STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP REINFORCEMENT

Embed Size (px)

Citation preview

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    1/366

    Universiteit Gent, Faculteit Toegepaste Wetenschappen

    Vakgroep Bouwkundige Constructies

    Ghent University, Faculty of Engineering

    Department of Structural Engineering

    CONSTRUCTIEF GEDRAG EN ONTWERP VAN

    BETONCONSTRUCTIES VERSTERKT MET

    UITWENDIG GELIJMDE VEZELCOMPOSIETWAPENING

    STRUCTURAL BEHAVIOUR AND DESIGN OF

    CONCRETE MEMBERS STRENGTHENED WITH

    EXTERNALLY BONDED FRP REINFORCEMENT

    Stijn MATTHYS

    LABORATORIUM MAGNEL VOOR BETONONDERZOEK

    MAGNEL LABORATORY FOR CONCRETE RESEARCH

    Proefschrift tot het verkrijgen van de graad van

    Doctor in de Toegepaste Wetenschappen, richting Bouwkunde

    Academiejaar 1999-2000

    Thesis in fulfilment of the requirements for the degree ofDoctor of Applied Sciences, option Structural Engineering

    Academic year 1999-2000

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    2/366

    CONSTRUCTIEF GEDRAG EN ONTWERP VAN BETONCONSTRUCTIES

    VERSTERKT MET UITWENDIG GELIJMDE VEZELCOMPOSIETWAPENING

    STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS

    STRENGTHENED WITH EXTERNALLY BONDED FRP REINFORCEMENT

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    3/366

    Universiteit Gent, Faculteit Toegepaste Wetenschappen

    Vakgroep Bouwkundige Constructies

    Ghent University, Faculty of Applied Sciences

    Department of Structural Engineering

    CONSTRUCTIEF GEDRAG EN ONTWERP VAN

    BETONCONSTRUCTIES VERSTERKT MET

    UITWENDIG GELIJMDE VEZELCOMPOSIETWAPENING

    STRUCTURAL BEHAVIOUR AND DESIGN OF

    CONCRETE MEMBERS STRENGTHENED WITH

    EXTERNALLY BONDED FRP REINFORCEMENT

    Stijn MATTHYS

    LABORATORIUM MAGNEL VOOR BETONONDERZOEK

    MAGNEL LABORATORY FOR CONCRETE RESEARCH

    Proefschrift tot het verkrijgen van de graad van

    Doctor in deToegepaste Wetenschappen, richting Bouwkunde

    Academiejaar 1999-2000

    Thesis in fulfilment of the requirements for the degree of

    Doctor of Applied Sciences, option Structural Engineering

    Academic year 1999-2000

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    4/366

    Promotor Supervisor

    Prof. Dr. Ir. L. Taerwe

    Universiteit Gent, Vakgroep Bouwkundige ConstructiesProf. Dr. Ir. L. Taerwe

    Ghent University, Departement of Structural Engineering

    OnderzoeksinstellingResearch institute

    Universiteit Gent, Vakgroep Bouwkundige Constructies

    Laboratorium Magnel voor Betononderzoek

    Technologiepark-Zwijnaarde 9

    9052 GentGhent University, Departement of Structural Engineering

    Magnel Laboratorium for Concrete Research

    Technologiepark-Zwijnaarde 9B-9052 Ghent

    Beursverlenende instantie Research grant offered by

    Vlaams Instituut voor de bevordering van het Wetenschappelijk-

    Technologisch Onderzoek in de Industrie (IWT)

    Bischoffsheimlaan 25

    1000 BrusselInstitute for the Promotion of Innovation by

    Science and Technology in Flanders (IWT)

    Bischoffsheimlaan 25

    B-1000 Brussels

    Copyright Stijn Matthys 2000

    Alle rechten voorbehouden. Dit werk of delen ervan, mogen onder geen enkele voorwaarde en ook

    niet voor persoonlijk gebruik worden uitgeleend, gekopieerd of op n of andere manier

    vermenigvuldigd, zonder voorafgaande, schriftelijke toestemming van de auteur en zijn promotor.

    All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or

    transmitted in any form or by any means, electronic, mechanical, photocopying, recording or

    otherwise, without the prior written permission of the author and his supervisor.

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    5/366

    The thinking that we are has brought us to where we have already been.In order to go somewhere else, we must think in a different way.

    Albert Einstein

    Dedicated to Els, Tijmen and Siebe

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    6/366

    Preface

    This doctoral study concerns advanced composite reinforcement for concrete structures

    and more specifically its use as externally bonded reinforcement to repair and strengthen

    existing structures. As a novel reinforcing material for concrete, these composites were

    brought to my attention as an engineering student, reading an article about the house of the

    future. A few years later, Prof. L. Taerwe offered me the opportunity to perform a graduation

    thesis on the structural behaviour of prefabricated concrete slabs pretensioned with advanced

    composites. As a result, I became active in this research field, first as a final year student,

    after graduating in 1994 as a research assistant and in 1996 as a doctoral researcher.

    The work presented in this report is based on the research I conducted over the last four

    years with a doctoral research grant provided by the IWT (Vlaams Instituut voor de

    bevordering van het Wetenschappelijk-Technologisch Onderzoek in de Industrie - Institute

    for the Promotion of Innovation by Science and Technology in Flanders) of the Flemish

    Community. The work has been carried out at the Magnel Laboratory for Concrete Research,

    Department of Structural Engineering of Ghent University. In addition to the IWT, also the

    Research Fund of Ghent University, the Volvo Fund, the Fund for Scientific Research

    Flanders and the European Community (TMR Programme) are acknowledged for their

    financial support. The companies B.K. International, ECC, Resiplast, Sika, Sumitomo Europe,

    Syncoglas and S&P Clever Reinforcing Company are gratefully recognized for providing test

    material.

    During my doctoral study several persons gave me their support and contributed to the

    experimental and analytical studies. First of all, I am very grateful to my supervisor Prof. Luc

    Taerwe, director of the Magnel Laboratory for Concrete Research, who gave me the

    opportunity to perform research on an innovative topic, yet closely related to building

    practice. I appreciate very much his support and many suggestions during the whole research

    project, as well as the useful discussions we had. Also, I am thankful for the international

    dimension he gave to this research project, resulting in the participation of the author to

    several conferences and workshops, membership in international task groups and study visits

    to other research institutes. I want to thank Prof. Paul Thomas for being there with his

    pragmatic ideas and thinking. A word of thanks is also addressed to the visiting researchers,

    Paolo Serra, Hossam Khalil, and Ramiro Sanchez-Lopez and the graduation students, Jeroen

    Depla, Peter De Meyer and Katrien Audenaert, who participated in some of the research.

    Especially, I want to recognize my colleagues and the foreign guests, for the friendly and the

    professional contacts.

    With respect to the experimental work, I am indebted to the technical staff of the

    laboratory, who made it possible to perform quite a lot of large scale experiments. A special

    word of thanks is also addressed to the administrative staff for their friendly support and for

    being helpful when needed.

    Preface v

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    7/366

    In the framework of this study I was able to meet many people abroad. In this respect, I

    want to thank Drs. T. Triantafillou, S. Rizkalla, C. Burgoyne, B. Tljsten, G. Manfredi, R.

    Tepfers, K. Pilakoutas and many others for the interesting conversations and feed-back I had

    with them. Especially, I appreciate the pleasant and interesting time during the meetings of fib

    (International Federation for Structural Concrete) Task Group 9.3 FRP Reinforcement forConcrete Structures and CUR (Civieltechnisch Centrum Uitvoering Research en

    Regelgeving) Task Group C97B-1 Regelgeving voor versterken van betonconstructies met

    behulp van uitwendige koolstofvezellijmwapening [Rules for the strengthening of concrete

    structures using externally bonded carbon fibre reinforced polymer reinforcement], as well

    as during my short study stays at the University of Manitoba (Canada), Chalmers University

    (Sweden), the Royal Institute of Technology in Stockholm (Sweden) and the University of

    Artois (France).

    Finally, I want to thank my family, close friends and colleagues who encouraged and

    supported me in a more personal way. Special thanks go to my wife Els, who supported me inso many ways.

    Ghent, September 2000

    Stijn Matthys

    vi Preface

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    8/366

    Abstract

    This thesis deals with several aspects of the structural behaviour and the design of

    reinforced concrete members strengthened with externally bonded fibre reinforced polymer

    reinforcement. Both analytical and experimental work are presented, focussing on the

    development of design guidelines.

    In the first chapter, an introduction is given on fibre reinforced polymer (FRP) materials as

    structural reinforcement for concrete and more specifically as externally bonded

    reinforcement to strengthen existing structures. Briefly, the use of FRP in concrete

    construction, its history, benefits and some particular aspects of using this novel reinforcing

    material are mentioned. The repair and strengthening with externally bonded FRP

    reinforcement (FRP EBR) is discussed, demonstrating the efficiency and attractiveness of this

    technique among which the advantages and disadvantages of this technique. The problem

    statement and consequently the aim and the outline of this thesis are presented.

    In Chapter 2, a description is given of FRP materials and their characteristics, the FRP

    systems available for externally bonded reinforcement and the techniques to apply them to the

    concrete. It is demonstrated that FRP reinforcement forms a group of materials, with high

    performance characteristics, which strongly depend on the assembly of the constituent

    materials. In general, the FRP EBR systems are very strong and durable. Nevertheless, when

    evaluating the properties of different types of FRP, EBR systems based on carbon fibre

    reinforced polymers (CFRP) exhibit the best characteristics.

    The performed experimental and analytical studies concerning the structural behaviour of

    concrete elements strengthened with FRP EBR are reported in Chapters 3 till 6. These

    chapters correspond to the four test programmes which have been conducted, dealing with

    flexural and shear strengthening of reinforced concrete beams, strengthening of tensile

    members (to investigate tension stiffening and cracking behaviour) and confinement of

    axially loaded columns. The experiments were mainly conducted on large scale elements,

    varying several parameters with respect to the strengthening materials, the amount of external

    reinforcement and the strengthening lay-out or configuration. Based on the experimental

    work, an insight is obtained in the structural behaviour of the strengthened members. The

    feasibility and efficiency of externally bonded FRP reinforcement to strengthen concrete

    structures is clearly demonstrated. From the analytical verifications, existing models have

    been verified and extended to predict the influence of externally bonded FRP reinforcement.

    These calculation models deal with both the ultimate state and serviceability behaviour. It

    appears that the structural behaviour of the strengthened concrete members can be predicted

    in an accurate way.

    Based on the derived models and a literature review regarding the models for FRP bond

    failure, Chapter 7 gives detailed provisions for the design of the strengthened members. In

    this extensive chapter, the basis of design, the safety concept, the design models and

    procedures and some special design considerations are provided for concrete members

    Abstract vii

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    9/366

    strengthened in flexure and shear, axially loaded confined columns and strengthened tensile

    members. From this chapter it appears that, compared to new structures, the design of

    concrete members strengthened with externally bonded reinforcement is more complex. To

    assure structural safety, suggestions with respect to design failure modes, ductility and

    accidental loss of FRP EBR are formulated. It is demonstrated that the design of strengthenedflexural members is often governed by the serviceability limit state and that special attention

    should be paid to the ultimate limit state verification of bond failure. To gain better insight

    into the design aspects, a parametric study concerning flexural strengthening is presented.

    In the last chapter, the conclusions of the doctoral study are summarized and an outlook

    on the future use and development of the FRP EBR technique is given. Some suggestions for

    continued research are made.

    viii Abstract

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    10/366

    Table of contents

    Preface .................................................................................................................................................... v

    Abstract................................................................................................................................................vii

    Table of contents................................................................................................................................... ix

    Notations ............................................................................................................................................. xix

    SAMENVATTING................................................................................................................................ 1

    1 Inleiding. ........................................................................................................................................... 1

    1.1 Vezelcomposietwapening voor beton ........................................................................................... 1

    1.2 Versterken van betonconstructies ................................................................................................. 1

    1.3 Probleemstelling en internationale stand van zaken ..................................................................... 3

    1.4 Doelstelling en onderwerp ............................................................................................................ 3

    2 Uitwendige versterking met gelijmde vezelcomposietwapening.................................................. 4

    2.1 Algemeen ...................................................................................................................................... 4

    2.2 Voor- en nadelen van FRP EBR ................................................................................................... 5

    2.3 Toepassingsmogelijkheden en FRP EBR systemen...................................................................... 6

    2.4 Toepassingstechnieken.................................................................................................................. 7

    3 Structureel gedrag van betonelementen versterkt in buiging...................................................... 7

    3.1 Aard van de proeven ..................................................................................................................... 7

    3.2 Voornaamste proefresultaten ........................................................................................................ 9

    3.3 Analytische verificatie ................................................................................................................ 11

    3.3.1 Bezwijktoestand...................................................................................................................... 11

    3.3.2 Rekken in de wapening........................................................................................................... 13

    3.3.3 Doorbuigingen ....................................................................................................................... 13

    3.3.4 Scheuropeningen.................................................................................................................... 13

    3.3.5 Rekken en schuifspanningen langsheen de FRP wapening.................................................... 14

    3.4 Besluiten ..................................................................................................................................... 16

    4 Structureel gedrag van betonelementen versterkt in dwarskracht ........................................... 16

    4.1 Aard van de proeven ................................................................................................................... 16

    4.2 Voornaamste proefresultaten ...................................................................................................... 18

    4.3 Analytische verificatie ................................................................................................................ 20

    4.3.1 Dwarskrachtsterkte ................................................................................................................ 20

    4.3.2 Effectieve FRP breukrek ........................................................................................................ 21

    4.4 Besluiten ..................................................................................................................................... 22

    5 Tension stiffening en scheuroverbrugging................................................................................... 23

    Table of contents ix

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    11/366

    5.1 Aard van de proeven ................................................................................................................... 23

    5.2 Voornaamste proefresultaten ...................................................................................................... 25

    5.3 Analytische verificatie ................................................................................................................ 26

    5.3.1 Tension stiffening effect ......................................................................................................... 26

    5.3.2 Scheurafstand en scheuropeningen........................................................................................ 275.4 Besluiten ..................................................................................................................................... 29

    6 Inrijgen van axiaal belaste kolommen.......................................................................................... 29

    6.1 Aard van de proeven ................................................................................................................... 29

    6.2 Voornaamste proefresultaten ...................................................................................................... 31

    6.2.1 Drukproeven op omwikkelde cilinders................................................................................... 31

    6.2.2 Drukproeven op omwikkelde kolommen ................................................................................ 32

    6.3 Analytische verificatie ................................................................................................................ 33

    6.3.1 Probleemstelling .................................................................................................................... 33

    6.3.2 Steundruk ............................................................................................................................... 33

    6.3.3 Spanning-vervorming gedrag van beton omwikkeld met FRP............................................... 34

    6.3.4 Effectieve maximale steundruk............................................................................................... 35

    6.3.5 Bezwijkbelasting .................................................................................................................... 36

    6.4 Besluiten ..................................................................................................................................... 36

    7 Ontwerprichtlijnen ........................................................................................................................ 37

    7.1 Algemeen .................................................................................................................................... 37

    7.2 Verloop van het ontwerp............................................................................................................. 38

    7.3 Opvatting van het ontwerp met betrekking tot veiligheid........................................................... 387.3.1 Bezwijkgrenstoestand............................................................................................................. 38

    7.3.2 Accidentele ontwerptoestand ................................................................................................. 39

    7.3.3 Ductiliteit ............................................................................................................................... 39

    7.4 Versterking in buiging ................................................................................................................ 39

    7.4.1 Initile toestand...................................................................................................................... 39

    7.4.2 Nazicht in de BGT bij volledige composietwerking ............................................................... 40

    7.4.3 Nazicht in de BGT van FRP onthechting ............................................................................... 40

    7.4.4 Nazicht van de gebruikgrenstoestand (GGT)......................................................................... 43

    7.4.5 Parameterstudie en berekeningsprogramma ......................................................................... 43

    7.5 Versterking in dwarskracht ......................................................................................................... 43

    7.6 Kolommen omwikkeld met FRP................................................................................................. 44

    7.6.1 Nazicht van de bezwijkgrenstoestand (BGT) ......................................................................... 44

    7.6.2 Nazicht van de gebruikgrenstoestand (GGT)......................................................................... 46

    7.7 Bijzondere aspecten van het ontwerp.......................................................................................... 46

    8 Besluiten.......................................................................................................................................... 46

    9 Referenties ...................................................................................................................................... 47

    x Table of contents

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    12/366

    Chapter 1 INTRODUCTION .......................................................................................................... 51

    1 Advanced composites as structural reinforcement ..................................................................... 51

    1.1 Fibre reinforced polymers........................................................................................................... 51

    1.2 FRP reinforcement ...................................................................................................................... 52

    1.3 FRP as structural reinforcement for concrete construction......................................................... 54

    1.3.1 History and benefits of FRP reinforcement ........................................................................... 54

    1.3.2 Particular aspects related to the use of FRP reinforcement.................................................. 54

    2 FRP as externally bonded reinforcement for strengthening...................................................... 57

    2.1 General ........................................................................................................................................ 57

    2.2 Strengthening with FRP EBR ..................................................................................................... 58

    2.3 Advantages and disadvantages of FRP EBR .............................................................................. 59

    3 Problem statement ......................................................................................................................... 61

    4 Aim and outline of the study ......................................................................................................... 61

    4.1 Research objective and aim of the thesis .................................................................................... 61

    4.2 Scope of the study ....................................................................................................................... 61

    4.3 Outline of the thesis .................................................................................................................... 62

    5 References ....................................................................................................................................... 62

    Chapter 2 MATERIAL CHARACTERISTICS, FRP EBR SYSTEMS

    AND TECHNIQUES...................................................................................................... 65

    1 Constituent materials for FRP EBR............................................................................................. 65

    1.1 General ........................................................................................................................................ 65

    1.2 Fibres........................................................................................................................................... 66

    1.2.1 Aramid fibres ......................................................................................................................... 66

    1.2.2 Carbon fibres ......................................................................................................................... 67

    1.2.3 Glass fibres ............................................................................................................................ 68

    1.3 Polymer matrices......................................................................................................................... 68

    1.3.1 Resins ..................................................................................................................................... 68

    1.3.2 Fillers and additives .............................................................................................................. 71

    1.4 Adhesives .................................................................................................................................... 71

    1.4.1 General considerations.......................................................................................................... 71

    1.4.2 Adhesive requirements ........................................................................................................... 71

    1.4.3 Epoxy as structural adhesive ................................................................................................. 72

    2 Material shapes, manufacturing and FRP EBR systems............................................................ 73

    2.1 FRP reinforcement shapes .......................................................................................................... 73

    2.2 Manufacturing............................................................................................................................. 74

    2.2.1 Manufacturing of strips by means of pultrusion .................................................................... 74

    2.2.2 Manufacturing of laminates by means of moulding............................................................... 752.2.3 Manufacturing of dry-fibre sheets and fabrics ...................................................................... 76

    Table of contents xi

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    13/366

    2.2.4 Manufacturing of prepreg...................................................................................................... 77

    2.3 FRP EBR systems ....................................................................................................................... 77

    2.3.1 Prefab or pre-cured systems .................................................................................................. 78

    2.3.2 Wet lay-up or in-situ curing systems...................................................................................... 78

    3 Techniques, practical application and quality control................................................................ 79

    3.1 FRP EBR strengthening techniques ............................................................................................ 79

    3.1.1 Basic technique ...................................................................................................................... 79

    3.1.2 Other techniques .................................................................................................................... 80

    3.2 Practical execution and quality control ....................................................................................... 81

    3.2.1 Practical execution ................................................................................................................ 81

    3.2.2 Quality control ....................................................................................................................... 82

    4 Material characteristics of FRP EBR systems............................................................................. 82

    4.1 General ........................................................................................................................................ 82

    4.2 Type of FRP EBR system and dimensions ................................................................................. 82

    4.3 Physical properties ...................................................................................................................... 84

    4.3.1 FRP reinforcement................................................................................................................. 84

    4.3.2 Adhesive ................................................................................................................................. 85

    4.4 Mechanical properties and behaviour under short-term loading................................................. 87

    4.4.1 FRP reinforcement................................................................................................................. 87

    4.4.2 Adhesive ................................................................................................................................. 90

    4.5 Durability and long-term behaviour............................................................................................ 90

    4.5.1 Environmental durability ....................................................................................................... 90

    4.5.2 Mechanical behaviour under sustained loading.................................................................... 93

    4.5.3 Cyclic loading ........................................................................................................................ 94

    5 Conclusions..................................................................................................................................... 94

    6 References ....................................................................................................................................... 95

    Chapter 3 STRUCTURAL BEHAVIOUR OF RC BEAMS

    STRENGTHENED IN FLEXURE................................................................................ 99

    1 Introduction.................................................................................................................................... 99

    2 Outline of the experiments .......................................................................................................... 100

    2.1 Test specimens and material properties .................................................................................... 100

    2.2 Specimen preparation and test procedure ................................................................................. 101

    3 Test results .................................................................................................................................... 103

    3.1 Behaviour at ultimate load ........................................................................................................ 103

    3.1.1 Failure mode........................................................................................................................ 103

    3.1.2 Strengthening effect, ultimate FRP strain and ductility....................................................... 103

    3.2 Load-deflection behaviour ........................................................................................................ 104

    3.3 Cracking behaviour ................................................................................................................... 106

    xii Table of contents

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    14/366

    3.4 FRP strain distribution .............................................................................................................. 107

    4 Analytical verification.................................................................................................................. 108

    4.1 Prediction of the failure load and failure mode......................................................................... 108

    4.1.1 Verification assuming full composite action........................................................................ 108

    4.1.2 Verification of anchorage failure......................................................................................... 108

    4.1.3 Verification of bond failure due to crack bridging .............................................................. 109

    4.2 Moment-strain behaviour.......................................................................................................... 112

    4.3 Moment-curvature and moment-deflection behaviour.............................................................. 114

    4.4 Cracking.................................................................................................................................... 117

    4.5 Strains and bond shear stresses along the FRP EBR................................................................. 119

    4.6 Service load, safety and ductility .............................................................................................. 121

    4.6.1 Service load.......................................................................................................................... 121

    4.6.2 Ratio of ultimate to service load .......................................................................................... 122

    4.6.3 Ductility ............................................................................................................................... 122

    5 Conclusions................................................................................................................................... 123

    6 References ..................................................................................................................................... 124

    Chapter 4 STRUCTURAL BEHAVIOUR OF RC BEAMS

    STRENGTHENED IN SHEAR................................................................................... 127

    1 Introduction.................................................................................................................................. 127

    2 Outline of the experiments .......................................................................................................... 1272.1 Test specimens and material properties .................................................................................... 127

    2.2 Specimen preparation and test procedure ................................................................................. 130

    3 Test results .................................................................................................................................... 130

    3.1 Failure load and mode of failure ............................................................................................... 130

    3.2 FRP strains ................................................................................................................................ 132

    3.3 Contribution of the internal and external shear reinforcement ................................................. 132

    3.4 Midspan deflection.................................................................................................................... 134

    4 Analytical verification.................................................................................................................. 1354.1 Shear capacity of the reference beams and diagonal tension shear crack ................................. 135

    4.2 Shear capacity of the strengthened beams ................................................................................ 136

    4.3 Effective ultimate FRP strain .................................................................................................... 137

    5 Conclusions................................................................................................................................... 140

    6 References ..................................................................................................................................... 141

    Chapter 5 SERVICEABILITY BEHAVIOUR: TENSION STIFFENING

    AND CRACK BRIDGING .......................................................................................... 143

    1 Introduction.................................................................................................................................. 143

    Table of contents xiii

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    15/366

    2 Outline of the test programme.................................................................................................... 144

    2.1 Test specimens and material properties .................................................................................... 144

    2.2 Specimen preparation and test procedure ................................................................................. 145

    3 Test results .................................................................................................................................... 147

    3.1 Behaviour at ultimate load ........................................................................................................ 147

    3.2 Mean tensile strain .................................................................................................................... 148

    3.3 Crack pattern ............................................................................................................................. 150

    4 Analytical verification.................................................................................................................. 150

    4.1 Cracking load and load at which the steel starts yielding ......................................................... 150

    4.2 Tension stiffening effect ........................................................................................................... 151

    4.3 Crack spacing and crack width ................................................................................................. 154

    5 Conclusions................................................................................................................................... 158

    6 References ..................................................................................................................................... 159

    Chapter 6 CONFINEMENT OF AXIALLY LOADED COLUMNS......................................... 161

    1 Introduction.................................................................................................................................. 161

    2 Outline of the experiments .......................................................................................................... 161

    2.1 Test specimens and material properties .................................................................................... 161

    2.2 Specimen preparation and test procedure ................................................................................. 164

    3 Test results .................................................................................................................................... 1653.1 Compression tests on wrapped cylinders .................................................................................. 165

    3.1.1 Behaviour at ultimate load................................................................................................... 165

    3.1.2 Stress-strain behaviour ........................................................................................................ 167

    3.2 Tests on confined columns........................................................................................................ 168

    3.2.1 Behaviour at ultimate load................................................................................................... 168

    3.2.2 Stress-strain behaviour and effectiveness of wrapping configuration................................. 169

    4 Analytical verification.................................................................................................................. 173

    4.1 Problem statement..................................................................................................................... 173

    4.1.1 Constant versus increasing confining action ....................................................................... 173

    4.1.2 Effective circumferential failure strain ................................................................................ 173

    4.1.3 Axial failure strain ............................................................................................................... 174

    4.2 Lateral confining pressure exerted by the FRP ......................................................................... 174

    4.2.1 Fully wrapped cylindrical specimens with fibres perpendicular to longitudinal axis......... 174

    4.2.2 Influence of partial wrapping .............................................................................................. 176

    4.2.3 Influence of fibre orientation ............................................................................................... 176

    4.2.4 Influence of column shape ................................................................................................... 177

    4.3 Stress-strain relationship of FRP confined concrete ................................................................. 178

    4.3.1 General ................................................................................................................................ 178

    4.3.2 Analytical verification.......................................................................................................... 179

    xiv Table of contents

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    16/366

    4.4 Confined concrete strength and ultimate strain......................................................................... 182

    4.4.1 Ultimate state ....................................................................................................................... 182

    4.4.2 Confined concrete strength .................................................................................................. 183

    4.4.3 Effective FRP failure strain ................................................................................................. 184

    4.5 Load carrying capacity of the wrapped members ..................................................................... 186

    5 Conclusions................................................................................................................................... 187

    6 References ..................................................................................................................................... 188

    Chapter 7 DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH

    EXTERNALLY BONDED FRP REINFORCEMENT............................................. 191

    1 Introduction.................................................................................................................................. 191

    2 Basis of design............................................................................................................................... 191

    2.1 General ...................................................................................................................................... 191

    2.2 Limit states and design situations ............................................................................................. 192

    2.2.1 Ultimate and serviceability limit state (persistent situation) ............................................... 192

    2.2.2 Accidental situation ............................................................................................................. 192

    2.2.3 Special design considerations.............................................................................................. 193

    2.3 Models for the constituent materials and partial safety factors................................................. 193

    2.3.1 SLS verification.................................................................................................................... 193

    2.3.2 ULS verification, full composite action between concrete and FRP EBR ........................... 193

    2.3.3 ULS verification of bond failure .......................................................................................... 195

    2.4 Safety concept ........................................................................................................................... 195

    2.4.1 Safety concept with respect to the ultimate limit state ......................................................... 195

    2.4.2 Safety concept with respect to accidental situation ............................................................. 196

    2.4.3 Ductility ............................................................................................................................... 196

    3 Flexural strengthening................................................................................................................. 197

    3.1 General ...................................................................................................................................... 197

    3.2 Initial situation .......................................................................................................................... 197

    3.3 ULS verification assuming full composite action ..................................................................... 198

    3.3.1 Principle of calculation and basic assumptions .................................................................. 198

    3.3.2 Steel yielding/concrete crushing .......................................................................................... 199

    3.3.3 Steel yielding/FRP fracture.................................................................................................. 199

    3.3.4 Brittle failure at first cracking ............................................................................................. 200

    3.3.5 Shear failure ........................................................................................................................ 200

    3.4 ULS verification with respect to loss of composite action........................................................ 201

    3.4.1 Bond failure modes .............................................................................................................. 201

    3.4.2 Bond behaviour.................................................................................................................... 202

    3.4.3 Design bond shear strength ................................................................................................. 203

    3.4.4 Anchorage zone.................................................................................................................... 203

    3.4.5 Force transfer between FRP and concrete .......................................................................... 211

    Table of contents xv

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    17/366

    3.4.6 Crack bridging ..................................................................................................................... 212

    3.5 SLS verification ........................................................................................................................ 214

    3.5.1 Basis of calculation.............................................................................................................. 214

    3.5.2 Stress limitation ................................................................................................................... 216

    3.5.3 Verification of deflections .................................................................................................... 2163.5.4 Verification of crack widths ................................................................................................. 217

    3.5.5 Verification of bond interface cracking ............................................................................... 219

    3.6 Influence of design parameters and governing design aspects ................................................. 219

    3.6.1 Influence of characteristics of the existing RC element ....................................................... 219

    3.6.2 Governing design aspects .................................................................................................... 225

    3.7 Summary of design process ...................................................................................................... 231

    4 Shear strengthening ..................................................................................................................... 232

    4.1 General ...................................................................................................................................... 232

    4.2 ULS verification........................................................................................................................ 233

    4.2.1 Shear capacity...................................................................................................................... 233

    4.2.2 Effective FRP failure strain ................................................................................................. 233

    4.3 SLS verification ........................................................................................................................ 235

    4.4 Spacing requirements................................................................................................................ 237

    4.5 Summary of the design process................................................................................................. 237

    5 Confinement of axially loaded columns ..................................................................................... 237

    5.1 General ...................................................................................................................................... 237

    5.2 ULS verification........................................................................................................................ 2385.2.1 Load carrying capacity ........................................................................................................ 238

    5.2.2 Stress-strain relationship and compressive strength of confined concrete.......................... 238

    5.2.3 Effective ultimate FRP strain and corresponding lateral confining pressure ..................... 240

    5.2.4 Anchorage and bond quality ................................................................................................ 242

    5.3 SLS verification ........................................................................................................................ 244

    5.4 Summary of the design process................................................................................................. 244

    6 Strengthened tensile members .................................................................................................... 245

    6.1 General ...................................................................................................................................... 245

    6.2 ULS verification........................................................................................................................ 245

    6.3 SLS verification ........................................................................................................................ 246

    6.3.1 Stress limitation ................................................................................................................... 246

    6.3.2 Verification of deformations ................................................................................................ 246

    6.3.3 Verification of crack widths and bond interface cracking ................................................... 246

    7 Special design considerations...................................................................................................... 247

    7.1 General ...................................................................................................................................... 247

    7.2 Influence of environmental conditions...................................................................................... 247

    7.2.1 Temperature effects and freeze-thaw action ........................................................................ 2477.2.2 Moisture ............................................................................................................................... 248

    xvi Table of contents

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    18/366

    7.2.3 Chemical resistance ............................................................................................................. 248

    7.2.4 UV light exposure ................................................................................................................ 248

    7.2.5 Lightning.............................................................................................................................. 249

    7.3 Fire protection ........................................................................................................................... 249

    7.4 Long-term loading..................................................................................................................... 2497.5 Cyclic loading ........................................................................................................................... 250

    7.6 Impact and vandalism ............................................................................................................... 251

    8 References ..................................................................................................................................... 251

    Chapter 8 CONCLUSIONS AND OUTLOOK............................................................................ 257

    1 General.. ........................................................................................................................................ 257

    2 Conclusions................................................................................................................................... 257

    2.1 FRP materials and FRP EBR systems....................................................................................... 257

    2.2 Structural behaviour of RC elements strengthened with FRP EBR.......................................... 258

    2.3 Design guidelines for concrete structures strengthened with FRP EBR................................... 259

    3 Outlook on the use and development of the FRP EBR technique ........................................... 259

    3.1 The use of externally bonded FRP reinforcement wit respect to steel plate bonding ............... 259

    3.2 The use of externally bonded FRP reinforcement in practice ................................................... 259

    3.3 New developments.................................................................................................................... 260

    4 Continued research needed ......................................................................................................... 261

    Appendix A PRACTICAL EXECUTION AND QUALITY CONTROL..................... 263

    Appendix B MATERIAL PROPERTIES........................................................................ 271

    Appendix C RC BEAMS STRENGTHENED IN FLEXURE .......................................279

    Appendix D RC BEAMS STRENGTHENED IN SHEAR.............................................291

    Appendix E TENSION STIFFENING AND CRACKING BEHAVIOUR ..................297

    Appendix F FRP CONFINED CONCRETE .................................................................. 307

    Appendix G CALCULATION PROGRAMME USED FOR

    THE PARAMETRIC STUDY..................................................................... 319Appendix H CALCULATION PROGRAMME FOR

    FLEXURAL STRENGTHENING.............................................................. 329

    Table of contents xvii

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    19/366

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    20/366

    Notations

    Roman upper case letters

    Ac cross-sectional area of concrete

    Ac,eff effective concrete area in tension

    Ae cross-sectional area of effectively confined concrete

    Af cross-sectional area of FRP reinforcement

    Ag gross cross-sectional area

    Ar cross-sectional area of reinforcement

    As cross-sectional area of longitudinal steel reinforcement

    As1 cross-sectional area of longitudinal tensile steel reinforcement

    As2 cross-sectional area of longitudinal compressive steel reinforcementAu cross-sectional area of unconfined concrete

    Awf cross-sectional area of FRP shear reinforcement

    Aws cross-sectional area of steel shear reinforcement

    Ci constant

    D diameter of cylinder or column

    Di constant

    Ea modulus of elasticity of adhesive

    Ec modulus of elasticity of concrete

    IIc

    El

    modulus of elasticity of concrete at origin of second branch (circumf. direction)

    1cE l modulus of elasticity of concrete of first branch (circumferential direction)

    2cE l modulus of elasticity of concrete of second branch (circumferential direction)

    EcII modulus of elasticity of concrete at origin of second branch

    Ec1 modulus of elasticity of concrete of first branch

    Ec2 modulus of elasticity of concrete of second branch

    Ec modulus of elasticity of concrete for long-term loading

    Eel elastic energy

    Ef modulus of elasticity of FRP

    Ef,comp modulus of elasticity of FRP in compressionEfib modulus of elasticity of fibres

    Efk characteristic value of modulus of elasticity of FRP

    Efk0.05 lower bound characteristic value (5 % fractile) of E-modulus of FRP

    Efk0.95 upper bound characteristic value (95 % fractile) of E-modulus of FRP

    Ef,tens modulus of elasticity of FRP in tension

    Efu modulus of elasticity of FRP at ultimate stage

    Ei tangent modulus of elasticity of concrete at origin in the axial (i = c) or

    circumferential (i = c ) directionl

    EiII modulus of elasticity of concrete at origin of second branchEi1 modulus of elasticity of concrete of first branch

    Notations xix

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    21/366

    Ei2 modulus of elasticity of concrete of second branch

    Emat modulus of elasticity of matrix

    Er modulus of elasticity of reinforcement

    Es modulus of elasticity of steel

    Esec

    secant modulus of elasticity

    Esec,M = fccM/cc1M

    Esec,Md = fccMd/ccMd

    Esec,u secant modulus of elasticity at ultimate stage

    Esec,ud secant modulus of elasticity at ultimate limit state

    Esec1 = fcc/cc1

    (EA) axial stiffness of the tension reinforcement

    Ga shear modulus of adhesive

    Gf fracture energy

    Ic moment of inertia of transformed (cracked) section

    Ico moment of inertia of transformed (cracked) section before strengthening

    If moment of inertia about the centroid of FRP

    Io2 moment of inertia of transformed cracked section before strengthening

    I1 moment of inertia of transformed uncracked section

    I2 moment of inertia of transformed cracked section

    Kconf parameter expressing the stiffness and effectiveness of the confining device

    Kconfx Kconfin x-direction

    Kconfy Kconfin y-direction

    K flexural stiffness

    L distance between support and end of FRP

    M moment line of a beam with a point load Q = 1 at midspan

    M(x) moment at distance x

    MAd design value of resisting moment of the accidental situation

    Mcr cracking moment

    Md design value of moment

    MdS design value of moment of strengthened member

    Mfib fibre mass per area

    Mk characteristic value of moment

    Mkg moment due to dead loadMkq moment due to life load

    MRbd resisting design moment corresponding with VRbd

    MRd resisting design moment

    MRdS resisting design moment of strengthened member

    MRdU resisting design moment of unstrengthened member

    MRpd design value of moment corresponding with VRpd

    MSd acting design moment

    Mx=0 moment acting on section corresponding to end of EBR

    My moment at which internal steel starts yieldingMyd design value of moment at which internal steel starts yielding

    xx Notations

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    22/366

    Mo acting moment during strengthening

    MserS service moment of stengthened beam under rare load combination, obtained

    from MRdS

    MserU service moment of unstengthened beam under rare load combination, obtained

    from MRdU

    N applied tensile force or acting load

    Nc force in concrete

    Ncr cracking load

    Ncr,exp cracking load (experimental)

    Ncr,m = (Ncr,n + Ny)/2

    Ncr,n load beyond which concrete element is in stabilized cracking phase

    Nf force in FRP

    Nfa FRP force to be anchored

    Nfad design value of FRP force to be anchored

    Nfa,max maximum FRP force which can be anchored

    Nfad,max design value of maximum FRP force which can be anchorage

    Nfd acting design force in FRP

    )(N max,tfQu l acting force at distance from end of FRP, when reaching ultimate loadmax,tl

    NRd resisting design force

    NRfd resisting design force in FRP

    NRsd resisting design force in steel

    Nr = Ns + Nf

    Nrd = Nsd + Nfd

    Nref (ultimate) load of reference specimen

    Nrk = Mk/ze

    NSd acting design force

    NSrd acting design force in reinforcement

    Ns force in steel

    Nsd acting design forcein steel

    Ns1 force in tensile steel reinforcement

    Ns2 force in compressive steel reinforcement

    Nu ultimate load

    Nu,exp ultimate load (experimental)Ny load after yielding of the internal steel reinforcement

    Ny,exp load after yielding of the internal steel reinforcement (experimental)

    Q point load

    Qana ultimate load (analytical verification)

    Qcal ultimate load (calculated)

    Qcr cracking load

    Qcr,exp cracking load (experimental)

    Qexp ultimate load (experimental)

    Qf force in FRP

    Qk1 service load, from ultimate limit state assuming full composite action

    Notations xxi

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    23/366

    Qk2 service load, from ultimate limit state verifying loss of composite action

    Qk3 service load, from stress limitations

    Qk4 service load, from deflection limitations

    Qk5 service load, from crack width limitations crack width

    Qmax

    maximum load

    Qref (ultimate) load of reference specimen

    Qser service load

    Qu ultimate load

    Qu,ref ultimate load of reference specimen

    Qy load at which the steel starts yielding

    Qo load at which the FRP EBR is applied

    R curvature of the helix, or

    radius of cylinder or column

    T temperature

    Tg glass transition temperature

    Vc shear capacity of concrete

    Vck concrete shear contribution at service load

    Vcr shear force causing shear cracking

    Vd acting design shear force

    Vf,exp FRP shear contribution (experimental)

    Vk shear force at service load

    VR resisting shear capacity

    VRbd resisting design shear force at which bond failure is initiated

    VRd resisting design shear capacityVRd1 resisting design shear capacity of the concrete

    VRd2 resisting design shear capacity of the concrete in diagonal compression

    VRp resisting shear force at which shear crack peeling is initiated

    VRpd resisting design shear force at which peeling initiates

    VSd acting design shear force

    Vu ultimate shear capacity

    Vu,ref ultimate shear capacity of reference specimen

    Vwf resisting shear capacity of FRP shear reinforcement

    Vwfd resisting design shear capacity of FRP shear reinforcement

    Vws resisting shear capacity of steel stirrups

    Vwsd resisting design shear capacity of steel stirrups

    Vx=0 shear force acting on section corresponding to end of EBR

    Roman lower case letters

    a maximum deflection, or

    shear span

    ac length governing critical flexural shear crack of unstrengthened memberag maximum deflection due to self weight

    xxii Notations

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    24/366

    aL fictitious shear span

    la horizontal distance over which the moment line is shifted

    alim maximum allowable deflection

    aQ maximum deflection due to the point loads

    av distance from major load to supporta1 deflection in uncracked state

    a2 deflection in fully cracked state

    max)/a( l ratio of the allowable deflection over the span length l

    b width of concrete member

    b clear width between the rounded corners

    bf total width of the bonded FRP

    bw minimum width of the section (width of the web)

    bo constant

    cF factor related to the fracture energyd effective depth of the member, or

    thickness of the bond layer

    d clear depth between the rounded corners

    d1 distance between tension face and tensile steel reinforcement

    d2 distance between compression face and compressive steel reinforcement

    fc concrete compressive cylinder strength

    fcb bond shear strength of the concrete

    fcbd design bond shear strength of the concrete

    fcbk characteristic bond shear strength of the concrete

    fcc compressive strength of the confined concrete

    fccd design value of the confined concrete compressive strength

    fccM confined concrete strength assuming constant confining pressure ul

    fccMd confined concrete strength assuming constant confining pressure udl

    fc,cube concrete compressive strength measured on cubes

    fcd design value of concrete compressive strength

    fck characteristic value of concrete compressive strength

    fcm mean concrete compressive cylinder strength

    fc,prism concrete compressive strength measured on prismsfct concrete tensile strength

    fctk characteristic value of concrete tensile strength

    fctk0.05 lower bound characteristic tensile strength

    fctk0.95 upper bound characteristic tensile strength

    fctm mean concrete tensile strength

    fco unconfined concrete strength

    ff FRP tensile strength

    ff,comp FRP compressive strength

    ffd design value of the FRP tensile strength

    ff,eff effective strength of the FRP

    ffd,eff effective design strength of the FRP

    Notations xxiii

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    25/366

    ffib tensile strength of the fibres

    ffk characteristic value of the FRP tensile strength

    ffm mean value of the FRP tensile strength

    ff,tens = ff

    fwy

    yield stress of the stirrups

    fwyd design value of yield stress of the stirrups

    fy yield stress of the steel reinforcement

    fyd design value of the yield stress of the steel reinforcement

    fyk characteristic value of the yield stress of the steel reinforcement

    fo,c intercept stress

    lc,of intercept stress (circumferential direction)

    fo,i stress at the intercept of the second slope with the stress axis

    g self weight

    h total depth of the member

    hf flange depth

    k constant

    kb size factor

    kc factor relating to compaction of concrete

    ke confinement effectiveness coefficient

    ke1 confinement effectiveness coefficient, for partial wrapping

    ke2 confinement effectiveness coefficient, for account fibre orientation

    ke3 confinement effectiveness coefficient, for shape of cross-section

    kf = (sin f+ cos f)

    kM coefficient depending on the loading type

    ks = (sin s + cos s)

    kv factor relating maximum moment and shear force

    k factor relating crack width assumed tensile member to maximum crack width

    k1, k2 coefficients

    l span length of the beam, or

    overlap joint length

    bl bonded length

    n,crl transfer length at stabilized cracking

    fl transfer length of FRP reinforcement (based on mean bond stress)

    rl transfer length

    rfl transfer length of FRP reinforcement

    sl transfer length of steel rebars (based on mean bond stress)

    tl available anchorage or transfer length

    max,tl maximum anchorage or transfer length

    1l distance between the point load Q and the support

    l /d ratio of span length to effective depth( /d)l max maximum ratio of span length to effective depth

    xxiv Notations

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    26/366

    m = Mkq/Mkg, for unstrengthened (U) or strengthened (S) member

    mi mass fraction of constituent i

    n power

    nc curve-shaped parameter

    lcn curve-shaped parameter (circumferential direction)ni curve-shaped parameter that mainly controls the curvature in the transition

    zone between the first and second branch

    p pitch of the helix

    r radius, or

    = Ec/(Ec-Esec1)

    rc radius of rounded corners

    1/r curvature

    1/ru curvature at failure

    1/ry curvature at start of yielding of steel reinforcement

    s centre to centre spacing of the FRP, or

    slip, or

    adhesive thickness

    s clear spacing between the FRP reinforcement

    sf spacing of FRP shear reinforcement

    sf,max maximum allowable spacing of the FRP reinforcement

    srm mean crack spacing

    srmexp mean crack spacing (experimental)

    sr,max maximum crack spacing

    sr,maxexp maximum crack spacing (experimental)

    ss spacing of steel stirrups

    su ultimate slip

    s1 slip corresponding to b,max

    t (total) thickness of FRP reinforcement

    tdf equivalent dry-fibre thickness

    u bond perimeter

    uf bond perimeter of the FRP reinforcement

    us bond perimeter of the steel reinforcement

    v vertical crack displacementvfib fibre volume fraction

    vi volume fraction of constituent i

    vmat matrix volume fraction

    w horizontal crack displacement

    wcrit critical crack width at which there is no longer aggregate interlock contribution

    wf crack width at level of FRP reinforcement

    wh horizontal component of the crack width

    w'i clear distance between the rounded corners

    wk characteristic value of the crack width

    wlim maximum allowable crack width

    Notations xxv

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    27/366

    wm mean crack width

    ws crack width at level of steel reinforcement

    wv vertical component of the crack width

    x depth of the compression zone, or

    = c/cc1, ordistance

    xe depth of the compression zone (linear elastic analysis)

    xlim maximum allowable depth of compression zone (ductility requirement)

    xo neutral axis depth before strengthening

    yu ultimate deflection at midspan

    yref ultimate deflection at midspan of reference specimen

    z lever arm between total tensile force and compression force

    ze lever arm between (linear elastic analysis)

    zf lever arm between FRP tensile force and compression force

    zs lever arm between steel tensile force and compression force

    Greek upper case letters

    reduced moment of inertia of transformed cross-sectionf parameter

    o reduced moment of inertia of transformed cross-section, prior to strengthening

    1 reduced moment of inertia of transformed cross-section, uncracked state

    2 reduced moment of inertia of transformed cross-section, cracked state

    Md variation of the design moment

    Nf variation of the FRP force

    Nfd variation of the design value of the FRP force

    T temperature change

    x small distance

    f,cr FRP stress increase at first cracking

    (mean) diameter of the steel reinforcement

    r global load safety factor for the rare load combination

    qp global load safety factor for the quasi-permanent load combination

    Greek lower case letters

    reduction factor, or

    angle of shear reinforcement with respect to longitudinal axis

    f = Ef/Ec, or

    angle of FRP shear reinforcement with respect to longitudinal, or

    fibre orientation with respect to the circumferential direction

    xxvi Notations

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    28/366

    s = Es/Ec, or

    angle of steel stirrups with respect to longitudinal axis

    T,CFRP coefficient of thermal expansion of FRP

    T,concrete coefficient of thermal expansion of the concrete

    1, 2 parameter expressing confined concrete strength1d, 2d parameter expressing the design value of confined concrete strength

    coefficient which relates mean and characteristic value of crack width, or= 12, or

    parameter depending on the unconfined concrete properties

    fe coefficient which relates mean and characteristic value offue

    t factor taking into account the type of loading

    1 coefficient taking into account the bond characteristics of the reinforcement

    2 coefficient taking into account the loading type

    c material safety factor for the concretec,axial material safety factor for the concrete under uniaxial compression

    g load safety factor for the dead load

    f material safety factor for the FRP

    M partial safety factor for the materials

    q load safety factors for the life load

    s material safety factor for the steel

    s,axial material safety factor for the steel under uniaxial compression

    G distance from the compression face to the centroid of the compression force

    divided by the depth of the compression zone (stress block centroid coefficient)

    1/r curvature ductility index

    1/r,min minimum curvature ductility index

    c concrete strain at the extreme compression fibre

    ccMd axial strain of confined concrete corresponding with fccMd

    ccu ultimate axial strain of confined concrete

    ccud design value of ultimate axial strain of confined concrete

    cc1 axial strain of confined concrete at maximum load

    cc1M axial strain of confined concrete corresponding with fccM

    c,exp measured axial concrete strain

    lc circumferential concrete strain

    IIcl circumferential concrete strain at the origin of second branch

    1cl circumferential concrete strain at maximum load

    ucl circumferential ultimate concrete strain

    fit,ucl circumferential ultimate concrete strain, calculated to fit experimental results

    cm mean concrete strain

    cr1 tensile strain of the uncracked state, with N= Ncr

    cr2 tensile strain of the fully cracked state, with N= Ncr

    Notations xxvii

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    29/366

    cu ultimate concrete strain at the extreme compression fibre

    cII concrete strain at the origin of second branch

    co initial concrete strain

    c1 axial concrete strain at maximum load

    f FRP reinforcement strainf,eff effective FRP tensile strain

    fm mean FRP reinforcement strain

    f,min minimum required ultimate FRP strain to assure sufficient ductility

    fQu midspan FRP strain at ultimate load

    fu ultimate FRP strain

    fu,c FRP strain in the critical section at ultimate stage

    fud design value of the ultimate FRP strain

    fue effective ultimate FRP strain

    fue,d design value of the effective ultimate FRP strain

    fu,eff effective failure strain of the FRP wrapping reinforcement

    fum mean value of the ultimate FRP strain

    i strain of the concrete in the axial (i = c) or circumferential (i = ) directionlc

    iII strain at the origin of the second branch

    m mean value of the strain

    mu mean ultimate strain

    r reinforcement strain

    rm,r mean strain of the reinforcement with respect to the surrounding concrete

    r2 reinforcement strain in the cracked section

    s steel reinforcement strain

    sm mean steel reinforcement strain

    s,min minimum required ultimate steel strain to assure sufficient ductility

    su ultimate strain of the steel reinforcement

    s1 steel tensile reinforcement strain

    s2 steel compressive reinforcement strain

    y yield strain of the steel reinforcement

    yd design value of the yield strain of the steel reinforcement

    yk characteristic value of the yield strain of the steel reinforcement

    o initial strain at the extreme tensile fibre before strengthening

    1 strain corresponding to the uncracked state

    2 strain corresponding to the fully cracked state

    , , b distribution or tension stiffening coefficients

    l boundary condition

    = h/da = MserS/MAk

    e effectiveness factoreffd design value of the effective FRP strength of the confining reinforcement

    xxviii Notations

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    30/366

    S = MRdS/MRdU

    o = Mo/MserU

    angle between the diagonal shear crack and the member longitudinal axisf ratio of the recorded mean tensile strain at ultimate load mu to the mean

    ultimate FRP strain fu obtained from tensile tests parameterdS reduced acting design moment of the strengthened member

    RdS reduced resisting design moment of the strengthened member

    RdU reduced resisting design moment of the unstrengthened member

    u dilation rate (change of circumferential strain with respect to the axial strain)

    coefficient taking into account the load configuration and span of the beam Poisson ratio

    f Poisson ratio of the FRP

    fib Poisson ratio of the fibres

    mat Poisson ratio of the matrix

    = x/d

    b bond parameter

    reinforcement ratio

    c,eff ratio of the effective concrete area in tension

    eq equivalent reinforcement ratio

    f volumetric ratio of the FRP wrapping reinforcement, or

    density of the fibre compositefx ratio representing the quantities of transverse confining reinforcement in

    the x direction

    fy ratio representing the quantities of transverse confining reinforcement in

    the y direction

    i density of the constituent i

    l longitudinal reinforcement ratio

    r reinforcement ratio for either steel (r = s) or FRP reinforcement (r = f), or

    = As/Ac,eff

    s steel reinforcement ratiosg = As/Ag

    s,min minimum reinforcement ratio of the internal steel

    w,eq equivalent shear reinforcement ratio

    wf FRP shear reinforcement ratio

    ws steel shear reinforcement ratio

    stress

    c concrete stress

    ccu ultimate compressive stress of confined concrete

    ccud design value of the ultimate compressive stress of confined concrete

    c,exp measured axial concrete stress

    Notations xxix

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    31/366

    cII concrete stress at the origin of the second branch

    f FRP stress

    fib fibre stress

    l lateral confining stress on the concrete

    circ,l confinement stress per unit width exerted by circular FRP wrapping reinf.

    spiral,l confinement stress per unit width exerted by helicodal FRP wrapping reinf.

    ul maximum lateral confinement stress

    udl design value of maximum lateral confinement stress

    uxl maximum lateral confining stresses in the x direction

    uxdl design value of maximum lateral confining stress in the x direction

    uyl maximum lateral confining stresses in the y direction

    uydl design value of maximum lateral confining stress in the y direction

    xl lateral confining stress in the x direction

    yl lateral confining stress in the y direction

    mat matrix stress

    max maximum stress

    r stress in the tensile reinforcement (steel or FRP)

    s stress in the tensile steel reinforcement

    s2 stress in the compressive steel reinforcement

    ws tensile stress in the steel stirrups shearstressad design value of mean shear strength obtained through lap shear tests

    am mean shear strength obtained through lap shear tests

    b bond shear stress

    bm mean bond shear stress

    b,max maximum bond shear stress

    c,max maximum shear stress in the concrete

    cza shear stress mobilised in compression zone and in shear crack (aggregate

    interlock)fm mean bond stress of the FRP reinforcement

    m mean shear stress

    max maximum shear stress

    sm mean bond stress of the steel reinforcement

    Rd1 design value of resisting shear stress of concrete

    Rm mean resisting shear stress

    Rp resisting shear stress corresponding with initiation of peeling

    Rpd design value of resisting shear stress at initiation of peeling

    Rpk characteristic value of resisting shear stress at initiation of peeling

    xxx Notations

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    32/366

    ratio of the critical crack width at which there is no longer an aggregateinterlock contribution to the mean crack spacing

    creep coefficient coefficient relating the dowel action to the axial stiffness of the reinforcement ratio of the average over the maximum concrete compressive stress (stressblock area coefficient)2 load combination factor with respect to the quasi-permanent load combination

    constant

    Important abbreviations

    FRP fibre reinforced polymer

    FRP EBR externally bonded FRP reinforcement

    AFRP aramid fibre reinforced polymer

    CFRP carbon fibre reinforced polymer

    GFRP glass fibre reinforced polymer

    HFRP hybrid fibre reinforced polymer

    RC reinforced concrete

    SLS serviceability limit state

    ULS ultimate limit state

    AS accidental situation

    EC1 Eurocode 1

    EC2 Eurocode 2

    Notations xxxi

  • 7/29/2019 STRUCTURAL BEHAVIOUR AND DESIGN OF CONCRETE MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP

    33/366

    SAMENVATTING

    Deze samenvatting geeft een overzicht van de voornaamste aspecten van het proefschrift,

    dat handelt over de versterking van structurele betonelementen met uitwendig gelijmde

    vezelcomposietwapening (externally bonded fibre reinforced polymer reinforcement of FRP

    EBR). De voor- en nadelen, de eigenschappen en de toepassing van deze versterkingstechniek

    worden besproken, alsook het uitgevoerd experimenteel onderzoek en de analytische

    verificaties. Ontwerprichtlijnen worden voorgesteld voor gewapend betonelementen versterkt

    in buiging en dwarskracht en axiaal belaste kolommen omwikkeld met FRP EBR.

    1 Inleiding

    1.1 Vezelcomposietwapening voor beton

    De ontwikkeling van lichte vezels met hoge sterkte en stijfheid in de jaren veertig was het

    begin van een sterke opgang van de vezelcomposietmaterialen. Aanvankelijk slechts

    aangewend voor hoogwaardige toepassingen binnen de ruimtevaart en vliegtuigindustrie,

    groeide de interesse voor vezelcomposietmaterialen ook binnen een groter aantal sectoren van

    de industrie, waaronder de bouwsector. In de betonbouw is de aanwending van

    vezelcomposiet- of fibre reinforced polymer (FRP) elementen, voornamelijk als structurele

    wapening, uitgegroeid tot n van de meest veelbelovende nieuwe technieken [1-4]. Immers,

    uitgesproken voordelen zoals o.a. een hoge axiale sterkte, een uitstekende corrosie