9
Amefican Mineralogist, Volume 59, pages 573-581, 1974 Structural Chemistry of Gopper and Zinc Minerals. Part l. Veszelyite, (Cu,Znl,ZnPO*(OHlr. 2 H,O: A NovelType of Sheet Structure and Crystal Ghemistry of Copper-Zinc Sirbstitution Susnnra Gnosn, SnNou R. Lno, nNo CHe'Nc WnN Department of Geological Sciences,Unioersity of Washington Seattle, Washington 98195 Abstract To elucidate thecrystal-chemical role of copper andzinc in mixed copper-zinc minerals, the crystal structure of veszelyite from Arakawa Mine,Japan, (Cu/Zn ratio 1.43) hasbeen determined. The cell dimensions are;ao: 9.828(3), b. : lo.Z24(3), co : 7.s3.Xz)A, p - 103.18(2).; space group: P2r/a, Z : 4. Thestructure hadbeen refined to an R-factor of0.044 using 1691 reflections collected on an automatic single crystal diffractometer. Both Cu(1) and Cu(2) have tetragonally distorted octahedral coordination. cu(l) has4 (oH) ions in a square plane (cu-oH av. 1.98 A), wtrite o(r) andHzO(2) at distances of 2.47 and,2.62 A complete theoctahedron. Cu(2) has3 (OH) andone O in a square plane (Cu-O, OH av. 2.00 A1,whileH:O(l) and HrO(2) occur at 2.47and2.35 A respectively. The ZnO(OH) and POr ions are nearlyregular tetrahefua, with average Zn-O 1.95 A and P-O 1.54 A. The Cu(1)and Cu(2)octahedra share edges to form a noveltype of openoctahedral sheet contain- ing eight-membered octahedralrings. Zinc and phosphorus tetrahedra share corners to form a tetrahedral sheet which has four-andeight-membered rings. In each ring,halfthetetrahedra pointup, the apiceg sharingcornerswith the octahedral sheet above,while the other half of the tetrahedra point down, the apices sharing corners with the octahedral sheet below.The tetrahedral sheet is comparable to the silicate sheet formedof four- andeight-membered ringsin a numberof framework silicates, e.g., paracelsian, BaAlzSizOs. Both sheet structures are parallel to the (0Ol)plane. Further substitution ofcopper by zinc is possible at Cu(l) andCu(2) sites, resulting in more regular octahedra. Introduction Stereochemistry of the divalentcopper(/) ion is of great interest, because / ions cause distortions in regularoctahedral or tetrahedral coordinationaccord- ing to the Jahn-Tellereffect. In addition to the dis- torted octahedral or tetrahedral coordination, Cu'* can also adopt square planar, trigonal bipyramidal, and square pyramidal coordinations. Due to this variety of coordination which can be adopted by divalent copper, the structural chemistry of copper minerals is very complex (Zemann, 1961, 1972; Ghose, 1966). The Zn'* ion, on the other hand, has a filled d'0 shelland is very similar to Mg'* ion in many respects. However, in addition to the regular octahedral coordination , Zn" ion hasa strongtendency to adopt regular tetrahedral coordination. Zinc in mixed coordination is found in a number of zinc minerals. Zinc sometimes also adopts the trigonal bipyramidal or square pyramidal coordination. As a result, the structural chemistry of zinc minerals is also rather complex(Brehler, 1969). In spite of the stereochemical differences between Cu'* and Zn'* ions, zinc is known to replace coppef in a number of basic copper minerals. The crystal chemistry of the copper-zincsubstitution cannot be understood, unless details of these mineral structures are known. In this series of papers we plan to examine the details of the structural chemistry of copper and zinc mineralsincluding the mixed varieties. In Part I of this series, we present the drystal structure of a mixed copper zinc phosphate mineral, namely, veszelyite, (Cts, Zn)" POn (OH)s.2 HrO. Crystal Data and Experimental Bluish green veszelyite crystals from Arakaqa Mine, Japan (varietal name, arakawaite) Cur.r, Znr.rn POn(OH)s.2 H,O (Wakabayashi and Kornada, l92l; in Palache, Berman, and Frondel, 1951) wereusedfor the structuredetermination. The cell dimensions have been determined and refined by the method of least squares using 15 high angle reflections measured on an automaticsinglecrystal diffractometer. The crystaldata are: monoclinic,2/m; space group, 573

Structural Chemistry of Gopper and Zinc Minerals. Part l

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Structural Chemistry of Gopper and Zinc Minerals. Part l

Amefican Mineralogist, Volume 59, pages 573-581, 1974

Structural Chemistry of Gopper and Zinc Minerals. Part l.Veszelyite, (Cu,Znl,ZnPO*(OHlr. 2 H,O: A Novel Type of SheetStructure and Crystal Ghemistry of Copper-Zinc Sirbstitution

Susnnra Gnosn, SnNou R. Lno, nNo CHe'Nc WnN

Department of Geological Sciences, Unioersity of WashingtonSeattle, Washington 98195

Abstract

To elucidate the crystal-chemical role of copper and zinc in mixed copper-zinc minerals, the crystalstructure of veszelyite from Arakawa Mine, Japan, (Cu/Zn ratio 1.43) has been determined. The celldimensions are; ao: 9.828(3), b. : lo.Z24(3), co : 7.s3.Xz)A, p - 103.18(2).; space group:P2r/a, Z : 4. The structure had been refined to an R-factor of0.044 using 1691 reflections collectedon an automatic single crystal diffractometer. Both Cu(1) and Cu(2) have tetragonally distortedoctahedral coordination. cu(l) has 4 (oH) ions in a square plane (cu-oH av. 1.98 A), wtrite o(r)and HzO(2) at distances of 2.47 and,2.62 A complete the octahedron. Cu(2) has 3 (OH) and one O in asquare plane (Cu-O, OH av. 2.00 A1, while H:O(l) and HrO(2) occur at 2.47 and2.35 A respectively.The ZnO(OH) and POr ions are nearly regular tetrahefua, with average Zn-O 1.95 A and P-O1.54 A.

The Cu(1) and Cu(2) octahedra share edges to form a novel type of open octahedral sheet contain-ing eight-membered octahedral rings. Zinc and phosphorus tetrahedra share corners to form atetrahedral sheet which has four- and eight-membered rings. In each ring, halfthe tetrahedra point up,the apiceg sharing corners with the octahedral sheet above, while the other half of the tetrahedrapoint down, the apices sharing corners with the octahedral sheet below. The tetrahedral sheet iscomparable to the silicate sheet formed of four- and eight-membered rings in a number of frameworksilicates, e.g., paracelsian, BaAlzSizOs. Both sheet structures are parallel to the (0Ol) plane. Furthersubstitution ofcopper by zinc is possible at Cu(l) and Cu(2) sites, resulting in more regular octahedra.

Introduction

Stereochemistry of the divalent copper (/) ion is ofgreat interest, because / ions cause distortions inregular octahedral or tetrahedral coordination accord-ing to the Jahn-Teller effect. In addition to the dis-torted octahedral or tetrahedral coordination, Cu'*can also adopt square planar, trigonal bipyramidal,and square pyramidal coordinations. Due to thisvariety of coordination which can be adopted bydivalent copper, the structural chemistry of copperminerals is very complex (Zemann, 1961, 1972;Ghose, 1966).

The Zn'* ion, on the other hand, has a filled d'0shell and is very similar to Mg'* ion in many respects.However, in addition to the regular octahedralcoordination , Zn" ion has a strong tendency to adoptregular tetrahedral coordination. Zinc in mixedcoordination is found in a number of zinc minerals.Zinc sometimes also adopts the trigonal bipyramidalor square pyramidal coordination. As a result, thestructural chemistry of zinc minerals is also rathercomplex (Brehler, 1969).

In spite of the stereochemical differences betweenCu'* and Zn'* ions, zinc is known to replace coppefin a number of basic copper minerals. The crystalchemistry of the copper-zinc substitution cannot beunderstood, unless details of these mineral structuresare known. In this series of papers we plan to examinethe details of the structural chemistry of copper andzinc minerals including the mixed varieties. In Part Iof this series, we present the drystal structure of amixed copper zinc phosphate mineral, namely,veszelyite, (Cts, Zn)" POn (OH)s.2 HrO.

Crystal Data and Experimental

Bluish green veszelyite crystals from Arakaqa Mine,Japan (varietal name, arakawaite) Cur.r, Znr.rnPOn(OH)s.2 H,O (Wakabayashi and Kornada, l92l;in Palache, Berman, and Frondel, 1951) were used forthe structure determination. The cell dimensions havebeen determined and refined by the method of leastsquares using 15 high angle reflections measured onan automatic single crystal diffractometer.

The crystal data are: monoclinic, 2/m; space group,

573

Page 2: Structural Chemistry of Gopper and Zinc Minerals. Part l

574

P2,/q; a" : 9.8275 (22), b" : 10.2244 (30), c" :'7.5322 (28) A, g : 103.18 (2)"; cell content, [Cu,.,,Znr.zn POn(OH)r. 2 HrOl; density, g/cm", 3.4 (meas),3.42 (calc); p for MoKa, 95.86 cm-1; cleavage, {001 }.The foregoing cell dimensions are in good agreementwith those measured by Berry (1948) for crystalsfrom Moravidza.

A crystal sphere (0.297 mm in diameter) wqsprepared using a Bond type sphere grinder (Bond,l95l) and mounted on a Syntex Pi automatic singlecrystal diffractometer in an arbitrary orientation. Theorientation matrix was found automatically. A totalof 1691 reflections were collected by the 2A:0 methodwithin a sphere of 20 : 60", using MoKa radiation,graphite monochromator, and a solid state detectionsystem. The scan rate was variable, the minimum ratebeing |o/min. The intensity data have been correctedfor Lorentz, polarization, and absorption factors(pR : 1.42). The infrared spectrum of veszelyite hasbeen recorded on a Perkin Elmer (model 13) spectro-meter with CaF, prism using a Nujol mull technique.

Determination and Refinement of the Shucture

A three dimensional Patterson synthesis (Puow)showed Patterson peaks concentrated in sections atu : 0, l/6, l/3, and l/2. Three minimum function(M2) maps (Buerger, 1959) were prepared using thesesections and three peaks presumably of the type2x, 2y, 2z as points of superposition. These three peakswere chosen on the basis of their consistency withthe Harker section at u : | /2 and Harker line atl/2 u0. Structure factor calculations using the three

sets of heavy atom positions obtained from the M2maps yielded R factors of 0.56, 0.58, and 0.36. Theset of heavy atom positions giving the lowest R-factorapparently was correct. Three dimensional Fourierand difference-Fourier syntheses, based on the phasesdetermined by these heavy atom positions, revealedthe locations of phosphorus and all the oxygen atoms.The refinement of the structure was carried out usingthe full matrix least squares program RrINr (Finger,1969) on a cnc 6400 computer. The obperved structurefactors (Fo's) were weighted by I'/o"(Fo), wherea(Fo) is the standard deviation based on countingstatistics. The'scattering factors for Cu, Zn,P, and Owere taken from Cromer and Mann (1968). Correc-tions for anomalous dispersion have been made(Cromer, 1965). Copper and zinc were assigned on thebasis of site geometry at the heavy atom locations.No attempt was made to refine the site occupanciesat the Cu(l) and Cu(2) sites, although about l0percent of the copper is thought to be replaced byzinc at these positions according to the chemicalanalysis (Wakabayashi and Komada, 1921; cited inPalache, Berman, and Frondel, 1951). For the leastsquares refinement, these two positions were con-sidered to be completely filled by copper. Threecycles of least square refinement using anisotropictemperature factors reduced the R factor to 0.052(weighted) and 0.0214 (unweighted) for all reflections.The final atomic parameters with standard deviationsare listed in Table 1. The r.m.s. displacements andthe orientation of thermal ellipsoids are listed inTabIe 2. The interatomic distances and angles with

GHOSE, LEO, WAN

Tlerr 1. Atomic Parameters for Veszelyite

At@ B e q . Btt* B2z Bgr Brz Brs Bzl

Cu (1)cu(2)

Za

P

0 (1 )0 (2 )0 (3)0 (4 )

0H (1)cH(2)oB(3)

olt2 (1)ffiza€)

. 12991 (8 )

. 35837 (8)

. 2Lo36 (7 )

,41433(16)

,03230 (45).35754(46). 46803 (44).29531<46)

.26853(45)

.23522(43)

.46392(4L)

, 03710 (49). r .9138(s0)

.07328(7)

. 2s3 r8 (8 )

.076L2(7)

. 29884 (1s)

. r5904(45)

.L6623(44)

.28632(43)

.39994(43)

.o8673(42)

.2L782(42)

.4O724(40)

.38414(51)

.40815(51)

. 4ells (10)

.4s957 (9>

. 069 36 (9)

.06551(21)

.97475(60)

. 98344 (60 )

. 27424 (57 )

.02472(64>

.33723(57)

.62330(57)

.60096 (s6)

. 65 793 ( 71)

.31930(65)

. 982 ( l s )

.946(L4)

. 990 (14)

.835(24)

1 .209 (71 )L .237 (73 '1. 075 ( 70)r . 31s (74 )

1.030 (68)1.008(69)

, 8s3 (64 )

L.929(87)1.8r5 (85)

318(8) L72(7> 583(14)321(8) 165(6) 527(13)

308(8) 184(7) 534(13)

273(L5) 155(13) 4s1(25)

324(45) 322(42) 553(78)466<49) 152(39) 7L2(82)434(49) 237(4L) 352(72>365(45) 190(40) 904(90)

424(46) 189(39) 450(73)332(44) 22o(4r> 487(74)210(40) 161(38) 563(75)

395(50) 373(49) 1254(106)569(56) 450(51) 780(92)

-70(6) 224<8) -78(7)-62(6) 2r1(8) -39(8)

-20(s) L4e(7) -40(7)

21111 165 (16 ) 21 ( r s )

12q135; 168(47) 17(47)-88(35) 253(s2) -69<46)-56135'1 L76(47) -2r(43)

91(37) 231(s1) L79(49)

-14(35) 270(48, -13(43)-7s(34) 2LL(47) -41(43)-27G3\ 149(44) -26(43)

4 (40 ) 107 (58 ) - r 9 (57 )

34(42) 301(s7) 1(s3)

ttBll x lo-)i form of taperaEure factor, ex.p {f

i-t

3X h l h a $ 1 1 )

J=r

Page 3: Structural Chemistry of Gopper and Zinc Minerals. Part l

VESZELYITE, A NOVEL SHEET STRUCTURE 575

standard errors (including the errors in cell dimen- TasLB 3. Interatomic Distances and Bond Angles in Veszelyitesions) have been calculated using the Ennon program(Finger, private communication) and are listed inTable 3. Observed and calculated structure factors arelisted in Table 4.

Bond Lengths (8) Bond Angles (o)

Description of the Structure

Stereochemistry of the Cupric Ions

Both Cu(l) and Cu(2) have tetragonally distorred,octahedral coordination (Fig. l). Cu(l) iq surroundedby four (OH) ions, roughly in a square planar arrange-ment at distances of 1.99, 1.94,2.N, and 1.98 A; oneoxygen, O(3), and a water molecule, HrO(z), completethe octahedron at distances of 2.47 znd 2.62 4,.Likewise, the Cu(2) ion is bonded to one oxygen andthree (OH) ions in a square plane at distances of1.98, 2.05, 1.95, and 2.0a L; two water molecules,HrO(l) and H,O(2), at distances of 2.47 and 2.35 A.respectively, complete the octahedron.

Tanl.,B2, Magnitudes and Orientations of Thermal Ellipsoids forVeszelyite

Aton Axls 15 ,o. agles (o) of ri withd P u E u d e ( A , a b

- c

,086.o94

.085

.099

.r37

.096

.109

.128

.088

.095

.L23

. 0 9 4

.L22,L49

.o82

, 159

.089

.108

.L46

.083

. 1 6 8

.085

.100

. r48

.090

. 1 0 4

. 140

.086

. 0 9 5

, r40.188

oLr2 (2) I ' l?9 r20.7(r7.4) B3.G(L2.3) 13s.s(r7.7)z . r t q 8 3 . 5 ( 2 1 . 4 ) 1 5 5 . 8 ( 2 0 . 8 ) 1 0 3 . 8 ( 2 1 . 8 )3 . t to 2r , .3(30.r> i2.3426.0i LLB.5a2s.s i

0ctahedron

oE( l ) - cu( l ) - 0H(2) 87 ,7(2)0H(2) - cu(1) - 0H(3) 95 ,8(2)0H(3) - cu( l ) - 0H(3) ' 82 .6(2)0 I I (3 ) ' - cu( l ) - oH( I ) 100.4(2)0(3) - cu( I ) - o f l (1 ) 89 .9(2)o(3) - cu( l ) - o [ (2 ) 94 .9(2)o(3) - cu( I ) - o l t (3 ) 7s .7 (2)0(3) - cu( I ) - oH(3) ' 9s .L (2)

oH2(2) - cu(1) - oE( l ) 84 .2(2)0Hz(2) - cu( l ) - 0H(2) 89 .9(2 \onz(2) - cu(1) - oH(3) uo ,4(2)oHz(2) - cu( l ) - o l { (3 ) ' 80 .7(2)

0(3) - cu( l ) - 0Hz(2) 177.9(2)

Octahedron

os(1) - cu(2) - 0 (3) 94 .2(2)0 t l (2 ) - cu(2) - oH( r ) 92 .2(2)0H(3) - cu(2) - 0H(2) 97 ,3(2)o(3) - cu(2) - oH(3) 86 ,7(2)

oHz( l ) - cu(2) - ou( l ) 88 .5(2)0ur (1) - cu(2) - o (3) 95 .6(2)0H2( I ) - cu(2) - oH(3) 85 ,2(2)osr ( r ) - cu(2) - oH(2) 88 .3(2)our (2) - cu(2) - o [ (1 ) lOO.o(2)oHz(2) - cu(2) - o (3) 90 .2(2)0Hr(2) - cu(2) - oH(3) 86 ,2(2)oH2(2) - cu(2) - o l t (2 ) 86 .5(2)oEz(2) - cu(2) - o l t r ( I ) 159.3(2)

cu(1)

Cu(2)

Zt

0 (1 )

0 (2 )

0 (3 )

0 (4 )

cn (3) r2

cH2 (r) r2

1 . 9 7 1 ( 4 )! .929 (4 )L .946(4)L ,932(4)2 .516(6)2 .489 (6 '2 . 5 0 3 ( 5 )3 . 2 7 L ( 5 )3 . 0 9 8 ( 5 )3 , 2 4 L ( 6 '

r . 5 3 6 ( 5 )1 . s41(5)r .546 (3 )r . s39 (4 )2 . 5 0 3 ( 6 )2 .489 (6 )2 , 5 1 6 ( 6 )2. sLz(6)2 . s 3 0 ( 5 )2 .s4o(6)

0 ( 1 ) - ?0(3) - ?o(4) - P0(2) - Po ( 2 ) - Po(2) - P

5 9 . 2 ( 1 0 , 5 ) 3 5 . 2 ( 6 . s ) 8 1 . 8 ( 9 . 1 )5 8 , 4 ( 1 0 , 5 ) r L o , 2 ( 9 . 4 ) 5 0 . 3 ( 1 1 . 7 )4 6 , 8 < 2 , 4 ) 1 1 3 . 5 ( r . 7 ) 1 3 8 . 6 ( 3 . 0 )

6 0 . 2 ( 5 . 8 ) 3 8 . 4 ( 3 . 6 ) 7 5 . s ( 5 . 7 )6 2 . 5 ( 6 . 1 ) r 1 3 . 4 ( s , 6 ) 4 8 . 2 ( 6 . 9 )3 7 . 5 ( 3 . 3 ) 1 r . 0 . 2 ( 1 . 8 ) r 3 2 , 0 ( 4 . 0 )

8 8 . 4 ( 5 . 1 ) 1 5 . 0 ( s . s ) r 0 4 . 8 ( s . 8 )4 8 . 8 ( 8 . 8 ) 8 4 . 1 ( 5 . s ) s 4 . 9 ( 8 . 8 )4 5 . 9 ( 5 . 8 ) r 0 7 . 1 ( 3 . 5 ) r 4 2 . 8 ( 6 . 8 )

67 .4(29 .s ' 43 .7(27 .7) 6 r .9 (30 .7)5 5 . 6 ( 3 8 . 1 ) 1 2 0 . 8 ( 3 0 . 8 ) s 8 . 9 ( 3 6 . 9 )3 7 . 0 ( r 0 . 6 ) 8 4 , 2 ( 6 . 2 ) 1 3 9 . 4 ( t 0 . 9 )

4 6 . 8 ( 1 2 . 0 ) 1 1 8 . 3 ( 1 0 . 6 ) 6 7 , s ( 1 6 . s )92 .4(L t .6 ) 66 .4(23 .L ' 25 .7(2 ! .5 '5 0 . 5 ( 1 3 . 1 ) 3 9 . 5 ( 1 3 . 1 ) 9 8 . s ( 1 4 . 6 )

7 5 . 3 ( 9 . r ) 1 4 . 7 ( 8 . 7 ) 9 2 . 5 ( 1 r . 0 )5 7 . 8 ( 1 7 . 0 ) 9 4 . 3 ( 1 0 . 2 ) 4 5 . 6 ( L 7 . 2 )3 0 . 9 ( r 5 . 4 ) r 0 8 . 2 ( 7 . 8 ) L 2 5 . 4 ( 2 2 , O )

108.7(19 ,2) 92 .8(2O.6) 148.0( r9 .7 )1 0 5 , 4 ( 1 3 . 5 ) 1 6 4 . 5 ( 1 5 . 7 ) 8 4 . 2 ( 2 s . 7 )1 9 . 4 ( 1 1 . 6 ) r 0 8 . 8 ( 1 2 . 0 ) 9 7 . 8 ( 8 . s )

103.8(12 .8) 18 .8(13 .6) 74 .6( rL .6 )I 4 0 . 2 ( 1 4 . 1 ) 9 s . 7 ( r r . 9 ) 1 1 6 . 1 ( 1 4 . 5 )

7 2 . 6 ( 8 . 6 ) 6 5 . 1 ( 8 . 9 ) 1 5 4 . 4 ( 9 . 8 )

118.4(30 .5) 89 .2(27 .6) 138.4(30 .6)9 3 . 7 ( 2 0 . 8 ) 1 7 5 . 3 ( 1 8 , 4 ) 8 9 . 5 ( 3 1 . 7 )rs .2 ( r r .4 ) 94 .s (9 .7 ) r17 .6( r1 .5 )

727.2(5L .4) LL3.3(26 .2) r22 .4(s3 .5) ,8 5 . 4 ( 4 3 . 9 ) 1 3 9 . 1 ( s 3 . 8 ) s 2 . r ( s 7 . 1 )36 .s (15 .3) r19 .4(14 .0) L20.7(L7 .4)

46 .3(7O.5) 53 .4(s8 .7) 76 . r (48 .2)5 7 . 3 ( 6 7 . 5 ) r 3 1 . 6 ( 7 0 . 4 ) 5 7 . 7 ( s 5 . 8 )72 .9( r4 .9 ) 100.8(14 .4) 168.4(L5 .2)

1 4 . 0 ( 3 6 . 0 ) 9 6 , 9 ( 8 L . 2 ) 9 r . 0 ( 9 . 0 )9 5 . 9 ( 7 8 , 4 ) 1 7 3 . 9 ( 7 0 . 2 ) 8 7 . 0 ( 1 2 . 8 )

1 0 3 . 0 ( 7 . 5 ) 9 2 . 6 ( 7 . 3 ) L s 3 . 7 ( 7 , 5 )

cu(l) - 0H(1)cu(1) - oH(2)cu(I) - 0H(3)cu( l ) - 0 l t (3 ) 'cu( l ) - o (3)0H(2) - oH(3)on(3) - oB(3) l0H(3) ' - 0H(1)0H(1) - 0H(2)oHz(2) - o l t (2 )oHr (2) - 0H(3)o u z ( 2 ) - 0 H ( 3 ) '0n, (2)- oE(1)0 (3 ) oH(2)o (3 ) - 0H(3)o ( 3 ) - o H ( 3 ) ,0 (3 ) - oH( r )

cu(2) - oH( l )cu(2) - oH(2)cu(2) - 01r(3)c ! (2 ) - o (3)cu(2) -0R2(1)cu(2) -oH2(2)oH(3) - oH(2)on(2) - 0H(1)oH(r ) - o (3)

0(3) - 0E(3)0H2( r ) - 0H(3)oHr(1) - OE(2)ouz( I ) - oE(1)oH2(1) - o (3)oHr (2) - OE(3)oHz(2) - 0lr(2)oEr (2) - oH( r )oH2(2) - 0 (3)

Zt - OH(1)Zn - o (1)zn - O(2)zn - 0(4)o(4) - o (1)0(1) - o (2)o(2) - o (4)

0H(1) - 0(4)oB(1) - o (2)oH(r) - 0(r)

P - o (1)P - o (2)P - o (3)P - o (4)o(4) - o (2)o(2) - 0 (1)o( r ) - o (4)o(3) - o (4)0(3) - o (2)o(3) - o (L)

Cu( I )

r . 9 8 5 ( 4 )r .943(4)2 .000 (4 )1 .980 (4 )2 .46s(4)2 . 9 2 7 ( 6 )2 .628(8)3 .045(6)2 ,624(6)2 .962(1)3 . 0 1 4 ( 6 )3 .0r3 (6 )3 . 1 r 8 ( 6 )3.266(6)2 .763(6)3 .296(6)2 .942(6)

cu (2)

2 .038(4)r .949(4)2 . 0 4 7 ( 5 )L .978(4)2 .468(5)2 . 3 s 2 ( 5 )2 .927 (6 )2 . 6 2 r ( 6 )2 .942(6)2 .763(6)3 .072(7)2 .642(7)2 ,8r2(6)3 . 3 1 1 ( 7 )3 .0r4(6)2 .962(7)3 .118(6)2 .923<7)

Zo - Tetrahedron

0H(1) - Zn0(1) - zno(2) - zno(4) - zt0 (4) - zno(4) - za

P - Tearahedron

- o (1) rL2 .4(2)- o (2) 110.4(2)-o t (1 ) 104.5(2)-oH(1) r13 .9(2)- o (1) 109. r (2 )- o (2) 106.3(2)

- 0 ( 3 ) u 1 , 0 ( 2 )- 0 (4) r09 . r (3 )- o (1) 109.6(2)- 0 (1) 10E. r (3 )- 0 (3) 110. r (2 )- 0 (4) 10E.8(3)

2

I

ou (2) l23

The [Cu(l{OH)4O(HrO)]'- octahedron shares oneedge, OH(3)-(OHX3)', with a centros)rmmetricallyrelated Cu(l) octahedron, and the opposite edge,(OHXI)-(OHX2), with a Cu(2\ octahedron. Further-more, it shares two edges, namely O(3)-(OH{3) andOH(3)-(OH)(2), with two centrosymmetrically relatedCu(2)-octahedra (Fig. 2).

The [Cu(2)O(OH)'(H,O),]3- octahedron shares twoadjacent edges, namely O(3)-(OHX3) and O(3)-OH,(2),with two Cu(l)-octahedra on the one side and one

Page 4: Structural Chemistry of Gopper and Zinc Minerals. Part l

Tlsr,B 4. Observed and Calculated Structwe Factors for Veszelyite*

F * t r b F * r r r b F l t l F - F 4

4.296 | .9 r0-e 56 .1J1-6 6r .906

66.20 0

2 2 f .626( 9 . 1 1 26 3 2 , r ! 2c 65.677

t . 5 1 0 . 5 r . r 9r o . a ? t 6 . 9 J 369.? t9 66 ,029

- 9 6 . 5 9 0 r z . a r r- r r 7 . 1 r 9- 7 . ! . 9 6 .-5 56 ,4 t3 56 .909

-4 \5 .56 f 15 .666-J r r r .?00 \20 .s2E

- r a ! . 0 9 ? 9 2 . 2 1 r0 t t .2a71 5 .569

3 9 . ? d J? r ! 3 t r

5 {3 .901

a 1 6 . 1 2 3

t a F - F *

?7.5409 - .

lo .?00 l r .3 { l9 - 5 t 5 , t l 6 I ' J 1 0

! 0 . 6 ! 5r r . 0 a 2 r . 9 5 9

9 -Z (6 , ! !7 \6 ,95r16 .J51 16 .675

! ? . 0 7 3

9 2 9 9 , 6 1 1. 0 . 1 1 5

ta . r5 .9 6 L f ,a f l 17 ,391

r a . 0 9 t i 9 . ! 9 t

1 0 - 5 2 . 2 7 n7 . 4 1 9 5 . 1 5 r

3 a . 2 9 9 3 6 . 5 0 t5 . r t c I

1 0 - 2 . . 2 3 0r o - 1 3 0 . t 2 9r0 0 5a . r5 r 60 .49rr 0 r 6 . & 9 r 5 . 5 0 4r0 2 26 ,96? 30 .53 t10 3 5 r .929 54 . .05

. , 2 2 2r 0 5

1 5 . a C 0r . 2 6 6

10.997

9 , 0 9 33 4 . r 0 3 J 9 . t l 9

22.5r6

\L . t55r r , 2 r i2 . 0 0 {

1 6 . ! 9 r2 . 5 s t

r .026 L ,329t 2 - 1 2 . 0 1 3r ? 0 r ? . 3 a 71 2 r J . r 0 9 !

20 .0? ! 19 . t9 r

a t F t F *

r r . t l 01 -6 '1 .692 16 .167

f2 .2O. t l . rd9I - . 59 ,313

2 ? . t r t 2 0 . i 0 ar - l 65 .115

z J . 9 t 31 0 c0 .6 l t

1 1 A . ! ? rt 5 . . ? t

93 ' 99?t 9 . 0 $

L 5 z { . r ia z t . t f lr .2 ,2

2 . , t 0 91 9I 1 0 1 3 . 5 t 9

27.151 ?6 .aZS2 . r l L f .a2 . 1 r .02r2 -10 rJ .g? . 1 { .6 t t2 - 9

t9.6275 0 . 9 6 21 9 . 9 1 J 2 0 . 0 t ttn .662

2 - 4 l r . r ' t2 -3 Z5 . ta6 26 , \36

6r . r912 - r ' r . i r t

t . 1 5 S r1 0 . r r r

r29 .S l2 r !5 .20{z t r t ! .620 115.00r2 4 3t.276

2\ .922at .25r 35 .6St

: 9 r t . 9 2 0z 1 ! za . {3

41.111 f f .40 tr .599 ! 3 .613

a - r 0 r 0 9 . ? 6 0 l 0 7 . a r e22. r53 2r .0131 2 . r 4 0 1 0 , 7 1 9

3 -? 10 .0+3 10 .206129.912

ar .99 fi . a 6 5 ! r . l l 5

25 .506 z t . * r5 . . t66

J 2 L63, l2L 1r9 . r01r 0 . r 0 r r 9 , 9 ! t

3 4 L t t . f r r

a . 0 9 tI 10 3 .4 t2 .

a r . 5 5 . 3 9 , Z l r? r . ? 2 ! 2 0 . r 0 1

c - 1 0q.991

rJ .65r2 t . 1 0 r 1 r . 5 t 9( r . 2 1 5

92.964

{ ?92.93 4

l 7 . r { l 1 7 . 0 5 6. , L?1.233

.9 .a99 .6 .a992J , r91

\ ' t \41 r . 6 9 r 0 . 9 r 2

39.939 37 .4961 1 . 9 6 1

2r .6 lL

14.06 i 9 .9 t95 - 35 -2 5 f .C0f 9 i .90 !

a 9 r r 0 0t 0

1r0 !99939.? fal l .g t40.424

9. . . i t ,06?r a . 1 2 r7 ,26 .

10 .912 A. t96s . 4 0 3

t1 .697r 2 r . 1 1 2

5 - t r 6 . J 5 3{ l ! 0? 039.310

r r .95929.599 29 . . {92 l . f r0 22 .99r

f L&529.211 2r .066

29.909n T r r t r

1 2 1 . 6 r a 1 1 . . a t 92 ' ' ,3s

99. r49

6 ! . 9 0 6r6 . r0 .

1 r .9a l

| -2 tJ .69 tr t .929

| 0 Jo . r t r r9 .J75| \ ?n .3?9

t9 ,96J, \ .292

1t . .30

6f . f9dr0 .J93

! - !0 35 . !5 i6 - 9 3 0 . 5 0 ?

5.650 ' t ' . s t22 ,69 \ 2 t .9 t !t r .76r t0 . l f2

a t .znz 5r .6653 . a l i ' r . 1 0 2

n -2 3 t ' t r21J .950 ! . . s t

l r ' 1 0 3L '115

6 0 . 9 a 011.999 01 .9 t9

9 9 . 0 3 1! r . 0 ! r 1 t . 1 9 6r . ta? . 5 . la t

6 f ao .9 l ! za '295ra . r52

9 - 221.2f6

9 0 t 0 . 5 0 59 19 29 3

5r .9ar 52 .296t2 . .22

2 ' 6 ? 0, , 9 1 6

l e - 7

f9 .213? \ . I L I3? ! ?9r1r ,724

r 0 I1 0 2 r 1 . J 1 2 \ 2 . 2 . 2r 0 3 r r . 3 5 6 1 0 . 6 r rr 0 { 1 0 . 0 5 3

r 0 6 + r . t o tt J ' 9 3 9

1 ' '97{!a -6 16 .379 r r .gaa

t2 .93 f26.379

. s . 0 0 01r .5 ra l r !990

t r 0 2 2 . 1 5 0t l r z r . s z 2 0 . 5 1 r

r t q 3 j . r c 0r3.t26rl.27t

12 -a 5 r .95?L 2 - ! l 2 . 7 i S

r ! . ! ! a r r . t 5 6a2.99r

77.Ja0?2 ' t9X

r . J 0 71 2 4 1 r . 9 r 2 r l . 7 l r

t 7 . 0 0 ro - r0 6 r .729

r2r .2 t2g r , z a ? 5 t . r 7 l

r r5 .5 t rr r . t 3 r

0 0 t1 . r2 i 12 .23rr5 . ,2 i

t6 t .ca t r91 '260r o 0 . r a lt f . f 55 . . 1 2 ' 2 . 7 5 Lf , l2 i

2 0 . 0 J 2t - . 22 .a29 2 t .162

order.

5 c ! ? 7 r 5 . t . 9 r 6 . 1 6 1L t a6 '2 'o 25 '11 !

2r '656 22 ' 'os 25 '112

r l t . 0 t rt ' s ' r 1 t . ! t 5

r 1 . 3 3 r 5 , 5 6 2 . r ? ? 3 t . 9 9 J9.610 L2 3 29 .2L2 26 .2S4

r - r2 zo .3zr26 .519 19 .0{0

1 5 ' 2 1 '2 r .405 r ! r \ \ .a61 .6 ,03?

t r . 0 r 3 3 2 . ! ? s ! r . { ' t3 1 . 5 0 6 { ! . t r r22 ,99 \ tn . roo

r9 .s9c 50 .166a6.225

6 9 ' 5 r a 0 7 . 5 6 r3 r . 5 r 3

3 3 . 5 0 t r l o . c z r 9 9 . J 9 ? 5 3 . 0 6 9

r r r . l r0 105.a0r 252.c6 t 25r .5521 1 5 , ? 6 3 l o ? . b ! o r o r . 5 5 ! J 1 , 2 0 9

.5 . !10 124. {6 (0 r 1 4 . 9 2 ! 5 0 . i 3 0

r ,5991 6 . 9 2 9 r 5 . 9 o z o !6 9 . 2 9 0 6 r , 9 t 5 q 9 . 0 5 9

20.a20 r -12 20 .95 ,l .a f9 a

r z . { ? J t , ? 2 9 r _ r 0 9 ' 6 C 9 e . 9 ? 31 0 9 . 0 9 7 a . l ! r 1 2 . 6 6 4 ! 0 . 7 . 7

21.60?9r .966 r . r95 6 .993 6 .999

5 l ' 9 t o 5 2 ' \ 2 5 t r q ' t 6 o1 0 . 5 q 0 1 0 . 1 9 d

29.c10 5 _ , .2 .d916 5 . r 6 r

6 f .9 t rn1 .99r 6 r .L i9 r t1 .6192?.293 t r . r90

r2 '99 t 1 IJ 1 . 9 9 5 5 r 9 r . t 1 t 9 4 . : 6 0

t 2 J 5 ' t 1 o J 2 ' t 3 o 2 t ' 9 " 6a f .54o 64 .99 f r2 . r2?

6 r . r r t 6 2 , 5 J r ! 2 . 6 1 1b 5 . 9 r ? 6 ? , 9 9 x 6 . ? 1 9

6 f t2 .2999 . r r 4 a j 6 0 . 1 9 5 5 5 . 9 r J

2 ,142 46 .7296 . ! 7 1 5 r 0 6 . 5 5 0 . ! 9 ' 9 7 r . 3 ' 0 7 0

l i :3 : ! : - l l ' l : l i l . ' ' i : ! i i 2 -12 L ' . 's2,i:1i,. ; -i; ,i;6ii

":i;; z :ii l:::il i::::,i" ; : ; ; :

6 . r . !; : ; ; ; r 0 . . e 2 .; : ; ; i 2 r . 0 l r 2 6 . q 5 6 2 - r f r . 2 0 . t 2 . 7 e r

r r . r 2 z q r 4 L 26 . t 9 0 a . ? 2 4 t 0 r . B 9

r r r . g a j r ! t . ? l r 6 r , . 9 r1 0 r . r 0 9

9.a602 - r , r . z t , 7 a . 9 r 0

1 1 r . 0 ; 1 ! 3 1 . 0 r 01 r . 9 2 r5 t .904 65 ,214 0 .269

2 3 29 .9?6, f .199 156. r \? \7 .24 t19 .545 ? 5 l { .55 t31 .15 ' 65 .52 . a2 .a t '

1 r .9 r0 13 . r { i 50 . t5 . 5 \ .39 f2 . S 1 d r t . 9 ( 3 . 2 . 9 1 6

'6 '931t ' ' t 2 z

?"..i?z ; -13 l;:3:: ll:;3: : -i: ,i:11t. .t:3tt

L 2 . r 2 t 1 3 . 2 1 3 r r . o r tl 0 o . l 9 ! 1 0 1 . 9 7 1 6 J . t 6 2 a 2 , L r 6

r -9 q .99 . 6 .92a, ; : ; ; ; . 6 . 2 t \ l r . r r ?

139.2 tGt - t r a . 0 r 6 1 6 . 9 0 7

r a . r J l t t . t t 6 3 - rf I r 9 . r 0 l l g . l a t ! . t 6 0

t ! .51 t 3 .? 115.659 r l ' .o t r!9 .611 2 .51n ' t ' 24(

f 3 22 .3J2 2r . r10 3 0 a0 .a9r 62 .266* !3 !1 3 l . ra t ?9 . .?3 3 I 22 .169 2 t , r r7

55.994 t r r . r r03 J 59 .906

99.55 t f 7 94 .16? 90 .595 r r .595 .9 .07126.sar 25 . ra r 13 .620

t0 .aJ5 r9 .66 t 19 .925 10 .566r { .096 t t0 t .a3 t t9 . t9 r

2 0 . 0 s 0 1 9 . 9 0 2 t r . 3 . !4 0 . r 9 4

1 6 . 6 0 ? r ! , r t 5 $ . s 6 9at .6 t6 6 - l t r ,5 l0 39 .91 ! ! ! t 1 r .676t . 5 6 2 9 . 5 5 7 r , l r a , 6 . 1 2 1

16.79 ! r2 ,a22 L . ,2?234.190 r9 '9 ! l r9 .a1a | - t0 z r . r742 0 . 0 r 62r .6 rJ a -? 9J , ! r6. t . 1 r l

' r .6 .e - . : : : ; : ; , i : : ; : . : : ; ; l

t ' r ' ' 55- , ; : ; i i ' r . r r . t t . .67i e . i i i I t . o . e * r 1 . 1 2 e 2 t . , t 6i i . ; 3 ; ! r z t . l t e " ' { r tr i . i i i r z . t e .t9 '59 ! 5 '6 ' fe i . rzz 11 . !75 2e . t6 r . 2 t t .6 t0 t1 .426

Lorir 25.56a 2..56n0 9

note that the ft and & columns are not in their usual* Please

6 \z . f ta65.26 t

3 0 . 0 6 6- 1 0 s . a r z- 9 1 9 . 0 4 1 2 r . 9 l r

- r r . 5 ? 9 . , t r r- 6 J 5 . 9 2 2 3 7 , 1 7 1- t 3 . , r r r

z5 . rn4

- 2 e r . J ! !. 1 r r . r 9 3

o z . a f 6 . ? . 5 1 61 1 1 . 5 t 0z r2 . f0 rt 55 .206 t? .Cn9

5 5 C . l 9 q6 6 . 5 4 6r r 0 . a 0 2 9 . J 2 4r 52 ,1629 69 .5L2 t2 . t?9

r c l 0 . 9 r r1 2 . 6 0 1 1 2 , 3 s 0r r . ts 13 .52c

- 6 2 9 . 0 0 6- t 3 r . r 1 0 ! 5 . 9 n {-6 96 .Zra 56 .060-5 9 .242 6 .97J- { a r 1 . t 7 1

1 5 . 6 0 r- 2 r a . 6 3 0 1 5 . 0 2 0

0 t r7 . f99I L2 .951 r2 .3or2 r 0 r . 0 r r

{ r ! . r 7 2 3 1 . 4 1 25 r3 .$3 r? .96{5 6 . 5 t 9 { . r 0 9r 2 3 . 1 3 0 2 1 . 1 0 0

s ?r . .9025.933

- r o 2 r . 7 1 2

-6 Z t .6 . r19 ' 060

-5 15 .6?{

-4 21 .651 2r . (0 r- J 1 5 r . 6 5 r t 5 r . 0 6 r- 2

" . 0 r 2- 1 1 r 0 . r 2 r0 r9 .3 r9 r9 .s t2

2a,L7 t! . r .920 4 t .0?2

5 rs .9 t6 19 .4a3

r 1 7 . 3 3 4

- 9 r 6 . 1 5 C r a . o r s

- 3 9 . 2 5 9 9 . 0 0 2-z t6 ,?22

I a r . t g r

62.29f

d 2{ .415 23 .563- 9 ! . r r 4 ! 1 . 9 0 5

- 7 r r . 0 r 0-6 i0 .2 r6 J9 .3S1-5 L4,566-q a9 .099

at .512

t0 .9r r r r . r929. . [2

-9 2 r . t ta- t t 4 . 9 0 .-7 96'|,2-6 6C.560 62 .690

6r ,J95?. r10

- t r 0 ? . 2 r 9 r 0 ? . a c 3-2 rs .z t f

9 .76rr 6 . 7 3 0

| 51 .5269 . 3 1 t

?2 .16Lr r . r o J ' r . 6 2 5

1 1 . 9 t a

r 62 .011 60 .12+9 . t r966

Lt .c2 ,r . l l r

r r .700 5 t .169-9 12 .5L9 i2 .659- 6 r r . 0 6 !- 7 r r . 1 3 t- 5 t 2 0 . 9 r r r 2 0 , 6 a !-6 J .1 r3 r 2 .30 !

r 3 . 3 6 ?-3 15 , rq7 r ! .?er- 2 2 r t . r 6 ?- r ? r . r 5 r 2 J . 0 2 10 ! r 9 , r ? r

2 9 . t 0 t

t r r . l a t r J , 9 r 0J r . 0 0 2l t .2?r

7 r3 .0 r7^ 29,tr69 r 7 . r 9 !

tJ ,2 r15 , 6 9 9 .

- 9 2 9 . 1 J 6- i 5 t . l r3 9 t .550

1 r . 9 7 1-6 J0 .669 29 .602- 5 l t a , ? r l- r 6 .613

-3 66 .4 t6-2 t9 . ra7- l r a , 5 9 l0 r6 .9 t0

L5.23f2 25.4a33 22.055 ?L.222

5 J r .5?0 J l ' !a?

a 39.9f5s a t , la r

3 . 1 1 9 .- r 0 ! t . , r l l r ' 1 1 6

i 0 , 1 6 r-a 13 .707 \2 .423

-6 7 .a39 5 . . t1-s ?6 .699 2 . .523

-2 3 t .1a059.99r

Page 5: Structural Chemistry of Gopper and Zinc Minerals. Part l

F6 f*

t6 .55J62.296 59.trt

2 0 , 5 r J

6 . 0 3 t .19.f22

z ! . r a t r 9 . 5 9 r5a .a62 t3 . .0017. t30 t0 .12a4 3 . 6 1 9 t r . s {

1 r 9 6 0n3!+20

52.130 29 .915

r 3 . 0 9 915.60a!5 .151tr.f6zn .s2a

zr, D6z20.012 i r ,3?rr a . t r t6 \ .5 r9r9r9a056. 19 ! 65 .091

a 6 . 5 6 020.119

r . 9 5 r .

r \ . r s ? 1 J . 0 6 71 5 . 0 r 0 1 3 . 3 9 t

+ . 9 1 0 . 1 . 6 6 6

5'1',4

16.519 [6 .099

r4 .225r9 .969

L2.97 9

{ { . ! 9 t

a2 .a , L{ 6 . 9 9 ' { 6 . ( t 3

{ 0 . o r 6? t .690r . 9 0 5 . r . 0 3 t

2 .9 r4{J .+21 \z . tn .t r .?17 * .49a

(2 .a951 9 . 9 2 !5 .33r ! 6 , f22

zL. !a ' 2 r .265

( ? . 5 a 5

r5 . r99!c .9 rq r9 , \ f ,

3 1 . o J r 1 1 . 0 9 9f . t o L6.5 f2

1 3 . 0 r 229.5{0 2 \ .90 '

- 5 r 6 . C 1 5

r3 .260o { r . 9 7 9

r5 .299

? ! . 0 4 l- q 7 5 . J 0 0 1 5 . 0 3 3-J 59 .72a-2 25 . t39 25 .511

! t . 7 { 5 r t . 9 ! .| 20 . r2 t2 2 l . r4 r

-7 2 ! .0 t0 2 t .29J

J r . 7 a 6- { J2 . t7a 31 .2?a

- 7 9 . \ 6 J- r 3 3 . 1 1 5

t 29.621 27.59rr 2 ! . 0 1 .

-6 t2 .55r 9 .11210 r t l !- a a . 0 9 0

- r 9 .0 t r- 2 \ 5 . 1 r . \ a , 2 f 2

r 9 . 1 0 9-5 r2 .62L- r 17 .? t0 ra . r9a-3 29 !a5a 29 . r lo

2 , .6n25 J . 1 3 2

- 3 3 6 . 9 5 0 1 5 . 5 0 0- z 5 5 . 5 0 3 5 5 1 6 9 4

63. .25 50 .502- 9 ' . 6 0 1 . . 3 ? ?-6 6016!2 59 . t55

r . ? t 2- 6 4 . t 6 9 . 6 . & 1-5 ?9 .195

9.a94- 3 r 1 . a 9 2 r \ . 2 6 2

- 1 9 , r t 9d r , o d

s9.5r .3 r r . 6 5 . t 0 . 4 0 6c r 5 . ? s 5

r1 . r195 r 5 . 3 t r r t . 9 0 a

- q 9 . t 1 { r , 6 t r

12.159-5 a f .12a-9 1? .$r r2 .a92-a ?? . r52 2 t .91r- ! r 9 . 6 0 a r 9 . r 1 l

r ? r .90562. t \L

? 2A.679 ?61009J 3 r 5 q r t r . 0 7 9

I 9 ,7 {09 r 0 . 0 9 a

- 9 1 2 . 9 1 . 1 2 . 4 2 5- , 29 .159 25 .9a9-7 J? .6a? 3r .701- 5 2 t , t ? r ! 5 . 0 ? !-5 ra . r22 42 .aa5-a a6r7 !0 6 r .112- r {9 ,59S aa.2 f t-z ta .za t 36 . r r r- ! 3 . f t A . 1 . 9 3 q

| 0 . 6 ? 9r 5 , 3 0 4

9.a !6- t 43 . f t5

-6 1a .9 . r t6 . t . r

- . 1 r . * 1- r ? 5 . 6 ! r ? f . 2 3 9-2 r6 .9 r t- r 2 0 . ! t 2 1 9 . r r !

0 6J . ls2! r ! .a r?z 55 .561

- r 9 . 0 . i 9 . a 6 q-5 r : . 136

- 3 r r . 1 9 .

r r3 .45A- 6 2 5 . 9 S 1 2 { . A A !- t 4 . 2 6 9 . \ . r 9 a- ! 6 , 0 6 6 r e . . r 2- r 2 1 . t 6 6-z 5 r .J0?

5A.9Zf

r ! 1 1 6 6 52 r t .622 r2 ,LO2

-a 26 . f6a 2 f .26 '- : ? 0 . 6 1 9r ! r ! T 7

-3 r t .5 r r r6 .9 i2- . z r . r 9 0-2 r . .6590 29 .ar2z 10 . !?6

r r . 9 5 6

a5.2667 . 5 ' n-2 La .ars 1 r .0or

! 9 r .9 r r 93 .6922 65 .n69 66 .710r 1 3 . 2 6 9 r 2 , C 2 06 1 9 1 3 6 6

2r !39?-9 29 .?r l 26 ,6as

.6 .066- 7 1 5 . $ r 1 5 . 5 . 9-6 1 r .a97- 5 t r . r o r l l . 6 ! 1

ar . t r 9

VESZELYITE, A NOVEL SHEET STRUCTARE

Tewr 4, Continued

577

OH(l) distance, 1.97 L,is significantly longer than theZn-O distances. The O-Zn-O (or OH) angles varyfrom 106,3o to ll3.8o. Tetrahedral corners, O(l),O(2) and O(4) are shared with POn tetrahedra, whileOH(l) is shared with Cu(l) and Cu(2) octahedra(Fig. 2).

The PO+ ion is also a nearly regular tetrahedron,with average P-O distance of 1.54A. The O-P-O anglesvary from 107.9" to 111.0". Three corners of thetetrahedra are shared by Zn-tetrahedra, while the

, . F d F *

I - t 66 .605 55 .40r9 .695 .

?-7. rt'6 r . 5 a 7

!5 .799 l r .a907 2 +9 . r r { 49 .162

3. rs r . r .603t 5 r . r6a

5 . 4 7 7 . 2 . * !

2 - t2 - 7 , . 5 6 0 r L . 5 a S2 -6 6 r .530 60 .25?z - a ? r , 6 1 1

2 - 36 t . 1 ] ?

2 0 50 .231 49 .4 \ \3 9 ' t l 5

2 2 21 .525 2r .9 r0

2 | L6 . r9 r . t6 .3 r r? s

t F - F *

r 1 0 . 0 9 02 26.2t1

9 , 1 9 3| 2 r . a r J 2 1 . 9 ! t5 26 .29 f ?6 .a2?6 3 7 . 7 0 ! J 6 . 9 1 rf L? .6 ta to .E t t

2 f . f t0 26 . rA9-9 a6 .a6? 56 .15r- 6 3 5 . 5 9 t l r . t o r- 7 3 . 7 9 . . 2 . t o S-6 39 . t27 ! t t?70-9 105.991

- l J9 .932

- 1 1 9 r t 9 90 24 .6n 25 .29 t1 Za.a t0 ? r . {60? 5 0 . 1 6 2 t 2 . 5 | 4J z? . raa

2 0 . 6 5 t

5 30 .162 2r .7 f lt 2 . 2 f t

1 2 . 0 0 7 3 1 . 9 9 1-9 2S.Z6t- s f l . l s 2- 7 r 9 . r 7 q 3 9 , 0 1 5

!6 .91J- 5 r 9 . r 6 t ! 9 ! 3 6 5

-J r7 .3 i r r f . r62-2 20 .6 .6 t9 .a65

0 r 6 . s 0

2 t9 .909 2r .0?rr r . J 9 9 t { . 2 3 6

5 r . 9 1 75 t 2 . t \ 95 5 0 . J 2 ? a 6 , 5 o a-9 t .a62 r 1 .522- a 5 5 . ? 3 9 5 6 . ! 0 9-7 f , r5o r . r97- 5 6 . 6 1 6 . t . r 0 5- 5 r . 2 0 6 . 6 . S 6-a , t .?57

- ! t J .9?2- 2 r ! . t r ? 5 r . 5 1 2- l 1 1 . ! ? 3 1 2 . 5 0 6

6 . 7 6 3r r r . a 5 6 r 5 . o t 72 2 2 . 5 0 .J 33 .9r r4 J l . l r a5 r 6 . r t !6 J . t [ o . r . 1 r t- 9 7 . 1 1 6 . 1 0 . t 2 0- t 1 5 . 5 7 1 { 6 . 3 1 0

r o r . 3 a 2-6 r .799- 5 r 5 . 2 a r 1 6 . 0 ! ?

29.35'-? 6 . {95 r 1 .553

4t .? r ,r 9 ,s76 10 .J29

r 9 . t 9 0 r o . s g ?r 3 r . 6 5 1

- 3 r r . ? r t r ? . 6 0 9- r 9 . 9 9 r- 6 r 1 . 0 t a

r z . . o 1

- 2 3 r . r c 0- L t . 9 0 s . 2 . a r 4

r r . 5 1 0

. r . 6 3 0r 29 .553 29 . !6 r

50 .912

5 r . 3 ? 3- r 1 2 r 0 1 9r 9 ! r r t29 . r r2

2 4 . 2 5 ar 1 9 . 1 9 0 ? o . 7 \ 9-4 21 .ara ?6 . r {4-J 5J .363

5 0 . ? 0 6- r J . i t ? r t . r z ,0 1 r .590 t9 .J ror l . a t z . 1 . ? 1 0

fd F*

{ .9+9 r \ .6a9t2 , r50 t2 .209

?5.22a z \ .L r r3 ! 9JJ

r 0 . 9 J l

3 { . 6 ? 3 5 . 5 J J6.212

6.0 f (rz ! . f r1 t2 ! .0a .6 1 . 0 5 r 7 t . 0 1 624,619 29 .9q0

r6 .9r !1 3 . 7 { 0?5.59r

9 . 3 7 r .

r 0 . 9 5 a

2 t . 0 t o

56.111 5a.rror a . 6 7 9

5r .5 r r 62 .92420.9r3 20 .3 t !1 1 , r J 3 9 . J 6 9r t . r f6 t7 !3 t r

! t . 6 t 0LSt,O29

r J . t 2 615.531 t f .5ao? 2 . 4 r ? 2 1 . C r l

55 .6 f2

! { .?9r t5 . r59r2 . t22 11 .226t l . l 5 1 1 t . 6 r 6r 5 . 9 9 r t . 2 7 r

1 r . ? . ?Lr . f06

r09 .37? r0 r i ! r79 .07 t r r rTa{

. r . 0 9 5 q 0 . { ! tt . r24 . 6 ,22 f

20.r055,?45

2 0 , 5 ! O!a . r12 !6 .929

91.65Cz5. too2 1 . 6 0 0 2 0 ! r 9 a26.162 25 . ! ta

125.66 t 129.J9r21 ,6 t ! 21 .596r r . *6 t ' . \ r !1-t.rt6 22.77'3 . ! a a . ? . 9 7 aJ . 5 a r . 4 . 5 [ 5

20.45? 19 ,3992 . 2 1 ?

42.3r1 1r .9965t .210 6r .5 .920.5n t16 .020 \4 ,502

ta .7a2,0 .676?5.9a9

r 0 r . 9 6 995. O5t

f .95a9 0 . 1 6 2 e . a r !

* . 9 9 St r .a ta

5?.a66 SZ,2r5t 0 , 2 r ? z 9 . a r zr .292 . t , r6L

1t .592{ 0 . 0 5 7

6 . 0 0 0t2 .ao7 52 .%21 5 . 1 { . 1 r . 6 7 1

15.9323a.611

J . ! r3 r ? . t2192.010 tL .9 f45 1 . 2 5 J

; .oz t . .a12r t . 5 r 9

r ! ! .?69 r12 .622r J . 0 0 3 4 1 . a r a

t 6 . c J 0r5 .?a6 t r . t99

20!169

1 6 . 1 l z10.J !a , .62r? 5 , 0 t 6 ? r . 9 3 020.LSZ t9 ,032r r . l90 t5 ,2909a.a5 , 9a . r2 tt 7 . : t 0

{5 .59 t3? .599 t ! ,539

5.95r?2.606 2a .225\ 6 , 4 2 \ { r . 0 9 r

L 5 0 .2 9 . r a 3 3 0 , 6 r t

rJ .905

ra .$5

6 . . 0 5 ?r 0 . r a ,2 f .299

z . & f

2

Ft F4

F , 3 r 5 ? r . 5 3 t

J 5 . 1 e d

a r . r 2 sr r .5592t .212 r3 .96 t4 J . 5 5 1 r r . 0 2 5az .Lr? 19 . !2 r

16 .269J . 6 9 r t 1 . 2 6 0

Jr .3 r rr 9 . r 1 0

\ t .2522f . raa 29 .170

r5?.05r 151. { t6

5r .5 rJ 59 .2a1

r r . 0 0 7?r .300 22 .16369.961 65 .956f .26 .

z t .5 l9 2 t . r r93 4 . 9 0 0 l r . $ o

! . + a 0 . r , 9 5 5

.9 .549 r5 .9q

6 . 7 5 9 . { , 3 J rt5 .599

2 r . r a 1

1 t t r r 6 9 r 1 6 . 2 . (a . r52

f z . o f 5 1 2 . 2 6 419.299 29 .6 t0f .62a

3r . ! !125.134 24 .s9 t

5 0 . 2 3 3J r . s 2 0 3 r . ? 2 rJ . 5 r 9 r z , O L s

? s , 5 3 229.659

1 0 . 0 9 015.090 r6 .33J33.179 J3 .570r2 .35a ?2 .77 f

9 0 . 6 9 .

ii::22 ,t:iii3a.2 !51 0 . r 6 3

5 r . 5 t l

r .26a3.607 r

5 5 ! 5 0 9 5 2 . 9 r 1( ? . l 9 ar 1 . 1 0 6

L2.5Et52. * .

t 9 . 3 a q 1 r . 9 6 A9 J . 2 9 9 9 9 . 7 S 02 0 . i 6 6 2 r . q 2 0

t t 6 . ? 5 \ r r 0 . o r 0

r f .94a 16r6 ta

2 .266?r .a5o l t . sL2. 3 . 9 ! 6 1 2 . 5 0 011.191 12 .707

t r .924 12 .55065! 467L2. f55 L l . r r r

J 6 . ? a t!1 .0€6

. . r 9 2 . . { 0 6?. .621 ar .3 (1

, i : : :3' , ; : : j :{ r . o 6 rt7 . f56

, i : i3l ' , i :e:iL 7 . O a a

\ 1 . r . 9? ? . 6 a ,I 3 . O 7 !

edge, OH(I)-(OHX2), with another Cu(l) octahedronon the opposite side. This type of edge-sharing resultsin an open octahedral sheet structure (Fig. 3). TheCu(l)-Cu(l) distance is 2.99 A, while the closestCu(l)-Cu(2) distance is 2.95 A. Further Cu(l)-Cu(2)distances are 3.17 and 3.29 A.

The lZnOs(O I{)15- and IPO n'ls- Ions

The [ZnO3(OH)] ion is a fairly regutar tetrahedron,with an average Zn-O distance of 1.95 A. fhe Zn-

Page 6: Structural Chemistry of Gopper and Zinc Minerals. Part l

578 GHOSE, LEO, WAN

fourth corner, O(3) is shared by Cu(l) and Cu(2)octahedra (Fig. 2).

The Complex Sheet Structure

The structure of veszelyite can be considered toconsist of two types of connected sheets parallel to(001): (a) an octahedral sheet formed of edge-sharing

lCu(lXOH)'O(H,O)l and [Cu(2)O(OH).(H,O),] octa'hedra, and (b) a mixed tetrahedral sheet formed of

[ZnOa(OH)] and [POl tetrahedra sharing corners.

(a) Octahedral Sheet

The open octahedral sheet is a novel type (Fig. 3)that consists of eight-membered rings of alternatingCu(l) and Cu(2) octahedra. The eight-memberedoctahedral ring is stretched and is oriented the sameway as the eight-membered tetrahedral ring (Fig. 4).

Open channels pass through these eight-memberedrings to accommodate the water molecules, which arethus somewhat zeolitic in bharacter, though they aredefinitely bonded, albeit loosely, to the cupric ions.Consistent with this environment, the water moleculesshow large thermal vibration (Table 2).

(b) Mixed Tetahedral Sheet

The tetrahedral sheet is composed of tetrahedralchains with alternating IPOJ and [ZnO'(OH)tetrahedra running parallel to the a axis. Tetrahedra

in alternate chains point up and down. These chainsshare corners to form a sheet parallel to (001) (Fig. a).The interconnection of the chains results in theformation of four- and eight-membered rings. In

each ring, half the tetrahedra are pointing up and theother half pointing down. Such a sheet formed offour- and eight-membered rings is common in silicatestructures, particularly framework silicates' namelyfeldspars and zeolites (Smith and Rinaldi, 1962). Sucha silicate sheet has recently been found in the vanadiumsilicate, cavansite (Evans, 1973). A zincate-phosphatesheet of this type has not been encountered before,though a comparable beryllate-phosphate sheet hasbeen found in hurlbutite, CaBer(POo), (Bakakin andBelov, 1960).

The tetrahedral sheets are connected to the octa-hedral sheets by sharing apical oxygens of Zn- andP-tetrahedra, namely OH(l) and O(3), with Cu-octahedra. The tetrahedra pointing up are connectedto the octahedral sheet above, while those pointingdown are connected to the octahedral sheet below(Fig. 2). The good {001} cleavage is easily explainedby the sheet structure parallel to the (001) plane.

Hydrogen Bonding

An infra-red spectrum of veszelyite from Moravidzashows (in the 3p region) the following peaks due toO-H stretching vibration: 3530 cm-' (sharp), 3270

oooo

o

OH

oHa

Cu

Zn

P

Frc. 1. Partial projection of the veszelyite structure down the D axis.

Page 7: Structural Chemistry of Gopper and Zinc Minerals. Part l

VESZELYITE, A NOVEL SHEET STRUCTURE 579

{.'., '

O o@ o n

O o+rta C r

( J Z r

O P

Ftc. 3. Copper octahedral sheet in the veszelyite structureviewed down the c axis.

,.rO.,'tt'" {i,

\ l i71t-'..t,

Frc. 4. Mixed tetrahedral sheet in the veszelyite structureviewed down the c axis. Larger tetrahedra: ZnOr(OH); smallertetrahedra: POr.

Ftc. 2. A view of the veszelyite structure down the c axis, showing interconnection of the octahedraland tetrahedral sheets.

Page 8: Structural Chemistry of Gopper and Zinc Minerals. Part l

5E0

cm- I (broad) with broad shoulders on either side at

3350 cm*' and 3170 cm-'. The sharp peak at 3530cm-'indicates O-H radicals virtually free of hydrogenbonding, while the other broad peaks indicatehydrogen bonds of variable strength for OH and HrO.

OH(l) is bonded to Zn, Cu(l), and Cu(2), locatedat the corners of a triangle. The O-H bond is pre-

sumably pointing away from this triangle and does not

appear to be hydrogen bonded. OH(2) and OH(3) arebonded to two copper ions each. OH(2)-O(2) distanceis 2!77 A, while bnfE>o distance is 2.84 A. Thesedistances indicate that hydrogen bonds connect theoctahedral sheet to the tetrahedral sheet (Fig. 1).These hydrogen bonds are also stereochemicallyreasonable, assuming a tetrahedral (tp') chargedistribution around the oxygen. The hydrogen bondingof the water molecules is not very clear. HrO(l) isbonded only to Cu(2). It shows two close approaches,one to OH(2) at 2.64 A and the other to OH(l) at2.82 L, that may indicate hydrogen bonds, thoughstereochemically they are not very favorable. H"O(2)is bonded to both Cu(l) and Cu(2). Its close approachto O(4)-namely,2.65 A-probably indicates a stronghydrogen bond. The other hydrogen seems to be free.

Crystal Chemistry of Copper-Zinc Substitution

Veszelyite is known to have variable Cu/Zn ratio,which is reported to be 1.43 (Arakawa Mine, Japan),1.44-1.38 (Moravidza), l.n (Kipushi), and 0.96(Kamioka Mine, Japan) (Guillemin, 1955). Thecomposition of the Arakawa specimen is close toCuzZnPOE (OH).'2Il2O, which is presumably an endmember composition. Substitution of copper by zincat Cu(1) and Cu(2) positions is possible, which wouldinvolve movement of apical oxygen atoms, name$O(3), H,O(l), and H,O(2). From the stereochemistryof Cu(l) and Cu(2) atoms, it appears that Cu(2), whichis less distorted, would be more amenable to replace-ment by zinc than Cu(l), since this would involvemovement of two water molecules only and wouldcause least structural distortion. Progressive replace-ment of copper by zinc would result in more regularoctahedra.

Veszelyite: A New Stnrcture Type

Because the copper coordination octahedra are sohighly distorted, it is topologically impossible to forma regular hexagonally close-packed brucite-type sheetusing copper octahedra. Instead, a variety of octa-hedral sheets have been found in basic copper com-pounds, whose building block is the tetragonallydistorted copper octahedron. Thus, a corrugated sheetstructure has been found in Cu(OH), (Jaggi andOswald, 1961) and serpierite, Ca(Cu, Zn)n (OH)u(SO*),'3 H,O (Sabelli and Zanazzi' 1968). The octa-

hedral sheet found in brochantite, Cun(OH)6SOn(Cocco andMazzi, 1959), and a number of other basic

copper compounds is formed of two types of octa-hedral chains; one chain is formed by copper octa-hedra sharing edges of the square plane, and theother formed by the octahedra sharing the bipyramidaledges. Pseudomalachite, Cus(POr)r(OH)n shows yet

another type of octahedral sheet with holes, abovewhich occur the phosphate groups (Ghose, 1963). Thepseudomalachite type sheet is formed of two types of

octahedral chains: one chain is formed of one Cu(l)

and two Cu(2) octahedra, each kind sharing four and

three edges alternately; the other chain is formed of

Cu(3) octahedra sharing edges of the square plane.

Spangolite, CuuAl(SOn)(OH)'rCl'3 H,O has an octa-

hedral layer structure, containing cations in theproportion CuuAl (Rosenzweig et al, l97l). Although

the copper octahedra show the usual tetragonaldistortion, the octahedral layer is very similar to that

found in kaolinite, and the Cu and A1 atoms lie within

0.1 A of the average plane drawn through them.Analogs of mixed tetrahedral sheet are common in

silicate structures as mentioned earlier. Replacementof cations in the tetrahedral sheet should be possible,provided the valence balance is maintained. Thefoltowing compounds conceivably would have theveszelyite structure:

Cu,AlSiOn(OH)a'2H,O;Cu,BSiOn(OH)''2H,O;CurBePOo(OH).'2HrO;Cu,BeAsOn(OH)'' 2HrO;

Cu,ZnAsOa(OH)''2H,O;Cu,ZnVOo(OH)s'2H,O.

GHOSE, LEO, WAN

The octahedral sheet found in veszelyite is unique, Acknowledgments

since it is formed of eight-membered octahedral rings,which are topologically difficult to

"onrt.o"t offi ^^y:::"

indebted to the following for donation of veszelvite

regurar octahedra. rhis difficurty probably;;n;;: nTfl:il Hlr,X;,lillfr'#Ji;Xti"'J",?1"1"*iii:: "ff-tl",:why complete substitution of copper by zinc at the J. S. White, Smithsonian Institution, Washington, D. C.

Cu(l) and Cu(2) sites does not take place. Marguerite Stroh prepared the diagrams.

Page 9: Structural Chemistry of Gopper and Zinc Minerals. Part l

ReferencesBlxexrN, V. V., eNo N. V. BBr.ov (1960) The crystal struc-

ture of hurlbutite. Dokl. Akad. Nazft, S.S.S.R. 135,587-590. (in Russian).

Bennv, L. B. (1948) Structural crystallography of lazulite,scorzalite and veszelyite (abstr.). Am. Mineral.33, 750.

BoNo, W. L. (1951) Making small spheres. Reu. Sci. Instr.22, 344-345.

Bnenrrn, B. (1968) Crystal chemistry of zinc, In, Hand-book of Geochemistry,3OA. Springer Verlag, New york.

Buencnn, M. J. (1959) Vector Space and lts Applicationin Crystal Structure Analysis. John Wiley, New york.

Cocco, G., lIvo F. Mtezr (1959) La stfuttura dellabrochantite. Period. Mineral., l}l-149.

Cnourn, D. T. (1965) Anomalous dispersion correctionscomputed from self-consistent field relativistic Dirac-Slater wave functions. Acta Crystallogr. lE, 17-23.

lNo J. B. MANN (1968) X-ray scattering factorscomputed from numerical Hartree-Fock wave function.Acta Crystallogr. A24, 321-324.

EveNs, H. T., JR. (1973) The crystal structures of cavansiteand pentagonite. Am. Mineral. 58, 4lZ-424.

FINGen, L. W. (1969) Determination of cation distributionby least-squares refinement of single crystal X-ray data.Carnegie Inst. llashington Year Book, 67, 216-217.

Gnose, S. (1963) The crystal structure of pseudomalachite,Cu'( POn ),(OH ) n. Acta C ry stallogr. 16, 124-129.

581

(1966) Crystal chemistry of basic copper phosphateand arsenate minerals. Fortschr. Mineral. 42, 244.

Gurr.r,ervlnl, C. (1955) Contribution a la MinEralogie desArcAniates, Phosphates et Vanadates de Cuiore, Thesis,University of Paris.

Jeccr, H., eNp H. R. Oswerp ( 1961) Die Kristallstruktur desKupferhydroxyds, Cu(OH)c. Acta Crystallogr. 14, l04l-1(M5.

Perecue, C., H. BpnueN, AND C. FnoNopr (1951) Dana'sSystem of Mineralogy, Yol. 2, John Wiley, New York,p . 9 1 6 - 9 1 8 .

RosrNzwrrc, A., C. K. HueNc, A, C, LensoN, eNo D. T.CnorvrBn (1911) Layer structure copper minerals: thestructure of spangolite (abstr). Am. Crystallogr. Assoc.Winter Meeting Progrom Abstracts, p. 46.

Srrnrrr, C., eNo P. F. Ztytzzr (1958) The crystal struc-ture of serpierite, Acta Crystallogr. RA, 1214-1221.

Surrn, I. V., rNo F. Rrxeror (1962) Framework structuresformed from parallel four-and eight-membered rings.Mineral Mag. 33, 202-212.

Zervrm*N, J. (1961) Die Kristallchemie des Kupfers.Fortschr. Mineral. 39, 59-68.

(1972) Crystal chemistry of copper. ln, Handbookof Geochemistry, 294, Springer Verlag, New York.

Manuscript receiaed, August 31, 1973; acceptedfor publication, lanuary 18, 1974.

VESZELYITE, A NOVEL SHEET STRUCTURE