ary

Appendix C : Nμ(x) distributions

Daniele Proverbio - a.a. 2015/16 - UNITO 36

Au

ger

2016

Pre

limin

ary

Appendix D1: Fe - fitting Nμ(x) and NμTOT

Daniele Proverbio - a.a. 2015/16 - UNITO 37

Au

ger

2016

Pre

limin

ary

Appendix D2: P - fitting Nμ(x) and NμTOT

Daniele Proverbio - a.a. 2015/16 - UNITO 38

Au

ger

2016

Pre

limin

ary

Appendix E: Correlation Coefficient and χ2

• There’s no absolute maximum for Pearson coefficient inside the studied range (read: inside AMIGA physicalrange)

• ref = 450 m doesn’t maximise r

• Extrapolation of distance which rPearson is maximum in → parabolic fit and derivative

Daniele Proverbio - a.a. 2015/16 - UNITO 39

Iron: xrmax = (993 ± 27) m Proton: xrmax = (1268 ± 25) m

• χ2 < χ2 critical only after x ≈400 m → results too close to the shower core are less statistically relevant (we’ll not study them anymore)

χ2 < χ2 critical only after x ≈400 m → right decision to consider

450+∞

𝑀𝐿𝐷𝐹 𝑑𝑥

as suggested e.g. in Salfenmoser(2015)

Au

ger

2016

Pre

limin

ary

Appendix F1: Discrimination between P and Fe –Nμ vs Log(E)

Daniele Proverbio - a.a. 2015/16 - UNITO 40

Au

ger

2016

Pre

limin

ary

Appendix F2: Discrimination between P and Fe –Log(Nμ) vs Log(E)

Daniele Proverbio - a.a. 2015/16 - UNITO 41

- I don’t consider 𝑥 < 500𝑚 anymore- We can see that the average fluctuations

are similar, due to the MLDF analiticalpropagation of the same Nμ

ref(450)

Au

ger

2016

Pre

limin

ary

Appendix G: Fit parameters

Daniele Proverbio - a.a. 2015/16 - UNITO 42

Proton: fitParameters

distance [m] p0 σp0 p1 σp1

300 -8,09 1,07 0,444 0,058

350 -8,186 1 0,444 0,055

400 -8,274 0,94 0,444 0,051

450 -8,355 0,89 0,444 0,049

500 -8,35 0,84 0,444 0,046

550 -8,502 0,81 0,444 0,044

600 -8,57 0,78 0,444 0,042

650 -8,635 0,75 0,444 0,041

Iron: fitParameters

distance [m] p0 σp0 p1 σp1

300 -4,93 1,1 0,2765 0,058

350 -5,24 0,99 0,2883 0,052

400 -5,52 0,94 0,2989 0,051

450 -5,78 0,89 0,3086 0,049

500 -6,01 0,85 0,3175 0,046

550 -6,24 0,81 0,3258 0,044

600 -6,44 0,78 0,3334 0,043

650 -6,64 0,76 0,3406 0,041

MeritFactorP0 TestZP1

2,06 2,04

2,09 2,06

2,07 2,01

2,05 1,95

1,96 1,94

1,97 1,90

1,93 1,84

1,87 1,78

Appendix H: Direct Data - distributions

Daniele Proverbio - a.a. 2015/16 - UNITO 43

As stated, we focus on x > 500m

Au

ger

2016

Pre

limin

ary

Appendix I1: Direct Data: Fit

Daniele Proverbio - a.a. 2015/16 - UNITO 44

Best

Au

ger

2016

Pre

limin

ary

Appendix I2: Direct Data: Fit Parameters

Iron

distance p0 σP0 p1 σP1

500 -0,4428 0,008727 0,5134 0,008383

550 -0,5503 0,008727 0,5135 0,008384

600 -0,6943 0,009357 0,5814 0,00953

650 -0,7513 0,008964 0,5221 0,008994

700 -0,8548 0,009 0,5295 0,009066

Daniele Proverbio - a.a. 2015/16 - UNITO 45

Proton

p0 σP0 p1 σP1

-0,6618 0,01218 0,6448 0,01077

-0,7738 0,01215 0,6492 0,01073

-0,8753 0,0122 0,6491 0,01073

-0,9719 0,01215 0,6492 0,01073

-1,064 0,01215 0,6489 0,01074

Ztest p1 DiscriminatorFactor p0

9,62779243 14,61582845

9,96543953 14,94045946

4,71741153 11,77228741

9,07799398 14,61036742

8,49526343 13,83573373

- Same behaviour of analitical data (p0proton < p0

iron )High - values for Z test because of underestimation of errors (systematic ones not considered yet)Same- goes for DiscriminatorFactorWe- focus on the trend instead of values (e.i. Looking for the minimum and the general distibution)

Appendix L: mass estimation

Apart• from our own considerations and analysis, a ref = 600m is also mentioned in OfflineDoc(westeros.cgca.uwm.edu) in ShowerMRecData.h line 157, for fNMuRef. We don’t know why it wasn’timplemented in Offline code (there was ref = 450m), but it’s relieving to see that it was already hypotesiedas a useful distance. Now we can state that it’s the best one for mass discrimination studies.

Daniele Proverbio - a.a. 2015/16 - UNITO 46

westeros.cgca.uwm.edu in ShowerMRecData.h line 157, for fNMuRef

Image Credits• [2] Germany Map: https://goo.gl/eWnZNi

• [2] KIT Map: http://goo.gl/ikdJ4a

• [2] Castle: http://goo.gl/0LZdZy

• [4] Spectrum 1: Jansen (2016)

• [4] Spectrum 2: http://goo.gl/qu8VzW

• [5] Air shower profile: Niechciol (2011)

• [5] Shower components: Fuhrmann (2012)

• [7] Electromagnetic effects: Quader Dorosti Hasankiadeh & The Pierre Auger Collaboration, Radio Detection of air shower at the Pierre AugerObservatory, KIT

• [8] Simulated showers: Klepser (2006)

• [9] Pierre Auger Overlook: http://goo.gl/L9sOKq

• [9] Tank in foreground: https://goo.gl/9qrvLG

• [10] LPDA: Neuser (2010)

• [10] AMIGA energy frame: Garilli(2013)

• [10] AMIGA deployment: Niechciol (2011)

• [13] Hybrid measurements: Pierre Auger Collaboration (2016)

• [15] Ewa Holt’s Plots

• [21] MLDF fluctuations: Tapia (2015)

• [34] AMIGA efficiency: Pierre Auger Collaboration (2011)

• [34] Merit Factor Graphic: Tapia (2013)

Daniele Proverbio - a.a. 2015/16 - UNITO 47

Essential Bibliography• P. Abreu & al., Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory, Nuclear Instruments and Methods in

Physics Research A635, 2011, 92–102

• A. A. Al-Rubaiee & al., Study of Cherenkov Light Lateral Distribution Function around the Knee Region in Extensive Air Showers, arXiv:1505.02757 [physics.gen-ph] 6 May 2015

• AugerWiki, The AMIGA extension for the Offline Framework (https://goo.gl/m4EmGK)

• D. Atri, Hadronic interaction models and the angular distribution of cosmic ray muons, arXiv:1309.5874v1 [astro-ph.HE] 23 Sep 2013

• J. Blümer, R. Engel & J. R. Hörandel, Cosmic rays from the knee to the highest energies, Elesevier B.V., 2009, doi:10.1016/j.ppnp.2009.05.002

• I. M. Brancus & al., Features of muon arrival time distributions of high energy EAS at large distances from the shower axis, J. Phys. G: Nucl. Part. Phys. 29 (2003) 453–473

• G.Garilli, Study of the performances of the AMIGA muon detectors of the Pierre Auger Observatory, Università degli Studi di Catania, PhD Thesis, 2013

• K. Greisen, Cosmic Ray Showers, Annu. Rev. Nucl. Sci. 1960.10:63-108. (downloaded from www.annualreviews.org)

• A. Haungs for KASCADE Collaboration, Multifractal moment analysis of the core of PeV air shower for the estimate of the cosmic ray composition, Karlsruhe (arXiv: 10.1.1.8.4816)

• J. R. Hörandel, A review of experimental results at the knee, arXiv:astro-ph/0508014v1 31 Jul 2005

• T. Huege, CoREAS 1.0 User’s Manual, 2013

• S. Jansen, Radio for the Masses - Cosmic ray mass composition measurements in the radio frequency domain, Radboud University Nijmegen, 2016

• K.H. Kampert & M.l Unger, Measurements of the Cosmic Ray Composition with Air Shower Experiments, arXiv:1201.0018v2 [astro-ph.HE] 19 Feb 2012

• S. Klepser, CORSIKA: Extensive Air ShowerSimulation, Humboldt-Universität zu Berlin, 2006

• D. Kostunin & al., Reconstruction of air-shower parameters for large-scale radio detectors using the lateral distribution, arXiv:1504.05083v2 [astro-ph.HE] 18 Dec2015

• J. Neuser, Radio Measurement of Extensive Air Showers at the Pierre Auger Observatory, Bergischen Universität Wuppertal, 2010

Daniele Proverbio - a.a. 2015/16 - UNITO 48

Essential Bibliography• B. Sc. M. Niechciol, Muon counter simulation studies for the AMIGA enhancement of the Pierre Auger Observatory, Universität Siegen, 2011

• Pierre Auger Collaboration, Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory, arXiv:1508.04267v1 [astro-ph.HE] 18 Aug 2015

• Pierre Auger collaboration, Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory, doi:10.1088/1748-0221/11/02/P02012

• Pierre Auger Collaboration, The Pierre Auger Observatory V: Enhancements, 32ND International Cosmic Ray Conference, Beijing 2011

• Pierre Auger Collaboration and J.G. Gonzalez, The Offline Software of the Pierre Auger Observatory: Lessons Learned, arXiv:1208.2154v1 [astro-ph.IM] 10 Aug 2012

• Pierre Auger Collaboration and F. Schröder, Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array, arXiv:1601.00462v1 [astro-ph.IM] 4 Jan 2016

• Pierre Auger Collaboration & F. Suarez, The AMIGA muon detectors of the Pierre Auger Observatory: overview and status, 33RD International cosmic ray conference, Rio de Janeiro 2013

• Pierre Auger Collaboration and E. Varela, The low-energy extensions of the Pierre Auger Observatory, Journal of Physics: Conference Series 468 (2013), doi:10.1088/1742-6596/468/1/012013

• D. Ravignani & A. D. Supanitsky, A new method for reconstructing the muon lateral distribution with an array of segmented counters, arXiv:1411.7649v1 [astro-ph.IM] 27 Nov 2014

• D. Ravignani, A. D. Supanitsky, D. Melo, and B. Wundheiler, A method to reconstruct the muon lateral distribution with an array of segmented counters with time resolution, arXiv:1510.01266v1 [astro-ph.IM] 5 Oct 2015

• L. Salfenmoser, E. Holt, F. Schröder & A. Haungs, A First Combined Analysis of AMIGA and AERA Measurements, GAP 2015-004

• A. D. Supanitsky & al., Underground Muon Counters as a Tool for Composition Analyses, arXiv:0804.1068v2 [astro-ph] 13 Oct 2008

• A. Tapia & al., Study of the chemical composition of high energy cosmic rays using the muon LDF of EAS between 1017.25 eV and 1017.75 eV, arXiv:1501.02217v1 [astro-ph.HE] 9 Jan 2015

• A. Tapia & al., The lateral shower age parameter as an estimator of chemical composition, 33ND International cosmic ray conference, Rio de Janeiro, 2013, arXiv:1309.3536v1 [astro-ph.HE] 13 Sep 2013

• J. Vícha, Analysis of Air Showers with respect to Primary Composition of Cosmic Rays, GAP-2016-025 (2015)

Daniele Proverbio - a.a. 2015/16 - UNITO 49