44
StreamStats Web StreamStats Web Application Application streamstats.usgs.gov streamstats.usgs.gov Audrey Ishii, P.E. Illinois Water Science Center

StreamStats Web Application streamstats.usgs.gov

Embed Size (px)

DESCRIPTION

Overview—Streamflow Statistics What—Estimate of streamflow under some condition, such as the 100-year flood flow, flow durations, etc. Used in engineering design flows for bridges, culverts, mapping floodplains, setting water allocations, determining allowable waste discharges. How Computed— At stream gages--statistical analysis of historic flows, the flood-frequency or flow duration curve Ungaged sites: Regression equations relating the characteristics of the curve to basin characteristics. Q100 = a(TDA)b(MCS)c(PermAvg)d(Rf)

Citation preview

Page 1: StreamStats Web Application streamstats.usgs.gov

StreamStats Web StreamStats Web ApplicationApplication

streamstats.usgs.govstreamstats.usgs.gov

Audrey Ishii, P.E.Illinois Water Science Center

Page 2: StreamStats Web Application streamstats.usgs.gov

Overview—Streamflow Statistics• What—Estimate of streamflow under some condition, such as

the 100-year flood flow, flow durations, etc.• Used in engineering design flows for bridges, culverts, mapping

floodplains, setting water allocations, determining allowable waste discharges.

• How Computed— At stream gages--statistical analysis of historic flows, the

flood-frequency or flow duration curveUngaged sites: Regression equations relating the

characteristics of the curve to basin characteristics.

Q100 = a(TDA)b(MCS)c(PermAvg)d(Rf)

Page 3: StreamStats Web Application streamstats.usgs.gov

Selected discharge gages with more than 25 years of record for analysis.

Streamflow gaging stations are not distributed evenly.The density impacts the quality of regional analyses.

Page 4: StreamStats Web Application streamstats.usgs.gov

Percentage changes in the 100-year peak flow estimate between 1987 and 2004

1Max. = 35Avg. = 6

Max. = 50Avg. = 27

Max. = 29Avg. = 4

Max. = 81Avg. = 9

Max. = 24Avg. = 7

Max. = 95Avg. = 15

Max. = - 2Avg. = - 8

Page 5: StreamStats Web Application streamstats.usgs.gov

Traditional Methods for Measuring Basin Characteristics

• Very labor intensive and costly• Not completely reproducible• Error-prone• Often not documented well in reports• Users need source materials and expertise• Some BC not easily reproduced by GIS methods

Page 6: StreamStats Web Application streamstats.usgs.gov

GIS Methods for Basin Characteristics

• Several custom software packages developed, GIS Weasel, BasinSoft, BASINS, WMS, mostly

developed for watershed modeling, often ESRI.• Needed GIS datasets not always readily available • No documented national standard methods• Several methods used for some characteristics• Users need source data and expertise• Often not documented well in reports• Some measurements are scale-dependent

Page 7: StreamStats Web Application streamstats.usgs.gov

StreamStats GIS computations

• Create hydro networks of rivers and streams

• Process DEM and stream network for watershed analysis

• Delineate drainage basins and measure basin characteristics

• Represent channel shape using three-dimensional models

• Connect geospatial features to time series measurements recorded at gaging sites

• Runs within ESRI Arc 8/9 software• Public domain utilities developed

jointly by U. Texas at Austin and ESRI

Page 8: StreamStats Web Application streamstats.usgs.gov

StreamStats Web Application• Provides published

streamflow statistics and basin characteristics for gages

• Computes basin characteristics for ungaged sites

• Provides regression-based estimates of streamflow statistics for ungaged sites

User InterfaceArcIMS

Streamflow Statistics Database

NSS Calculation

Program

GIS DatabaseArcHydro

At astreamgage

At an ungaged location

Page 9: StreamStats Web Application streamstats.usgs.gov
Page 10: StreamStats Web Application streamstats.usgs.gov
Page 11: StreamStats Web Application streamstats.usgs.gov
Page 12: StreamStats Web Application streamstats.usgs.gov

Application Examples

• Engineering Design—Bridges, culverts, flood-plain management

• Water and Land Management—Water rights adjudication, in-stream flows, fish passage/habitat studies

• Water Quality Regulation—Low flows, perennial vs. intermittent streams (TMDL’s, NPDES Permits)

• Sampling Network Design—Cover a range of desired flows

Page 13: StreamStats Web Application streamstats.usgs.gov

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

0.10 1.00 10.00 100.00 1000.00

StreamStats_SL

Stre

amSt

ats_

DA

Variation in Slope with Drainage Arean=283

Page 14: StreamStats Web Application streamstats.usgs.gov

StreamStats Benefits

• Cost—Time to delineate and compute basin characteristics reduced from hours to minutes

• Accuracy—As good or better than manual methods• Consistency—Important for statistical validity• Accessibility—User does not need GIS expertise or

software

Page 15: StreamStats Web Application streamstats.usgs.gov
Page 16: StreamStats Web Application streamstats.usgs.gov

National StreamStats Status

• 15 states up and running• National gages web site• 18 additional states underway• Data upgrades on 3

states (PA, ID, WA)• Each state is developed

(and funded) separately

Page 17: StreamStats Web Application streamstats.usgs.gov
Page 18: StreamStats Web Application streamstats.usgs.gov
Page 19: StreamStats Web Application streamstats.usgs.gov

Evaluation of Illinois StreamStats

• Basin characteristics at 283 USGS rural gaging stations

• Sensitivity of basin characteristics on estimated flood quantiles

• Flood quantiles at 169 USGS rural gaging stations (random sampling)

• Reliability testing

Page 20: StreamStats Web Application streamstats.usgs.gov

Q100 Estimates

10

100

1000

10000

100000

10 100 1000 10000 100000

StreamStats Q100

Publ

ishe

d Q

100

Q100 Estimates

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

StreamStats

Publ

ishe

d

Scatter plots of preliminaryQ100 estimates using BasinSoft and manual drainage basin delineation with StreamStats

All regions, n = 164

Log-Log Scale

Arithmetic Scale

Page 21: StreamStats Web Application streamstats.usgs.gov

The UNIVARIATE Procedure Variable: PERDIFFIL_Q100

Schematic Plots

| 1 + | * | | 0.5 + | | * | | | | | +-----+ +-----+ | +-----+ 0 +-----+ +-----+ 0 + *--+--* *-----* *--+--* *--+--* *--+--* *--+--* *--+--* | | | + | | | +-----+ 0 | +-----+ 0 0 | | | 0 -0.5 + | | | | | -1 + 0 | | | -1.5 + 21 38 46 23 16 12 8 +--------+----------+--------+--------+-------+--------+----------- 1 2 3 4 5 6 7 REGION

Variable: DIFFBSIL_Q100

Schematic Plots

| 4000 + | * | | * 2000 + * * | * 0 | 0 0 | * 0 | +--0--+ | +-----+ | | +-----+ | 0 + *--+--* *-----* *--+--* *--+--* *--+--* *--+--* *--+--* | | + +-----+ 0 +-----+ | | * * 0 * | | * * 0 -2000 + * 0 * | | | -4000 + * | | * | -6000 + * ---------+--------+--------+---------+--------+--------+--------+ 1 2 3 4 5 6 7 REGION

+ Mean*----* Median+---+ Interquartile Range | 1.5 x Interquartile Range 0 < 3.0 x Interquartile Range * > 3.0 x Interquartile Range

Distribution of differences by Region

Differences are found not statistically significant by paired t-test and Wilcoxon Signed Rank test (p-value < 0.05), except forRegion 1: Q2, Q5, Q10 percent differences.

Page 22: StreamStats Web Application streamstats.usgs.gov

Average absolute maximum deviation from the mode = 1.31 percent

Reliability Testing

1 2 3 4 5 6 7 8 9 10 11 12 13 14

5150 2050 1120 3010 2500 2280 4630 3870 4930 2800 3700 1160 575 7310

5150 2050 6120 2280 4630 3870 2820 3700 1180 583 7310

2040 1120 1760 2510 2280 4630 3870 4940 11800 3700 1180 574 7310

5150 1980 1110 6120 2490 2280 4630 3870 319 2800 3700 1190 573 7310

5150 2040 1120 3010 2500 2280 4630 3870 4940 2820 3700 1180 583 7310

5150 2040 1120 3010 2500 2280 4630 3870 4940 2830 3700 580 7310

5150 2050 1120 6110 2500 2280 4630 3870 4930 2820 3700 1150 575 7310

5150 2050 4630 3010 2500 2280 1120 3870 4950 2830 3700 1170 575 7310

0 2.94 0.89   0.4 0 0 0 0.2 0.71 0 2.54 0.09 1.39

15 16 17 18 19 20 21 22 23 24 25 26 27 28

6780 2050 1800 8440 4400 6420 5260 10100 14500 2230 2650 14300 5090 1700

6770 2050 1800 8440 4400 6430 5260 10100 14500 2230 2650 14300 5090 1700

6770 2060 1790 8440 4400 17600 5260 10100 15300 2230 7720 6860 5090 1700

2050 1800 8440 4400 6420 5260 10100 14400 2220 2680 14300 5100 1720

6780 2050 1800 8440 4400 6420 5260 10100 14500 2230 2650 14300 5090 1700

6770 2040 1800 8440 4400 6430 5260 10100 14400 2230 2650 14300 5090 1700

6780 2040 1800 8440 4410 6420 5260 10100 14500 2230 2650 14300 4810 1700

6780 2040 1800 8440 4400 6420 5260 10100 14400 2230 2650 14300 5090 1700

0.15 0.49 0.56 0 0.23 0.16 0 0 0.69 0.45 1.13 0 5.5 1.18

Page 23: StreamStats Web Application streamstats.usgs.gov

Q100 = 1760Q100 = 6110

Page 24: StreamStats Web Application streamstats.usgs.gov

StreamStats Development

• Massachusetts ArcViewIMS application 2000 - 2007• First prototype ArcHydro based Dec 2002• Development/Testing throughout 2003-04• Idaho public release Oct 2004

• Porting to ArcGIS Server• Web services• NHD Navigation/Reach indexing• Drainage-area ratio for ungaged sites• Weighted estimates for ungaged basins that cross state lines

Past

Present

Page 25: StreamStats Web Application streamstats.usgs.gov

N

Page 26: StreamStats Web Application streamstats.usgs.gov

Flood frequencies estimated by regional equations and continuous

simulation modeling in ungaged areas of the Blackberry Creek watershed, Kane County, Ill.

Page 27: StreamStats Web Application streamstats.usgs.gov

Actual rainfall and climatologic data

Continuous simulation of rainfall-runoff using the HSPF Blackberry

Creek watershed model

Flood quantiles

QTs

Overview approach for estimating the flood quantiles at sub-basins of the Blackberry Creek watershed

Flood frequency analysis

100

10000

1000

DISC

HA

RG

E, IN

CU

BIC

FEE

T PE

R SE

CO

ND

0.010.101.0010.0030.0050.0070.0099.0099.9099.99 90.00

PROBABILITY OF EXCEEDANCE, IN PERCENT

Simulated flow series at specified locations

Plot Title

0 50 100 150 200 250 300 3500

20

40

60

80

100

120

140

Page 28: StreamStats Web Application streamstats.usgs.gov

Precipitation Interception ET

Depression Infiltration

Overland flow

Land Use & Management

HSPF Sediment ModuleHSPF PEST Module

Interflow

To ch

anne

ls

Page 29: StreamStats Web Application streamstats.usgs.gov

Blackberry Creek HSPF model

• 49 sub-basins with drainage area varying around 1 mi2 at the headwater, flows are routed through each basin

• 6 pervious land (PERLND): cropland, grassland, forested and wooded land, pervious residential, wetland, and barren and exposed land

• 3 impervious land (IMPLND): high density urban, impervious residential, and transportation

Page 30: StreamStats Web Application streamstats.usgs.gov

Thiessen Method for July 1996 Storm

!

!

#

#

THIESSEN

Yorkville

Montgomery

St. Charles (ISWS)

Aurora (NWS)

0 2.4Miles

¯

Blackberry Watershed

Explanation# Stream Gage

! Rain Gage

24-hr rainfall = 16.91 in

24-hr rainfall = 6.59 in

Page 31: StreamStats Web Application streamstats.usgs.gov

Simulated July 1996 Flow (using Thiessen method) Simulated July 1996 Flow (using Thiessen method) versus Observed Hourly Flow at Yorkvilleversus Observed Hourly Flow at Yorkville

Page 32: StreamStats Web Application streamstats.usgs.gov

NEXRAD TotalsNWS Stage III

July 17-18, 1996

EXPLANATION48 hour Rainfall(inches)

> 7.0 - 8.5> 8.5 - 9.5> 9.5 - 10.5>10.5 - 11.5>11.5- 12.5>12.5- 13.5>13.5- 14.5>14.5- 15.5>15.5- 17.0

Page 33: StreamStats Web Application streamstats.usgs.gov

NEXRAD Totals Averaged to WatershedJuly 17-18, 1996

EXPLANATION48 hour Rainfall(inches)

> 7.0 - 8.5> 8.5 - 9.5> 9.5 - 10.5>10.5 - 11.5>11.5- 12.5>12.5- 13.5>13.5- 14.5>14.5- 15.5>15.5- 17.0

Page 34: StreamStats Web Application streamstats.usgs.gov

Simulated Flow (using NEXRAD) and Observed Hourly Flow at Yorkville

Page 35: StreamStats Web Application streamstats.usgs.gov

Comparison of Flow Duration CurvesComparison of Flow Duration Curves

Blackberry Creek at Yorkville1990-1999 using Thiessen approach

Page 36: StreamStats Web Application streamstats.usgs.gov

• Aerial video and pictures provided by Kane County and IDNRAerial video and pictures provided by Kane County and IDNR

• Flood inundation mapping done by:Flood inundation mapping done by:

-Paul Schuch of Kane County-Paul Schuch of Kane County

-Phil Gaebler of USGS-Phil Gaebler of USGS

Uses of the inundation map of the July 18, 1996, event for verifying flows in ungaged areas

Page 37: StreamStats Web Application streamstats.usgs.gov

Verification with 1996 inundation map generated from video imagery—after routing with HEC-RAS

Page 38: StreamStats Web Application streamstats.usgs.gov

Watershed Model Calibration and Verification

0

500

1000

1500

0 500 1000 1500

OBSERVED MONTHLY PEAK FLOW IN CFS

SIM

ULA

TED

MO

NTH

LY P

EAK

FLO

W IN

C

FS

y = 1.00 x R2 = 0.80

Line of perfect agreementand regression line

Calibration period 1990-1995

Coefficient of Model Fit Efficiency 0.816

Correlation Coefficient 0.90

Verification period 1996-1999

Coefficient of Model Fit Efficiency 0.806

Correlation Coefficient 0.94

0

500

1,000

1,500

0 500 1,000 1,500

Observed Monthly Peak Discharge, in cfs

SIM

ULA

TED

MO

NTH

LY P

EAK

FLO

W, I

N C

FS

y = 0.82 xR2 = 0.82

Line of perfect agreement

Regression line

Page 39: StreamStats Web Application streamstats.usgs.gov

Actual rainfall and climatologic data

Continuous simulation of rainfall-runoff using the HSPF Blackberry

Creek watershed model

Flood quantiles

QTs

Approach for estimating the flood quantiles at sub-basins of the Blackberry Creek watershed

Flood frequency analysis

100

10000

1000

DISC

HA

RG

E, IN

CU

BIC

FEE

T PE

R SE

CO

ND

0.010.101.0010.0030.0050.0070.0099.0099.9099.99 90.00

PROBABILITY OF EXCEEDANCE, IN PERCENT

Simulated flow series at specified locations

Plot Title

0 50 100 150 200 250 300 3500

20

40

60

80

100

120

140

Page 40: StreamStats Web Application streamstats.usgs.gov

Five long-term precipitation records were evaluated for their representativeness of the watershed (1949-1999)

Exceedance probability in percent0.11.010.030.050.0

Dis

char

ge in

cfs

1000

10000Regional flood-frequency curveLower95% of regional estimatesUpper95% or regional estimatesArgonne recordAurora recordO'Hare recordWheaton recordElgin record

Blackberry Creek at Yorkville

Page 41: StreamStats Web Application streamstats.usgs.gov

Comparison of flood-frequency curves Comparison of flood-frequency curves between simulated and observed data (1961-99)between simulated and observed data (1961-99)

Exceedence probability0.11.010.030.050.070.090.099.099.9

Dis

char

ge, c

fs

10

100

1000

10000

LegendObserved Data 61-99Lower95%Upper95%Observed Annual Peak-DataSimulated with Argonne 61-99 Data

Blackberry Creek at Yorkville

Page 42: StreamStats Web Application streamstats.usgs.gov

Thomas, (1986) — (~60 years flood series generated from lumped unit hydrograph model; Observed streamflow has at least 20 or more years of records)

• Simulated AMS series underpredicted Q100 by 12% but overpredicted Q2 by 13% on average. The synthetic flood-frequency curves are flatter than observed flood-frequency curves

• The model tended to underpredict flood peaks for small watersheds (1 mi2) and overpredict flood peaks for large watersheds (10 mi2)

Page 43: StreamStats Web Application streamstats.usgs.gov

Exceedance probability

0.11.010.030.050.070.090.0

Dis

char

ge, c

fs

100

1000

10000

5132.5 km2

Exceedance probability0.11.010.030.050.070.090.0

Dis

char

ge, c

fs

100

1000

10000280177.7 km2

Exceedance probability0.11.010.030.050.070.090.0

Dis

char

ge, c

fs

100

1000

21412.5 km2

Exceedance probability0.11.010.030.050.070.090.0

Dis

char

ge, c

fs

10

100

1000 2082.6 km2

Page 44: StreamStats Web Application streamstats.usgs.gov

Estimate of QTs in Ungaged Areas

Design storms

Frequency analysis

Event model

Regionalequations

streamstats.usgs.gov

Synthetic frequency curves Continuous

simulation model

Event model