37
Springer Handbook of Nanotechnology

Springer Handbook of Nanotechnology978-3-662-54357-3/1.pdf · Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles,

  • Upload
    lydieu

  • View
    221

  • Download
    2

Embed Size (px)

Citation preview

Springer Handbookof Nanotechnology

Springer Handbooks providea concise compilation of approvedkey information on methods ofresearch, general principles, andfunctional relationships in physicaland applied sciences. The world’sleading experts in the fields ofphysics and engineering will be as-signed by one or several renownededitors to write the chapters com-prising each volume. The contentis selected by these experts fromSpringer sources (books, journals,online content) and other systematicand approved recent publications ofscientific and technical information.

The volumes are designed to beuseful as readable desk referencebook to give a fast and comprehen-sive overview and easy retrieval ofessential reliable key information,including tables, graphs, and bibli-ographies. References to extensivesources are provided.

HHandbookSpringer

of NanotechnologyBharat Bhushan (Ed.)

4th EditionWith 1325 Figures and 100 Tables

K

EditorBharat BhushanThe Ohio State UniversityNanoprobe Lab for Bio- & Nanotechnology & Biomimetics201 W. 19th Ave.Columbus, OH, 43210-1107, [email protected]

ISBN: 978-3-662-54355-9 e-ISBN: 978-3-662-54357-3DOI 10.1007/978-3-662-54357-3Library of Congress Control Number: 2017954360

© Springer-Verlag GmbH Germany 2017

This work is subject to copyright. All rights are reserved by the Publisher,whether the whole or part of the material is concerned, specificallythe rights of translation, reprinting, reuse of illustrations, recitation,broadcasting, reproduction on microfilms or in any other physical way, andtransmission or information storage and retrieval, electronic adaptation,computer software, or by similar or dissimilar methodology now known orhereafter developed.The use of general descriptive names, registered names, trademarks,service marks, etc. in this publication does not imply, even in the absenceof a specific statement, that such names are exempt from the relevantprotective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the adviceand information in this book are believed to be true and accurate at the dateof publication. Neither the publisher nor the authors or the editors give awarranty, express or implied, with respect to the material contained hereinor for any errors or omissions that may have been made. The publisherremains neutral with regard to jurisdictional claims in published maps andinstitutional affiliations.

Production, typesetting and illustrations: le-tex publishing services GmbH,LeipzigTypography and layout: schreiberVIS, SeeheimCover design: eStudio Calamar Steinen, BarcelonaCover production: WMXDesign GmbH, HeidelbergPrinting and binding: Printer Trento s.r.l., Trento

Printed on acid free paper

This Springer imprint is published by Springer NatureThe registered company is Springer-Verlag GmbH, DEThe registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

V

Foreword

Prof. Neal LaneMalcolm Gillis UniversityProfessor EmeritusDepartment of Physics andAstronomy EmeritusSenior Fellow, Rice University’sBaker Institute for Public PolicyRice UniversityHouston, TexasSeptember 2016

Prof. Lane served in the ClintonAdministration as Assistantto the President for Scienceand Technology and Directorof the White House Office ofScience and Technology Policy(1998–2001) and, prior to that,as Director of the NationalScience Foundation (1993–1998).While at the White House, hewas instrumental in creatingthe National NanotechnologyInitiative (NNI).

When President W. J. Clinton approved the National Nanotechnology Initiative in2000, we could not really imagine its full impact on science, technology and the econ-omy. Nanotechnology refers to technology at the nanoscale that has applications inthe real world. It is a broad and highly interdisciplinary field that is still evolving. Thefield involves the discovery and development of novel materials, processes, and phe-nomena at the nanometer scale, as well as the development of new experimental andtheoretical techniques for research. These discoveries provide the foundations for fur-ther development of innovative nanosystems and nanostructured materials. There is anincreasing need for a multidisciplinary, systems-oriented approach to manufacturingmicro/nanodevices that function reliably. This can only be achieved through the cross-fertilization of ideas from different disciplines and the systematic flow of informationand people among research groups.

To encourage this multidisciplinary approach, Professor Bharat Bhushan hasharnessed his own knowledge and experience, gained in several industries and univer-sities, to assemble internationally recognized academic and industry authorities fromaround the world to write chapters for this handbook. The topics include the latestmajor advances in many fields where nanoscale science and engineering are beingpursued, and illustrate how the field of nanotechnology has continued to emerge andblossom.

Covering even the most important aspects of nanotechnology in a single book thatreaches readers ranging from students to active senior researchers in academia andindustry is an enormous challenge. Adding to this challenge is the accelerating paceof discovery and applications in nanotechnology. However, as in earlier editions, Pro-fessor Bhushan does an admirable job bringing together disparate topics and areas ofstudy and practice to create a cohesive and wide-ranging handbook, sure to serve asthe bedrock for anyone interested in the field.

Professor Bhushan’s comprehensive book is intended to serve as both a textbookfor university courses and a reference for researchers. It is a testament to the quality ofthe handbook contents that continuing editions have been created. The three editionswere timely additions to the literature on nanotechnology, and stimulated further in-terest in this important new field while serving as invaluable resources to members ofthe international scientific and industrial community. The increasing demand for up-to-date information on this fast moving field led to the third edition. It is increasinglyimportant that scientists and engineers, whatever their specialty, have a solid groundingin the fundamentals and potential applications of nanotechnology. This fourth edi-tion addresses that need by paying particular attention to the widening audience ofreaders, discussing nanotechnology and nanoscience education, and providing timelyand useful information on new and burgeoning nanotechnology areas. It also includesa discussion of the societal, ethical, and political issues that tend to surround emergingtechnology.

The Editor-in-Chief and his team are to be warmly congratulated for bringing to-gether this exclusive, opportune, and useful Springer Handbook of Nanotechnology.

VII

Preface for the Fourth Edition

On 29 December 1959, at the California Institute ofTechnology, Nobel Laureate Richard P. Feynman gavea talk at the Annual Meeting of the American Physi-cal Society titled There’s Plenty of Room at the Bottom,which has become one of the classic science lecturesof the 20th century. He presented a technological vi-sion of extreme miniaturization in 1959, several yearsbefore the word chip became part of the lexicon. Hetalked about the problem of manipulating and control-ling things on a small scale. Extrapolating from knownphysical laws, Feynman envisioned a technology usingthe ultimate toolbox of nature: building nano-objectsatom by atom or molecule by molecule. Since the1980s, the many inventions and discoveries in the fab-rication of nano-objects have been testaments to hisvision.

In a January 2000 speech, also at the CaliforniaInstitute of Technology, President William J. Clintontalked about the exciting promise of nanotechnologyand the importance of expanding research in nano-scale science and technology more broadly. Later thatmonth, in the State of the Union Address, he announcedan ambitious $ 497 million federal, multiagency Na-tional Nanotechnology Initiative (NNI) in the 2001fiscal year (FY) budget, and made the NNI a top sci-ence and technology priority. The objective of thisinitiative was to form a broad-based coalition in whichacademia, the private sector, and local, state, and fed-eral governments worked together to push the enve-lope of nanoscience and nanoengineering and to reapnanotechnology’s potential social and economic bene-fits.

Nanotechnology refers to technology done at thenanoscale that has applications in the real world. Theunique physical and chemical properties of nanomateri-als can be exploited for applications that benefit society.The National Nanotechnology Initiative was formal-ized with the 21st Century Nanotechnology Researchand Development Act in 2003. Since 2001, the USCongress has appropriated about $ 20 billion for nano-technology research and development (R&D) throughFY 2015, with about $ 1.5 billion spent annually. USprivate sector R&D funding is more than double thatof federal and state funding with a focus on translatingfundamental research into commercial products. Therevenues from nanoenabled products continue growing,with over $ 200B in FY 2012 in the US alone, and over$ 700B worldwide. This represents an impressive returnon investment.

The integration of nanotechnology into larger sys-tems gives us breakthrough solutions to many cur-rent environmental, medical, and industrial problems,including smart materials, nanomanufacturing, elec-tronics, targeted drug delivery, energy, water, biotech-nology, information technology, and national security.Nanotechnology will have a profound impact on oureconomy and society; it is a modern industrial rev-olution. Nanotechnology represents a megatrend andhas become a general purpose technology. It is nowa household word and a buzzword often used in mar-keting products.

There is an increasing need for a multidisciplinary,system-oriented approach to design and manufactur-ing of micro/nanodevices that function reliably. Thiscan only be achieved through the cross-fertilization ofideas from different disciplines and the systematic flowof information and people among research groups. Re-liability is a critical technology for many micro- andnanosystems and nanostructured materials. A broad-based handbook was needed, and so the first editionof the Springer Handbook of Nanotechnologywas pub-lished in April 2004. It presented an overview ofnanomaterial synthesis, micro/nanofabrication, micro-and nanocomponents and systems, scanning probe mi-croscopy, reliability issues for nanotechnology, andindustrial applications. When the handbook went onsale in Europe, it was sold out in ten days. Reviews onthe handbook were very flattering.

Given the explosive growth in nanoscience and na-notechnology, the publisher and the editor decided todevelop a second edition only six months after the pub-lication of the first edition. The second edition (2007)came out in December 2006. The publisher and the ed-itor again decided to develop a third edition six monthsafter the publication of the second edition, which cameout in 2010.

There continue to be significant developments inbio- and nanotechnology, and many products have beencommercialized. Now, politicians, investors, and in-dustrialists can see return on their R&D investments.Societal, ethical, and political effects as well as en-vironmental and health and safety issues need to beaddressed. As nanoproducts become real and interestin this exploding field grows, there emerges a need todevelop nanoscience and nanotechnology curricula andtextbooks that can be used in academia. The need ex-ists starting from K-12 through college and continuingeducation, as well as technical training. The present

VIII Preface for the Fourth Edition

fourth edition was launched after five years after thepublication of the third editiom. The objective of thisedition is to cover the latest developments and intro-duce new areas of nanoscience and nanotechnology.This edition integrates knowledge from nanostructures,nanofabrication, materials science, nanodevices, andreliability. It covers various industrial applications. Italso addresses societal, ethical, and political issues,as well as environmental, health and safety aspects,and nanotechnology education. Given the significantinterest in biomedical applications and biomimetics,a number of additional chapters in this arena wereadded.

Almost all chapters are either new or substantiallyrevised with coverage of new areas. The fourth editionconsists of 47 chapters. The chapters have been writtenby over 130 internationally recognized experts in thefield, from academia, national research labs and indus-try from all over the world.

This handbook is intended for three types of read-ers: graduate students of nanotechnology, researchersin academia and industry who are active or intend

to become active in this field, and practicing engi-neers and scientists who have encountered a problemand hope to solve it as expeditiously as possible. Thehandbook should serve as an excellent text for one-or two-semester graduate courses in nanotechnologyin mechanical engineering, materials science, appliedphysics, or applied chemistry.

I wish to sincerely thank the authors for offeringto write comprehensive chapters on a tight schedule.This is generally an added responsibility in the hec-tic work schedules of researchers today. I depended ona large number of reviewers who provided critical re-views. Last but not the least, I would like to thank myassistant Renée L. Ripley for various administrative du-ties; her tireless efforts are highly appreciated.

I hope that this handbook will stimulate further in-terest in this important new field, and that readers of thishandbook will find it useful.

Bharat BhushanEditor

September 2017

IX

About the Editor

Dr. Bharat Bhushan received an M.S. in mechanicalengineering from the Massachusetts Institute of Tech-nology in 1971, anM.S. inmechanics and a Ph.D. in me-chanical engineering from the University of Colorado atBoulder in 1973 and 1976 respectively, an MBA fromRensselaer Polytechnic Institute at Troy, NY in 1980,Doctor Technicae from the University of Trondheim atTrondheim, Norway in 1990, a Doctor of Technical Sci-ences from the Warsaw University of Technology atWarsaw, Poland in 1996, and Doctor Honouris Causafrom the National Academy of Sciences at Gomel, Be-larus in 2000 and University of Kragujevac, Serbia in2011. He is a registered professional engineer. He ispresently an Ohio Eminent Scholar, The Howard D.Winbigler Professor, and the Director of the NanoprobeLaboratory for Bio- & Nanotechnology and Biomimet-ics (NLB2) in the College of Engineering, and affili-ated faculty in the John Glenn College of Public Af-fairs, at the Ohio State University, Columbus, Ohio. In2013–14, he served as an ASME/AAAS (American So-ciety of Mechanical Engineers/American Associationfor the Advancement of Science) Science &TechnologyPolicy Fellow, House Committee on Science, Space &Technology, United States Congress, Washington, DC.His research interests include fundamental studies witha focus on scanning probe techniques in the interdisci-plinary areas of bio/nanotribology, bio/nanomechanicsand bio/nanomaterials characterization and applicationsin bio/nanotechnology and biomimetics. He is an inter-nationally recognized expert in bio/nanotribology andbio/nanomechanics using scanning probe microscopy,and is one of the most prolific authors on the topic.He is considered by some a pioneer of the tribologyand mechanics of magnetic storage devices. He has au-thored eight scientific books, 90C handbook chapters,800C scientific papers (One of Google Scholar’s 1612highly cited researchers (h > 100) and h-index 110Cwith 60kC citations; Web of Science h-index 857C;ISI Highly Cited Researcher in Materials Science since2007 and in Biology and Biochemistry in 2013; ISI Top5% Cited Authors for Journals in Chemistry, 2011), and60C technical reports. He has also edited 50C booksand holds 20 US and foreign patents. He is coeditorof Springer NanoScience and Technology Series andalso of Microsystem Technologies, and is a PNAS Ed-itorial Board member. He has given more than 400 in-vited presentations on six continents and more than 200keynote/plenary addresses at major international confer-ences.

Dr. Bhushan is an accomplishedorganizer. He organized the first Sym-posium on Tribology and Mechanicsof Magnetic Storage Systems in 1984and the first International Symposiumon Advances in Information StorageSystems in 1990, both of which arenow held annually. He organizedtwo international NATO institutes inEurope. He is the founder of an ASMEInformation Storage and ProcessingSystems Division founded in 1993and served as the founding chair from1993–1998. His biography has been listed in over twodozen Who’s Who books including Who’s Who in theWorld. He has received more than two dozen awardsfor his contributions to science and technology fromprofessional societies, industry, and US governmentagencies including the Life Achievement TribologyAward and the Institution of Chemical Engineers (UK)Global Award. His research was listed in the top tenscience stories of 2015. He is also the recipient of var-ious international fellowships including the Alexandervon Humboldt Research Prize for Senior Scientists, theMax Planck Foundation Research Award for Outstand-ing Foreign Scientists, and the Fulbright Senior ScholarAward. He is a foreign member of the InternationalAcademy of Engineering (Russia), the ByelorussianAcademy of Engineering and Technology and theAcademy of Triboengineering of Ukraine, an honorarymember of the Society of Tribologists of Belarus andSTLE (Society of Tribologists and Lubrication Engi-neers), a fellow of ASME, IEEE (Institute of Electricaland Electronics Engineers) and the New York Academyof Sciences, and a member of ASEE (American Societyfor Engineering Education), Sigma Xi and Tau Beta Pi.

Dr. Bhushan has previously worked for Mechani-cal Technology Inc., Latham, NY; SKF Industries Inc.,King of Prussia, PA; IBM, Tucson, AZ; and IBM Al-maden Research Center, San Jose, CA. He has heldvisiting professorships at University of California atBerkeley, USA; University of Cambridge, UK; Tech-nical University Vienna, Austria; University of Paris,Orsay, France; ETH Zurich, Switzerland; EPFL Lau-sanne, Switzerland; University of Southampton, UK;University of Kragujevac, Serbia; Tsinghua University;China, Harbin Institute, China; and KFUPM, SaudiArabia.https://nlbb.engineering.osu.edu/

X

XI

List of Authors

Aditya AryasomayajulaMcMaster UniversityDept. of Mechanical Engineering1280 Main St. WestHamilton, L8S 4L7, [email protected],[email protected]

W. Robert AshurstAuburn UniversityDept. of Chemical Engineering212 Ross HallAuburn, AL 36849-5127, [email protected]

Massood Z. AtashbarWestern Michigan UniversityDept. of Electrical & Computer Engineering4601 Campus Dr.Kalamazoo, MI 49008-5329, [email protected]

Wolfgang BacsaCentre National de la Recherche Scientifique,Université de ToulouseCentre d‘Elaboration de Matériaux et d‘EtudesStructurales (CEMES), UPR #801129 Rue Jeanne Marvig (BP 94347)31055 Toulouse, [email protected]

William S. BainbridgeNational Science FoundationDivision of Information & Intelligent Systems4201 Wilson Blvd., Suite 525Arlington, VA 22230, [email protected]

Antoni BaldiBarcelona Microelectronics Institute(IMB-CNM-CSIC)Chemical Transducers GroupCarrer dels Til.lers s/n, Campus UAB08193 Bellaterra, [email protected]

Wilhelm BarthlottUniversity of BonnNees-Institute for Biodiversity of PlantsVenusbergweg 2253115 Bonn, [email protected]

Pouriya BayatYork UniversityDept. of Mechanical Engineering4700 Keele St., BRG 433BToronto, M3J 1P3, [email protected]

Mehmet Z. BaykaraBilkent UniversityDept. of Mechanical Engineering & UNAMEA 11006800 Ankara, [email protected]

Bharat BhushanThe Ohio State UniversityNanoprobe Lab for Bio- & Nanotechnology &Biomimetics201 W. 19th Ave.Columbus, OH 43210-1107, [email protected]

Marcie R. BlackAdvanced Silicon Group173 Bedford Rd.Lincoln, MA 01773, [email protected]

Maarten P. de BoerCarnegie Mellon UniversityDept. of Mechanical Engineering5000 Forbes Ave., Scaife Hall 325Pittsburgh, PA 15213, [email protected]

Donald W. BrennerNorth Carolina State UniversityDept. of Materials Science & Engineering911 Partner’s WayRaleigh, NC 27695-7907, [email protected]

Jean-Marc BrotoCentre National de la Recherche Scientifique,Institut National des Sciences Appliquées deToulouse, Université de ToulouseLaboratoire National des Champs MagnétiquesIntenses de Toulouse (LNCMI-T), UPR #3228143 Avenue de Rangueil, UPR #3228 CNRS / UPS /INSA31400 Toulouse, [email protected]

XII List of Authors

Patrizio CandeloroUniversity Magna Graecia of CatanzaroDept. of Experimental and Clinical MedicineViale Europa, loc. Germaneto88100 Catanzaro, [email protected]

Brigitte CaussatCentre National de la Recherche Scientifique,Université de Toulouse, Institut NationalPolytechnique de ToulouseLaboratoire de Génie Chimique (LGC), UMR #55034 allée Emile Monso (BP 84234)31432 Toulouse, [email protected]

Chunying ChenNational Center for Nanoscience & Technology ofChinaCAS Key Laboratory for Biomedical Effects ofNanomaterials & NanosafetyNo. 11, Beiyitiao, Zhongguancun100190 Beijing, [email protected]

Rui ChenNational Center for Nanoscience & Technology ofChinaCAS Key Laboratory for Biomedical Effects ofNanomaterials & NanosafetyNo. 11, Beiyitiao, Zhongguancun100190 Beijing, [email protected]

Yu-Ting ChengNational Chiao Tung UniversityDept. of Electronics Engineering1001 University Rd.30010 Hsinchu, [email protected]

Mu ChiaoUniversity of British ColumbiaDept. of Mechanical Engineering2054-6250 Applied Science LaneVancouver, V6T 1Z4, [email protected]

Ciro ChiappiniKing‘s College LondonCraniofacial Development and Stem Cell BiologyGuy‘s Hospital, 27th Floor Tower WingLondon, SE1 9RT, [email protected]

Lilia A. ChtcheglovaJohannes Kepler University LinzInstitute of BiophysicsGruberstr. 404020 Linz, [email protected]

Alessandro CocliteItalian Institute of TechnologyLaboratory of Nanotechnology for PrecisionMedicineVia Morego 3016163 Genova, [email protected]

Maria Laura ColuccioUniversity Magna Graecia of CatanzaroDept. of Experimental and Clinical MedicineViale Europa, loc. Germaneto88100 Catanzaro, [email protected]

Paolo DecuzziItalian Institute of TechnologyLaboratory of Nanotechnology for PrecisionMedicineVia Morego 3016163 Genova, [email protected]

Frank W. DelRioNational Institute of Standards & TechnologyMaterial Measurement Laboratory325 Broadway St.Boulder, CO 80305, [email protected]

Enzo Di FabrizioKing Abdullah University of Science andTechnologyDept. of Physical Science and EngineeringBldg. 2 (Ibn Al-Haytham) 4th floor, Office #4220Red Sea side23955-6900 Thuwal, Saudi [email protected]

Daniele Di MascoloItalian Institute of TechnologyLaboratory of Nanotechnology for PrecisionMedicineVia Morego 3016163 Genova, [email protected]

List of Authors XIII

Lixin DongMichigan State UniversityDept. of Electrical & Computer Engineering2120 Engineering BuildingEast Lansing, MI 48824, [email protected]

Mildred S. Dresselhaus (deceased)

Andreas EbnerJohannes Kepler University LinzInstitute of BiophysicsGruberstr. 404020 Linz, [email protected]

Toshiaki EnokiTokyo Institute of TechnologyDept. of Chemistry2-12-1 Ookayama, Meguro-ku152-8551 Tokyo, [email protected]

Haig Alexander EskandarianSwiss Federal Institute of Technology Lausanne(EPFL)Dept. of BioengineeringStation 17, BM31091015 Lausanne, [email protected]

Georg E. FantnerSwiss Federal Institute of Technology Lausanne(EPFL)Dept. of BioengineeringStation 17, BM31091015 Lausanne, [email protected]

Philip X.-L. FengCase Western Reserve UniversityDept. of Electrical Engineering & ComputerScience10900 Euclid Ave., Glennan Building 713Cleveland, OH 44106, [email protected]

Emmanuel FlahautCentre National de la Recherche Scientifique,Université de Toulouse, Institut NationalPolytechnique de ToulouseCentre Interuniversitaire de Recherche etd’Ingénierie des Matériaux (CIRIMAT), UMR #5085118 route de Narbonne31062 Toulouse, [email protected]

Francesco GentileUniversity Naples Federico IIDept. of Electrical Engineering and InformationTechnologyVia Claudio 2180125 Naples, [email protected]

Christoph GerberUniversity of BaselDept. of PhysicsKlingelbergstr. 824056 Basel, [email protected]

Thilo GlatzelUniversity of BaselDept.of PhysicsKlingelbergstr. 824056 Basel, [email protected]

Enrico GneccoFriedrich Schiller University JenaOtto Schott Institute of Materials ResearchLöbdergraben 3207743 Jena, [email protected]

Miroslav HaluškaETH ZürichDept. of Mechanical & Process EngineeringTannenstr. 38092 Zurich, [email protected]

Judith A. HarrisonU.S. Naval AcademyDept. of Chemistry572 Holloway Rd., MS 9BAnnapolis, MD 21402, [email protected]

Martin HegnerTrinity College DublinSchool of Physics, CRANNPearse St.D2, Dublin, [email protected]

Thomas HelblinggreenTEG AGTechnoparkstr. 18005 Zurich, [email protected]

XIV List of Authors

Seong-Jun HeoLam Research Corp.4650 Cushing ParkwayFremont, CA 94538, [email protected]

Barbara Herr HarthornUniversity of California Santa BarbaraDept. of AnthropologyHSSB 2020 MC:3210Santa Barbara, CA 93106-3210, [email protected]

Christofer HieroldETH ZürichDept. of Mechanical & Process EngineeringTannenstr. 38092 Zurich, [email protected]

Peter HinterdorferJohannes Kepler University LinzInstitute of BiophysicsGruberstr. 404020 Linz, [email protected]

Maria IliutUniversity of ManchesterSchool of MaterialsThe Mill, Sackville St.Manchester, M1 3BB, [email protected]

Douglas L. IrvingNorth Carolina State UniversityDept. of Materials Science & Engineering911 Partner’s WayRaleigh, NC 27695, [email protected]

Jacob N. IsraelachviliUniversity of California Santa BarbaraDept. of Chemical Engineering & Materials Dept.Santa Barbara, CA 93106, [email protected]

Esmaiel JabbariUniversity of South CarolinaDept. of Chemical Engineering301 South Main St., Room 2C11Columbia, SC 29208, [email protected]

Anne JourdainIMECKapeldreef. 753001 Leuven, [email protected]

Harold Kahn410 Altamont St.Charlottesville, VA 22902, [email protected]

Gopakumar KamalakshakurupUniversity of California IrvineDept. of Biomedical Engineering3120 Natural Sciences IIIrvine, CA 92697-2715, [email protected]

Roger D. KammMassachusetts Institute of TechnologyDepts. of Mechanical Engineering & BiologicalEngineering77 Massachusetts Ave., Room NE47-321Cambridge, MA 02139, [email protected]

Josef A. KäsUniversity of LeipzigPeter Debye InstituteLinnéstr. 504103 Leipzig, [email protected]

Jongbaeg KimYonsei UniversitySchool of Mechanical Engineering50 Yonsei-ro, Seodaemun-gu120-749 Seoul, Republic of [email protected]

Marcin KisielUniversity of BaselDept. of PhysicsKlingelbergstr. 824056 Basel, [email protected]

Kerstin KochRhine-Waal University of Applied ScienceDept. of Life Science, Biology &NanobiotechnologyMarie-Curie-Str. 1, Gebäude 11, 2. Stock, Raum 1747533 Kleve, [email protected]

List of Authors XV

Melanie KoehlerUniversité Catholique de LouvainInstitute of Life SciencesL7.07.06 (Carnoy C 461), Coix du Sud 4-51348 Louvain-la-Neuve, [email protected]

Anders KristensenTechnical University of DenmarkDTU NanotechØrsteds Plads 345E2800 Kongens Lyngby, [email protected]

Jan LammerdingCornell UniversityMeinig School of Biomedical EngineeringWeill Institute for Cell & Molecular Biology, WeillHall, Room 235Ithaca, NY 14853, [email protected]

Constanze LamprechtJohannes Kepler University LinzInstitute of BiophysicsGruberstr. 404020 Linz, [email protected]

Hans Peter LangUniversity of BaselDept. of PhysicsKlingelbergstr. 824056 Basel, [email protected]

Christophe LaurentCentre National de la Recherche Scientifique,Université de Toulouse, Institut NationalPolytechnique de ToulouseCentre Interuniversitaire de Recherche etd’Ingénierie des Matériaux (CIRIMAT), UMR #5085118 route de Narbonne31062 Toulouse, [email protected]

Abraham LeeUniversity of California IrvineDept. of Biomedical Engineering3120 Natural Sciences IIIrvine, CA 92697, [email protected]

Aeju LeeKumamoto UniversityInternational Research Organization for AdvancedScience and Technology2-31-1 Kurokami, Chuo-ku860-8555 Kumamoto, [email protected]

Dong Woog LeeUlsan National Institute of Science & TechnologySchool of Energy & Chemical Engineering50, UNIST-gil44919 Ulsan, Republic of [email protected]

Stephen C. LeeThe Ohio State UniversityDept. of Biomedical Engineering023 Hamilton HallColumbus, OH 43210, [email protected]

Liwei LinUniversity of California BerkeleyDept. of Mechanical Engineering5135 Etcheverry HallBerkely, CA 94720, [email protected]

Matthias MailUniversity of BonnNees-Institute for Biodiversity of PlantsVenusbergweg 2253115 Bonn, [email protected]

Othmar MartiUlm UniversityInstitute of Experimental PhysicsAlbert-Einstein-Allee 1189081 Ulm, [email protected]

Shinji MatsuiUniversity of HyogoLaboratory of Advanced Science & Technology forIndustry3-1-2 Koto, Kamigori, Ako678-1205 Hyogo, [email protected]

XVI List of Authors

Etienne MenardHeliosLiteBatiment Lama, 17 avenue du Lac Leman, SavoieTechnolac73370 Le Bourget du Lac, [email protected]

David MesguichCentre National de la Recherche Scientifique,Université de Toulouse, Institut NationalPolytechnique de ToulouseCentre Interuniversitaire de Recherche etd’Ingénierie des Matériaux (CIRIMAT), UMR #5085118 route de Narbonne31062 Toulouse, [email protected]

Vincent MeunierRensselaer Polytechnic InstituteDept. of Physics, Applied Physics, & Astronomy110, 8th St.Troy, NY 12180, [email protected]

Ernst MeyerUniversity of BaselDept. of PhysicsKlingelbergstr. 824056 Basel, [email protected]

Tom D. MilsterUniversity of ArizonaCollege of Optical Sciences1630 East University Blvd.Tucson, AZ 85721, [email protected]

Hiroaki MisawaHokkaido UniversityResearch Institute of Electronic ScienceN21W10, Kita-Ward, Northern Campus SouseiBuilding, Room #04 303001-0021 Sapporo, [email protected]

Robert ModlińskiEPCOS AGAnzinger Str. 1381671 Munich, [email protected]

Seyedsina MoeinzadehUniversity of South CarolinaDept. of Chemical Engineering301 South Main St., Room 2B46Columbia, SC 29208, [email protected]

Mohammad R. K. MofradUniversity of California BerkeleyDepts. of Bioengineering & MechanicalEngineering208A Stanley Hall, #1762Berkeley, CA 94720, [email protected]

Marc MonthiouxCentre National de la Recherche Scientifique,Université de ToulouseCentre d‘Elaboration de Matériaux et d‘EtudesStructurales (CEMES), UPR #801129 Rue Jeanne Marvig (BP 94347)31055 Toulouse, [email protected]

Markus MorgensternRWTH Aachen UniversityII. Institute of Physics B & JARA-FITOtto-Blumentahl-Str. 2852074 Aachen, [email protected]

Bradley J. NelsonSwiss Federal Institute of TechnologyInstitute for Robotics & Intelligent Systems, ETHZentrum, CLA H 1.1Tannenstr. 38092 Zurich, [email protected]

T. Kieran NunanKieran Nunan Consulting854 Maple St.Carlisle, MA 01741, [email protected]

Pascal D. OdermattSwiss Federal Institute of Technology Lausanne(EPFL)Dept. of BioengineeringStation 17, BM31091015 Lausanne, [email protected]

List of Authors XVII

Yoojin OhJohannes Kepler University LinzInstitute of BiophysicsGruberstr. 404020 Linz, [email protected]

Anna Lisa PalangeItalian Institute of TechnologyLaboratory of Nanotechnology for PrecisionMedicineVia Morego 3016163 Genova, [email protected]

Rémy PawlakUniversity of BaselDept. of PhysicsKlingelbergstr. 824056 Basel, [email protected]

Alain PeigneyCentre National de la Recherche Scientifique,Université de Toulouse, Institut NationalPolytechnique de ToulouseCentre Interuniversitaire de Recherche etd’Ingénierie des Matériaux (CIRIMAT), UMR #5085118 route de Narbonne31062 Toulouse, [email protected]

Gerardo PerozzielloUniversity Magna Graecia of CatanzaroDept. of Experimental and Clinical MedicineViale Europa, loc. Germaneto88100 Catanzaro, [email protected]

Sandra PoschJohannes Kepler University LinzInstitute of BiophysicsGruberstr. 404020 Linz, [email protected]

Robert PuersKU LeuvenESAT/MICASKasteelpark, Arenberg 10, Box 24433001 Leuven, [email protected]

Oded RabinUniversity of MarylandDept. of Materials Science & Engineering1110B Chem Nuc Eng Bldg 090College Park, MD 20742, [email protected]

Françisco M. RaymoUniversity of MiamiDept. of Chemistry1301 Memorial DriveCoral Gables, FL 33146-0431, [email protected]

Manitra RazafinimananaCentre National de la Recherche Scientifique,Université de Toulouse, Institut NationalPolytechnique de ToulouseLaboratoire des Plasmas et de Conversion del’Energie (LAPLACE), UMR #5002118 route de Narbonne31062 Toulouse, [email protected]

Pouya RezaiYork UniversityDept. of Mechanical Engineering4700 Keele St., BRG 433BToronto, M3J 1P3, [email protected],[email protected]

Gemma RiusBarcelona Microelectronics Institute(IMB-CNM-CSIC)NEMS & Nanofabrication GroupCarrer dels Til.lers s/n, Campus UAB08193 Bellaterra, [email protected]

John A. RogersNorthwestern UniversityDept. of Materials Science & Engineering2145 Sheridan RoadEvanston, IL 60208-3109, [email protected]

Cosmin I. RomanETH ZürichDept. of Mechanical & Process EngineeringTannenstr. 38092 Zurich, [email protected]

XVIII List of Authors

Marina RuthsUniversity of Massachusetts LowellDept. of Chemistry1 University Ave.Lowell, MA 01854, [email protected]

Hélder A. SantosUniversity of HelsinkiDivision of Pharmaceutical Chemistry andTechnologyViikinkaari 5EHelsinki, 00790, [email protected]

Shintaro SatoFujitsu Laboratories Ltd.Devices & Materials Laboratories10-1 Morinosato-Wakamiya243-0197 Atsugi, Kanagawa, [email protected]

Helmut SchiftPaul Scherrer InstituteLaboratory for Micro- & NanotechnologyODRA/1035232 Villigen PSI, [email protected]

Jörg SchnaußUniversity of LeipzigPeter Debye InstituteLinnéstr. 504103 Leipzig, [email protected]

Alexander SchwarzUniversity of HamburgInstitute of Nanostructure and Solid State PhysicsJungiusstr. 1120355 Hamburg, [email protected]

Udo D. SchwarzYale UniversityDept. of Mechanical Engineering & MaterialsScience15 Prospect St.New Haven, CT 06511, [email protected]

P. Ravi SelvaganapathyMcMaster UniversityDept. of Mechanical Engineering1280 Main St. WestHamilton, L8S 4L7, [email protected]

Philippe SerpCentre National de la Recherche Scientifique,Université de Toulouse, Institut NationalPolytechnique de ToulouseLaboratoire de Chimie de Coordination (LCC), UPR#8241118 Route de Narbonne31077 Toulouse, [email protected]

Sameer S. ShroffCarnegie Mellon UniversityDept. of Mechanical Engineering5000 Forbes Ave.Pittsburgh, PA 15213, [email protected]

Mark G. da SilvaAnalog Devices Inc.High Performance Sensors804 Woburn St. MS-112Wilmington, MA 01887, [email protected]

Susan B. SinnottThe Pennsylvania State UniversityDept. of Materials Science & Engineering221A Steidle Bldg., 1 Pollock Rd.University Park, PA 16801, [email protected]

David M. SmithFraunhofer Institute for Cell Therapy &Immunology (IZI)DNA Nanodevices GroupPerlickstr. 104103 Leipzig, [email protected]

W. Merlijn van SpengenFalco SystemsVan Boshuizenstr. 121083BA, Amsterdam, The [email protected]

Jürgen StrasserCenter for Advanced Bioanalysis GmbHGruberstr. 404020 Linz, [email protected]

Yu-Chuan SuNational Tsing Hua UniversityDept. of Engineering & System Science101, Section 2, Kuang-Fu Rd.30013 Hsinchu, [email protected]

List of Authors XIX

Quan SunHokkaido UniversityResearch Institute of Electronic ScienceN21W10, Kita-Ward, Northern Campus SouseiBuilding, Room #02 304001-0021 Sapporo, [email protected]

Flavien ValensiCentre National de la Recherche Scientifique,Université de Toulouse, Institut NationalPolytechnique de ToulouseLaboratoire des Plasmas et de Conversion del’Energie (LAPLACE), UMR #5002118 route de Narbonne31062 Toulouse, [email protected]

Derek VallejoUniversity of California IrvineDept. of Biomedical Engineering3120 Natural Sciences IIIrvine, CA 92697-2715, [email protected]

Aravind VijayaraghavanUniversity of ManchesterSchool of MaterialsThe Mill, Sackville St.Manchester, M1 3BB, [email protected]

Alicia WeibelCentre National de la Recherche Scientifique,Université de Toulouse, Institut NationalPolytechnique de ToulouseCentre Interuniversitaire de Recherche etd’Ingénierie des Matériaux (CIRIMAT), UMR #5085118 route de Narbonne31062 Toulouse, [email protected]

Kurt WinkelmannFlorida Institute of TechnologyDept. of Chemistry150 W. University Blvd., 127 Physical Sciences Bldg.Melbourne, FL 32901, [email protected]

Darrin J. YoungUniversity of UtahDept. of Electrical & Computer Engineering50 S. Central Campus Dr. Rm 3280, Joseph MerrillEngineering Bldg.Salt Lake City, UT 84112, [email protected]

Rong ZhuJohannes Kepler University LinzInstitute of BiophysicsGruberstr. 404020 Linz, [email protected]

Babak ZiaiePurdue UniversitySchool of Electrical & Computer Engineering1205 W. State St., Birck Nanotechnology CenterWest Lafayette, IN 47907, [email protected]; [email protected]

Christian A. ZormanCase Western Reserve UniversityDept. of Electrical Engineering & ComputerScience2123 Martin Luther King Jr. Blvd., 715A GlennanBuildingCleveland, OH 44106, [email protected]

XX

XXI

Contents

List of Abbreviations ............................................................. XXXIII

1 Introduction to NanotechnologyBharat Bhushan ................................................................. 11.1 Nanotechnology – Definitions and Examples......................... 21.2 History and Early Research Expenditures.............................. 61.3 Governance of the National Nanotechnology Initiative.............. 71.4 Nanotechnology R&D Funding Since 2001 ............................ 81.5 Worldwide R&D Investments and Output ............................. 111.6 Translation of Basic Research to Technology Commercialization .... 151.7 Nanoscience and Nanotechnology Education......................... 161.8 Summary and Outlook .................................................. 171.9 Organization of the Handbook ......................................... 18References ....................................................................... 18

Part A Micro/Nanofabrication Techniques

2 Molecule-Based DevicesFrançisco M. Raymo ............................................................. 232.1 Chemical Approaches to Nanostructured Materials ................... 242.2 Molecular Switches and Logic Gates ................................... 282.3 Solid-State Devices ...................................................... 352.4 Conclusions and Outlook ............................................... 46References ....................................................................... 47

3 Introduction to Micro-/NanofabricationGemma Rius, Antoni Baldi, Babak Ziaie, Massood Z. Atashbar ............. 513.1 Basic Microfabrication Techniques ..................................... 523.2 MEMS Fabrication Techniques .......................................... 623.3 Nanofabrication Techniques............................................ 743.4 Summary and Conclusions.............................................. 82References ....................................................................... 82

4 3-D Nanostructure Fabrication by Focused-Ion Beam,Electron- and Laser BeamShinji Matsui, Hiroaki Misawa, Quan Sun ..................................... 874.1 Various 3-D Nanostructure Fabrication Techniques .................. 884.2 3-D Nanostructure Fabrication by Focused Ion Beam................ 884.3 3-D Nanostructure Fabrication by Electron Beam .................... 974.4 3-D Nanostructure Fabrication by Laser ............................... 103References ....................................................................... 109

5 Nanoimprint LithographyHelmut Schift, Anders Kristensen............................................... 1135.1 Emerging Nanopatterning Methods.................................... 1155.2 Nanoimprint Process .................................................... 1195.3 Tools and Materials for Nanoimprint .................................. 125

XXII Contents

5.4 Applications.............................................................. 1325.5 Conclusion and Outlook ................................................ 137References ....................................................................... 138

6 Stamping Techniques for Micro- and NanofabricationJohn A. Rogers, Etienne Menard ............................................... 1436.1 High-Resolution Stamps ................................................ 1446.2 Microcontact Printing ................................................... 1466.3 Nanotransfer Printing ................................................... 1486.4 Applications.............................................................. 1526.5 Conclusions .............................................................. 159References ....................................................................... 159

7 Materials Aspects of Micro- and NanoelectromechanicalSystemsChristian A. Zorman ............................................................. 1637.1 Silicon and its Commonly-Used Derivatives........................... 1637.2 Germanium-Based Materials........................................... 1707.3 Metals .................................................................... 1717.4 Semiconductors for Harsh Environment Applications ................ 1737.5 GaAs, InP and Related III-V Materials ................................. 1787.6 Piezoelectric Materials .................................................. 1807.7 Polymer Materials ....................................................... 1837.8 Future Trends ............................................................ 185References ....................................................................... 185

Part B Nanomaterial and Nanostructures

8 Carbon NanotubesMarc Monthioux, Philippe Serp, Brigitte Caussat, Emmanuel Flahaut,Manitra Razafinimanana, Flavien Valensi, Christophe Laurent,Alain Peigney, David Mesguich, Alicia Weibel, Wolfgang Bacsa,Jean-Marc Broto ................................................................. 1938.1 Structure of Carbon Nanotubes......................................... 1948.2 Synthesis of Carbon Nanotubes ........................................ 1998.3 Growth Mechanisms of Carbon Nanotubes............................ 2108.4 Properties of Carbon Nanotubes ....................................... 2138.5 Carbon Nanotube-Based Nano-Objects (Carbon Meta-Nanotubes). 2178.6 Carbon-Nanotube-Containing Materials (Composites) ............... 2238.7 Current Applications of Carbon Nanotubes (on the Market) ......... 2278.8 Toxicity and Environmental Impact of Carbon Nanotubes ........... 2318.9 Concluding Remarks .................................................... 233References ....................................................................... 233

9 NanowiresMildred S. Dresselhaus, Marcie R. Black, Vincent Meunier, Oded Rabin..... 2499.1 Synthesis ................................................................. 2509.2 Characterization and Physical Properties of Nanowires .............. 2629.3 Applications.............................................................. 2829.4 Concluding Remarks .................................................... 290References ....................................................................... 290

Contents XXIII

10 NanoribbonsToshiaki Enoki, Shintaro Sato .................................................. 30310.1 Graphene Nanoribbons ................................................. 30310.2 Electronic and Magnetic Properties .................................... 30510.3 Characterizations ........................................................ 31010.4 Syntheses: Top-Down Methods and Bottom-Up Methods ........... 31710.5 Potential Applications .................................................. 32410.6 Conclusions .............................................................. 330References ....................................................................... 331

11 Nanoparticles and Their ApplicationsSeyedsina Moeinzadeh, Esmaiel Jabbari ...................................... 33511.1 Overview ................................................................. 33511.2 NPs Classification and Synthesis ....................................... 33611.3 Properties of NPs ........................................................ 34811.4 Applications of NPs...................................................... 35111.5 Summary ................................................................. 353References ....................................................................... 353

12 GrapheneAravind Vijayaraghavan, Maria Iliut........................................... 36312.1 Methods of Production.................................................. 36512.2 Properties ................................................................ 36912.3 Characterization ......................................................... 37212.4 Applications.............................................................. 37612.5 Conclusions and Outlook ............................................... 385References ....................................................................... 386

Part C MEMS/NEMS

13 MEMS/NEMS Devices and ApplicationsPhilip X.-L. Feng, Darrin J. Young, Christian A. Zorman ..................... 39513.1 MEMS Devices and Applications ........................................ 39713.2 NEMS Devices and Applications ........................................ 41513.3 Challenges and Perspectives ........................................... 425References ....................................................................... 426

14 Single-Walled Carbon Nanotube Sensor ConceptsCosmin I. Roman, Thomas Helbling, Miroslav Haluška, Christofer Hierold . 43114.1 Sensor Design Considerations .......................................... 43214.2 Sensor Fabrication: SWNT Synthesis and Integration ................. 43914.3 Summary of State-of-the-Art, Applications Examples............... 44514.4 Concluding Remarks .................................................... 451References ....................................................................... 451

15 Nanomechanical Cantilever Array SensorsHans Peter Lang, Martin Hegner, Christoph Gerber........................... 45715.1 Technique ................................................................ 45815.2 Cantilever Array Sensors................................................. 45915.3 Modes of Operation ..................................................... 46015.4 Microfabrication ......................................................... 464

XXIV Contents

15.5 Measurement Setup ..................................................... 46515.6 Functionalization Techniques .......................................... 46815.7 Applications.............................................................. 47015.8 Conclusions and Outlook ............................................... 476References ....................................................................... 477

16 Microfluidic Devices and Their ApplicationsAditya Aryasomayajula, Pouriya Bayat, Pouya Rezai,P. Ravi Selvaganapathy ......................................................... 48716.1 Preface ................................................................... 48716.2 Historical Developments ................................................ 48916.3 Dominant Phenomenon and Micro–Nanofluidic Design............. 49116.4 Fabrication of Micro–Nanofluidic Devices ............................. 49616.5 Applications.............................................................. 50416.6 Outlook and Future Directions ......................................... 521References ....................................................................... 522

17 Microfluidic Micro/Nano DropletsGopakumar Kamalakshakurup, Derek Vallejo, Abraham Lee ................ 53717.1 Introduction to Micro/Nano Droplet Microfluidic Technologies ...... 53717.2 Overview of Current Trends in Droplet Microfluidic Technologies ... 54617.3 Fundamental Designs and Techniques for Microfluidic

Generation of Droplets.................................................. 54717.4 Microfluidic Micro-/Nanodroplet Applications ........................ 55017.5 Conclusion ............................................................... 556References ....................................................................... 556

18 NanoroboticsBradley J. Nelson, Lixin Dong .................................................. 55918.1 Overview of Nanorobotics .............................................. 56018.2 Actuation at Nanoscales ................................................ 56118.3 Nanorobotic Manipulation Systems.................................... 56318.4 Nanorobotic Assembly .................................................. 56818.5 Applications.............................................................. 576References ....................................................................... 580

Part D BioMEMS/NEMS

19 Applications of MEMS to Cell BiologyGeorg E. Fantner, Pascal D. Odermatt, Haig Alexander Eskandarian........ 58719.1 Biological Background .................................................. 58819.2 High Resolution Microscopy Methods for Live Cell Imaging ......... 59219.3 Measuring Mechanical Properties on Living Cells ..................... 59319.4 Cancer Detection Using Nanomechanical Sensors .................... 59619.5 Measurement of Cell Adhesion Using Cantilever Based Force Sensor 59919.6 Manipulation of Cells Using MEMS Cantilevers ........................ 60219.7 Mass Measurements of Single Cells Using Resonant Cantilevers ..... 60319.8 Characterization of Antibiotic Action Using MEMS Devices ........... 60619.9 Conclusions and Outlook ............................................... 609References ....................................................................... 609

Contents XXV

20 Contact-free Mechanical Manipulationof Biological MaterialsJörg Schnauß, Josef A. Käs, David M. Smith................................... 61720.1 Interaction of Laser Light with Biological Material ................... 61820.2 Optical and Magnetic Tweezers for Single-Molecule Manipulations 62120.3 Optical and Electric Forces for the Manipulation of Whole Cells..... 62920.4 Hydrodynamic Shear Forces for the Manipulation of Single Cells ... 63620.5 Conclusion and Outlook ................................................ 638References ....................................................................... 638

21 Nano-Particles for Biomedical ApplicationsPaolo Decuzzi, Alessandro Coclite, Aeju Lee, Anna Lisa Palange,Daniele Di Mascolo, Ciro Chiappini, Hélder A. Santos,Maria Laura Coluccio, Gerardo Perozziello, Patrizio Candeloro,Enzo Di Fabrizio, Francesco Gentile ............................................ 64321.1 Overview ................................................................. 64421.2 Rational Design of Nanoconstructs .................................... 64621.3 Multifunctional Polymeric Nanoconstructs ............................ 65021.4 Sensing and Drug Delivery with Porous Silicon Nanomaterials...... 65521.5 Nanomedicine Synthesis by Microfluidics Technology................ 66221.6 Electroless Formation of Metal Nanoparticle Aggregates............. 66921.7 2-D and 3-D Optical Nanostructures .................................. 677References ....................................................................... 681

22 Biological Molecules in Therapeutic NanodevicesStephen C. Lee, Bharat Bhushan ............................................... 69322.1 Definitions and Scope................................................... 69422.2 Assembly Approaches ................................................... 70022.3 Sensing Devices.......................................................... 71022.4 Concluding Remarks: Barriers to Practice.............................. 717References ....................................................................... 718

Part E Nanometrology

23 Scanning Probe Microscopy –Principle of Operation, Instrumentation and ProbesBharat Bhushan, Othmar Marti ................................................ 72523.1 Scanning Tunneling Microscope........................................ 72723.2 Atomic Force Microscope................................................ 73123.3 AFM Instrumentation and Analyses .................................... 74723.4 Conclusion ............................................................... 763References ....................................................................... 763

24 Low-Temperature Scanning Probe MicroscopyMehmet Z. Baykara, Markus Morgenstern, Alexander Schwarz,Udo D. Schwarz .................................................................. 76924.1 Microscope Operation at Low Temperatures........................... 77124.2 Instrumentation ......................................................... 77224.3 Scanning Tunneling Microscopy and Spectroscopy ................... 77324.4 Scanning Force Microscopy and Spectroscopy......................... 78824.5 Summary ................................................................. 799References ....................................................................... 799

XXVI Contents

25 Biomedical Sensing with the Atomic Force MicroscopeConstanze Lamprecht, Jürgen Strasser, Melanie Koehler,Sandra Posch, Yoojin Oh, Rong Zhu, Lilia A. Chtcheglova,Andreas Ebner, Peter Hinterdorfer.............................................. 80925.1 Topographical Imaging of Biological Samples ........................ 81025.2 Single-Molecule Force Spectroscopy (SMFS) ........................... 81425.3 Simultaneous Topography and Recognition Imaging (TREC) ......... 82125.4 AFM Biomedical Sensing – Examples .................................. 82725.5 Perspectives and Concluding Remarks................................. 836References ....................................................................... 837

26 Superresolution MicroscopyTom D. Milster.................................................................... 84526.1 Overview ................................................................. 84526.2 Scanning Aperture Techniques ......................................... 84926.3 4-Pi Microscopy ......................................................... 85326.4 Enhancement/Depletion Techniques .................................. 85426.5 Photoactivated Localization ............................................ 85626.6 Structured Illumination ................................................. 85826.7 Light-Sheet Microscopy ................................................. 86226.8 Comparison of Techniques for Live-Cell Imaging ..................... 86326.9 Summary ................................................................. 864References ....................................................................... 864

Part F Bio/Nanotribology and Bio/Nanomechanics

27 Nanotribology, Nanomechanicsand Materials CharacterizationBharat Bhushan ................................................................. 86927.1 Description of AFM/FFM and Various Measurement Techniques ..... 87127.2 Surface Imaging, Friction, and Adhesion.............................. 88227.3 Micro/Nanoscale Wear and Scratching, Local Deformation,

and Nanofabrication/Nanomachining ................................. 90627.4 Indentation .............................................................. 91527.5 Boundary Lubrication ................................................... 91927.6 Conclusion ............................................................... 928References ....................................................................... 929

28 Surface Forces and Nanorheology of Molecularly Thin FilmsDong Woog Lee, Marina Ruths, Jacob N. Israelachvili........................ 93528.1 Types of Surface Forces .................................................. 93628.2 Methods Used to Study Surface Forces................................. 93828.3 Normal Forces Between Dry (Unlubricated) Surfaces ................. 94128.4 Normal Forces Between Surfaces in Liquids ........................... 94228.5 Adhesion and Capillary Forces ......................................... 95128.6 Introduction: Different Modes of Friction ............................. 95628.7 Relationship Between Adhesion and Friction ........................ 95728.8 Liquid Lubricated Surfaces.............................................. 96628.9 Effects of Nanoscale Texture on Friction ............................... 976References ....................................................................... 978

Contents XXVII

29 Atomic Scale Friction PhenomenaEnrico Gnecco, Rémy Pawlak, Marcin Kisiel, Thilo Glatzel, Ernst Meyer ..... 98729.1 Friction Force Microscopy in Selected Environments ................. 98829.2 The Prandtl–Tomlinson Model ......................................... 99329.3 Friction Experiments on the Atomic Scale ............................. 99629.4 Thermal Effects on Atomic Friction..................................... 99829.5 Friction on the Nanometer Scale ....................................... 99929.6 Wear on the Atomic Scale............................................... 100229.7 Noncontact Friction ..................................................... 100329.8 Single Molecule Friction ................................................ 100529.9 Conclusion ............................................................... 1008References ....................................................................... 1008

30 Computer Simulations of Nanometer-Scale Indentationand FrictionSusan B. Sinnott, Seong-Jun Heo, Donald W. Brenner,Judith A. Harrison, Douglas L. Irving .......................................... 101330.1 Computational Details .................................................. 101430.2 Indentation .............................................................. 101930.3 Friction and Lubrication ................................................ 103330.4 Conclusions .............................................................. 1058References ....................................................................... 1058

31 Cellular NanomechanicsRoger D. Kamm, Jan Lammerding, Mohammad R. K. Mofrad ............... 106931.1 Overview ................................................................. 106931.2 Structural Components of a Cell ........................................ 107131.3 Experimental Methods .................................................. 107731.4 Theoretical and Computational Descriptions.......................... 108231.5 Mechanics of Subcellular Structures ................................... 108631.6 Current Understanding and Future Needs............................. 1095References ....................................................................... 1096

32 Nanomechanical Properties of Nanostructuresand Scale EffectsBharat Bhushan ................................................................. 110132.1 Experimental Techniques for Measurement of Mechanical

Properties of Nanostructures ........................................... 110332.2 Experimental Results and Discussion .................................. 110932.3 Finite Element Analysis of Nanostructures with Roughness

and Scratches ............................................................ 112532.4 Summary ................................................................. 113132.A Appendix: Fabrication Procedure for the Double-Anchored

and Cantilever Beams ................................................... 1132References ....................................................................... 1134

XXVIII Contents

Part G Molecularly-Thick Films for Lubrication

33 Nanotribology of Ultrathinand Hard Amorphous Carbon FilmsBharat Bhushan ................................................................. 114133.1 Description of Commonly Used Deposition Techniques .............. 114533.2 Chemical Characterization and Effect of Deposition Conditions

on Chemical Characteristics and Physical Properties ................. 114933.3 Micromechanical and Tribological Characterizations

of Coatings Deposited by Various Techniques ......................... 115433.4 Conclusion ............................................................... 1174References ....................................................................... 1175

34 Self-Assembled Monolayers for Nanotribologyand Surface ProtectionBharat Bhushan ................................................................. 117934.1 Background .............................................................. 117934.2 A Primer on Organic Chemistry ......................................... 118234.3 Self-Assembled Monolayers: Substrates, Spacer Chains,

and End Groups in the Molecular Chains.............................. 118634.4 Contact Angle and Nanotribological Properties of SAMs.............. 118934.5 Conclusion ............................................................... 1209References ....................................................................... 1210

35 Nanoscale Boundary Lubrication StudiesBharat Bhushan ................................................................. 121535.1 Nanodeformation, Molecular Conformation, Spreading,

Nanotribological and Electrical Studies,and Environmental Effects of Commonly Used PFPE Lubricant Films 1216

35.2 Nanotribological, Electrical, and Chemical DegradationsStudies and Environmental Effects in Novel PFPE Lubricant Films .. 1233

35.3 Nanotribological and Electrical Studies of Ionic Liquid Films........ 124235.4 Conclusion ............................................................... 1257References ....................................................................... 1258

Part H Biomimetics and Bioinspired Surfaces

36 Plant Surfaces: Structures and Functionsfor Biomimetic ApplicationsWilhelm Barthlott, Matthias Mail, Bharat Bhushan, Kerstin Koch .......... 126536.1 500 Million Years of Evolution for Innovative Technologies ......... 126636.2 Chemistry of Plant Surfaces............................................. 127036.3 Structuring of Plant Surfaces:

Hierarchical Architecture Between Nano- and Macrostructures ..... 127936.4 Physical Basis of Surface Wetting ...................................... 128536.5 Superhydrophilic and Superhydrophobic Plant Surfaces............. 128636.6 Functional Diversity of Plant Surfaces ................................. 128936.7 Biomimetic Application ................................................. 129436.8 Living Prototypes: Evolution of Plant Surfaces and Biodiversity..... 129736.9 Conclusions .............................................................. 1298References ....................................................................... 1298

Contents XXIX

37 Bioinspired Nanostructured Antibiofoulingand Anti-inorganic SurfacesBharat Bhushan ................................................................. 130737.1 Fields Susceptible to Fouling ........................................... 130737.2 Biofouling and Inorganic Fouling Formation Mechanisms........... 131037.3 Antifouling Strategies from Living Nature ............................. 131337.4 Antifouling: Current Prevention and Cleaning Techniques........... 131537.5 Bioinspired Rice Leaf Surfaces for Antifouling ........................ 131837.6 Closure ................................................................... 1324References ....................................................................... 1324

Part I Micro/Nanodevice Reliability

38 MEMS/NEMS and BioMEMS/BioNEMS:Tribology, Mechanics, Materials and DevicesBharat Bhushan ................................................................. 133138.1 MEMS/NEMS Basics ....................................................... 133238.2 Nanotribology and Nanomechanics Issues in MEMS/NEMS

and BioMEMS/BioNEMS.................................................. 133638.3 Nanotribology and Nanomechanics Studies of Silicon

and Related Materials................................................... 135238.4 Lubrication Studies for MEMS/NEMS .................................... 135938.5 Nanoscale Friction, Wear, and Mechanical Behavior

of Nano-Objects ......................................................... 136538.6 Nanotribological Studies of Biological Molecules

on Polystyrene and Silicon Surfaces and Coated Polymer Surfaces.. 137638.7 Trajectory of Submicron Particles for Therapeutics and Diagnostics. 139038.8 Component-Level Studies .............................................. 139238.9 Conclusion ............................................................... 140338.A Appendix: Micro/Nanofabrication Techniques ........................ 1404References ....................................................................... 1407

39 Friction and Wear in Micro- and NanomachinesMaarten P. de Boer, Sameer S. Shroff, Frank W. DelRio, W. Robert Ashurst . 141739.1 From Single- to Multiple-Asperity Friction............................ 141939.2 Rate-State Friction ...................................................... 142239.3 Putting MEMS Friction to Use:

Making Motors and Friction Instruments.............................. 142939.4 Wear and Tribopolymer Evolution in Micro- and Nanoswitches .... 143039.5 Concluding Remarks .................................................... 1432References ....................................................................... 1432

40 Failure Mechanisms in MEMS/NEMS DevicesW. Merlijn van Spengen, Robert Modliński, Robert Puers, Anne Jourdain.. 143740.1 Failure Modes and Failure Mechanisms ............................... 143840.2 Stiction and Charge-Related Failure Mechanisms .................... 143940.3 Creep, Fatigue, Wear, and Packaging-Related Failures ............... 144540.4 Conclusions .............................................................. 1454References ....................................................................... 1454

XXX Contents

41 Mechanical Properties of Micromachined StructuresHarold Kahn ..................................................................... 145941.1 Measuring Mechanical Properties of Films on Substrates ............ 145941.2 Micromachined Structures for Measuring Mechanical Properties.... 146041.3 Measurements of Mechanical Properties .............................. 147141.4 Summary ................................................................. 1475References ....................................................................... 1476

42 High Volume Manufacturing and Field Stabilityof MEMS ProductsT. Kieran Nunan, Mark G. da Silva ............................................. 148142.1 High-Volume Manufacturing Strategy ................................. 148242.2 Robust Design for Volume Manufacturing ............................. 149142.3 Stable Field Performance ............................................... 149642.4 Internet of Things (IoT).................................................. 149842.5 Conclusions and Outlook ............................................... 1503References ....................................................................... 1503

43 Packaging and Reliability Issues in Micro/Nano SystemsYu-Chuan Su, Jongbaeg Kim, Yu-Ting Cheng, Mu Chiao, Liwei Lin ......... 150543.1 Introduction to MEMS Packaging ....................................... 150543.2 Hermetic and Vacuum Packaging ...................................... 151143.3 Emerging Packaging Approaches ....................................... 151843.4 Thermal Issues and Packaging Reliability ............................. 152643.5 Future Trends and Summary ........................................... 1533References ....................................................................... 1534

Part J Nanotechnology and Society and Education

44 Nanotechnologies in Societal ContextBarbara Herr Harthorn .......................................................... 154344.1 Assessing Technological Progress in Societal Terms................... 154544.2 Nanotechnologies and Upstream Societal Engagement .............. 154744.3 Ethics ..................................................................... 154944.4 Governance, Law and Regulation ...................................... 155044.5 Public Perceptions and Participation in Decision-Making ........... 155244.6 Integrating the Societal with the Technical ........................... 155344.7 Concluding Remarks .................................................... 1554References ....................................................................... 1554

45 Environment, Health and Safety Issues in NanotechnologyRui Chen, Chunying Chen ....................................................... 155945.1 Impacts of the Development of Nanotechnology

on Environment, Health, and Safety Issues ........................... 155945.2 Current Progress of the Most Important Nanomaterials .............. 156245.3 Physicochemical Characteristics of Nanoparticles

that Determine the Toxicity Impacts ................................... 156945.4 Novel Techniques and Biomarker Development in Nanotoxicology . 157445.5 Conclusion and Perspectives ........................................... 1580References ....................................................................... 1580

Contents XXXI

46 Nanoscience and Nanotechnology ConvergenceWilliam S. Bainbridge ........................................................... 158746.1 Background .............................................................. 158746.2 Convergence with Society ............................................... 159146.3 Concepts and Methods.................................................. 159546.4 Convergence in Education .............................................. 159846.5 Conclusions .............................................................. 1600References ....................................................................... 1600

47 Global Perspectives of Nanotechnology EducationKurt Winkelmann, Bharat Bhushan ........................................... 160347.1 Growth and Trends of Nanotechnology Education ................... 160547.2 Primary and Secondary Education ..................................... 160847.3 Vocational Education Training.......................................... 161047.4 Undergraduate Education .............................................. 161147.5 Graduate Education ..................................................... 161447.6 Teacher Professional Development..................................... 161647.7 Informal Education...................................................... 161847.8 Summary and Outlook .................................................. 1620References ....................................................................... 1622

About the Authors ................................................................ 1625Detailed Contents................................................................. 1645Subject Index ...................................................................... 1671

XXXIII

List of Abbreviations

�CP microcontact printing�TAS micro total analysis system0-D zero-dimensional1-D one-dimensional2-D two-dimensional2-DES two-dimensional electron system3-D three-dimensional5-FU 5-fluorouracil

A

a-C amorphous carbonABP actin binding proteinAC alternating currentADC analog to digital converterADME absorption, distribution, metabolism and

excretionAES Auger electron spectroscopyAF acceleration factorAFAM atomic force acoustic microscopyAFM atomic force microscopyAgNP silver nanoparticleAGNR armchair nanoribbonALD atomic layer depositionAM amplitude modulationAM-SFM amplitude modulation scanning force

microscopyAOD acousto-optical deflectorAOM acousto-optical modulatorAP adhesion proteoglycanAPCVD atmospheric-pressure chemical vapor

depositionAPDMES (3-aminopropyl)-dimethyl-ethoxysilaneAPTES (3-aminopropyl)-triethoxysilaneARPES angle-resolved photoemission

spectroscopyASIC application-specific integrated circuitASL antistiction layerASNOM apertureless scanning near-field optical

microscopyATP adenosine triphosphateATRP atom transfer radical polymerization

B

BCB benzocyclobuteneBCP block copolymerBCS Bardeen–Cooper–SchriefferBDCS biphenyldimethylchlorosilaneBECC bottom effect cone correctionBEN biased enhanced nucleationBFg fibrinogenBGA ball grid array

BHF buffered HFBHPET (3,6,9,12,15-pentaoxapentadecane-1,15-

diyl)bis(3-hydroxyethyl-1H-imidaz-olium-1-yl) di[bis(trifluoromethane-sulfonyl)imide]

BHPT (pentane-1,5-diyl)bis(3-hydroxyethyl-1H-imidazolium-1-yl) di[bis(tri-fluoromethanesulfonyl)imide]

BiCMOS bipolar complementary metal oxidesemiconductor

bioMEMS biological microelectromechanicalsystems

bioNEMS biological nanoelectromechanicalsystems

BiP binding immunoglobulin proteinBIPY bipyridiniumBMP-2 bone morphogenic protein-2BOE buffered oxide etchBP binding probabilityBPAG1 bullous pemphigoid antigen 1BPEI branched polyethyleneimineBPM bit-patterned mediaBPSG borophosphosilicate glassBPT 1,10-biphenyl-4-thiolBPTC 1,10-biphenyl-4-thiol crosslinkedBSA bovine serum albumin

C

c-side cytosolic sideCA contact angleCAH contact-angle hysteresisCAIBE chemically assisted ion beam etchingCAM cell-adhesion moleculeCAS Crk-associated substrateCBA cantilever beam arrayCCD charge-coupled deviceCCVD catalytic chemical vapor depositionCDM charge discharge modelcDNA complementary DNACDR complementarity determining regionCDW charge density waveCFM chemical force microscopyCFU colony forming unitCG controlled geometryCIC cantilever-in-cantileverCLSM confocal laser scanning microscopyCMA cylindrical mirror analyzerCMC critical micelle concentrationCMOS complementary

metal-oxide-semiconductorCMP chemical mechanical polishingCNFET carbon nanotube field-effect transistor

XXXIV List of Abbreviations

CNH carbon nanohornCNT carbon nanotubeCOC cyclic olefin copolymerCOOH-PS charged carboxylated polystyreneCP circularly permutedCPA chirped-pulsed amplifierCPB Al Cooper pair boxCPG compute pattern generatorCRP C-reactive proteinCS circular dichroism spectroscopyCSK cytoskeletonCSM continuous stiffness measurementCT computed tomographyCTAB hexadecyl trimethyl ammonium bromideCTE coefficient of thermal expansionCU control unitCURC curcuminCVD chemical vapor depositionCW continuous wave

D

dATP deoxyadenosine triphosphateDBBA 10,10-dibromo-9,9-bianthrylDBR distributed Bragg reflectorDBTF dibromoterfluoreneDC direct currentDC/RF direct current/radio frequencyDCE 1,2-dichloroethanedCTP deoxycytidine triphosphatedDAT Drosophila melanogaster dopamine

transporterDDMS dimethyldichlorosilaneddNTP dideoxynucleotide triphosphateddPCR droplet digital polymerase chain reactionDDT dichlorodiphenyltrichloroethaneDDV dichlorvosDEP dielectrophoresisDFB distributed feedbackDFS dynamic force spectroscopyDFT density functional theorydGTP deoxyguanosine triphosphateDGU density gradient ultracentrifugationDI deionizedDIMP diisopropyl methylphosphonateDIP dual-in-line packagingDLA diffusion-limited aggregationDLC diamond-like carbonDLD deterministic lateral displacementDLP digital light processingDLS dynamic light scatteringDLVO Derjaguin–Landau–Verwey–OverbeekDLW direct laser writingDMA N,N-dimethylamideDMAc dimethylacetamideDMD digital micromirror deviceDMF dimethylformamideDMMP dimethylmethylphosphonateDMSO dimethyl sulfoxide

DMT Derjaguin–Muller–ToporovDNA deoxyribonucleic acidDNS direct numerical simulationDOE design of experimentsDOF degree of freedomDOPC 1,2-dioleoyl-sn-glycero-3-

phosphocholineDOS density of statesDOTA 1,4,7,10-tetraazacyclododecane-

1,4,7,10-tetraacetic acidDox doxorubicinDP n-decylphosphonateDPN dip-pen nanolithographyDPPC 1,2-dipalmitoyl-sn-glycero-3-

phosphocholineDPW die per waferDRC design rule checkDRIE deep reactive-ion etchingDSA directed self-assemblyDSC differential scanning calorimetryDSP digital signal processorDSPE-PEG 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[amino(polyethyleneglycol)-2000](carboxylic acid)

dSTORM direct stochastic optical reconstructionmicroscopy

DTR discrete track recordingdTTP deoxythymidine triphosphateDTXL docetaxelDUV deep ultravioletDWNT double-wall nanotube

E

EAM embedded atom methodEB electron beamEBID electron-beam-induced depositionEBL electron-beam lithographyEC erythrocyteECD electrochemical depositionECM extracellular matrixECR electron cyclotron resonanceECR-CVD electron cyclotron resonance chemical

vapor depositionED electron diffractionEDC 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimideEDL electrostatic double layerEDLC electrical double-layer capacitorEDP ethylenediamine pyrocatecholEDS energy-dispersive x-ray spectroscopyEELS electron energy loss spectroscopyEFM electric field gradient microscopyEHL elastohydrodynamic lubricationEIP emulsion inversion pointEL electroluminescenceELISA enzyme-linked immunosorbent assayELNES electron energy loss near edge structure

List of Abbreviations XXXV

ELP elastin-like polypeptideEMI electromagnetic interferenceEMT epithelial–mesenchymal transitionENM engineered nanomaterialENP engineered nanoparticleEPR enhanced permeability and retentionEPS extracellular polymeric substanceER endoplasmic reticulumERK extracellular signal-regulated kinaseESD electrostatic dischargeEUV extreme ultravioletEWOD electrowetting-on-dielectric

F

FADS fluorescence-activated droplet sortingFAK focal adhesion kinaseFB fluidized bedFBAR film bulk acoustic resonatorFBGC foreign body giant cellFBS fetal bovine serumFCA filtered cathodic arcfcc face-centered cubicFCP force calibration plotFDM fused deposition modelingFDTD finite-difference time-domainFDTS 1H,1H,2H,2H-perfluoro-

decyltrichlorosilaneFE-SEM field electron SEMFEA finite element analysisFEM finite element modelingFESEM field-emission scanning electron

microscopyFET field-effect transistorFFM friction force microscopeFFT fast Fourier transformFIB focused ion beamFK Frenkel–KontorovaFKT Frenkel–Kontorova–TomlinsonFLG few-layer grapheneFluidFM fluid force microscopyFM frequency modulationFM-SFM frequency-modulation scanning force

microscopyFMEA failure modes and effects analysisfPALM fluorescent photoactivated localization

microscopyFPGA field-programmable logic arraysFRET fluorescence (or Förster) resonant energy

transferFRS forward recoil spectrometryfs-laser femtosecond laserFWHM full-width at half-maximum

G

GF gauge factorGFP green fluorescent proteinGIC graphite intercalation compounds

GLAD glancing angle depositionGLUT4 glucose transporter 4GMR giant magnetoresistiveGNP gold nanoparticleGNR graphene nanoribbonGO graphene oxideGSD ground-state depletionGSH-Px glutathione peroxidaseGTP guanosine triphosphateGW Greenwood and Williamson

H

HAADF-STEM high-angle annular dark-field-scanningtransmission electron microscope

HARMEMS high-aspect-ratio MEMSHARPSS high-aspect-ratio combined poly- and

single-crystal siliconHART high aspect ratio tipHAS-CtW hybrid self-assembly-based

chip-to-wafer bondingHBM human body modelhBN hexagonal boron nitridehcp hexagonal close-packedHCS high content screeningHDI high density interconnectHDL high density lipoproteinHDT hexadecane thiolHEL hot embossing lithographyHEMT high electron mobility transistorHEPES 2-[4-(2-hydroxyethyl)-1-piperazinyl]-

ethanesulfonic acidHER hydrogen evolution recoveryHEXSIL hexagonal honeycomb polysiliconHFCVD hot filament chemical vapor depositionhIL human interleukinHMDS hexamethyldisilazaneHOMO highest occupied molecular orbitalHOPG highly oriented pyrolytic graphiteHOT holographic optical tweezersHP hot pressingHPLC high-pressure liquid chromatographyHRTEM high-resolution transmission electron

microscopyHSA human serum albuminHSQ hydrogen silsesquioxaneHTS high-throughput screeningHTSC high-temperature superconductorHVM high-volume manufacturing

I

I/O input/outputIA isogeometric analysisIB ion beamIBD ion beam depositionIBM immersed boundary methodIC integrated circuit

XXXVI List of Abbreviations

IC3D integrated comprehensive droplet digitaldetection

ICA independent component analysisICP inductively coupled plasmaICP-MS inductively coupled plasma mass

spectrometryICP-OES inductively coupled plasma optical

emission spectroscopyIFEM immersed finite element methodIgG immunoglobuline GIKVAV isoleucine–lysine–valine–alanine–valineIMU inertial measurement unitIoT internet of thingsIP ion pumpIPA isopropanol alcoholIPTG isopropyl-ˇ-D-thiogalactosideIR infraredIRE1 inositol-requiring protein 1IT isotopic tracingITO indium tin oxide

J

JC jump-to-contactJFIL jet-and-flash imprint lithographyJKR Johnson–Kendall–Roberts

K

KPFM Kelvin probe force microscopy

L

L–B Langmuir–BlodgettLAMP loop-mediated isothermal amplificationLBL layer-by-layerLBM lattice Boltzmann methodLCD liquid-crystal displayLCoS liquid crystal on siliconLCPD local contact potential differenceLDA local density approximationLDL low-density lipoproteinsLDOS local density of statesLED light-emitting diodeLEED low-energy electron diffractionLFM lateral force microscopeLIF light-induced fluorescentLIGA lithography, electroforming and moldingLINC linker of nucleoskeleton and

cytoskeletonLING laterally integrated nanogeneratorLJ Lennard-JonesLNA locked nuclei acidLoC lab-on-chipLoD limit-of-detectionLOEC lowest observable effect concentrationLPCVD low-pressure chemical vapor depositionLSI large-scale integrated circuit

LSP localized surface plasmonLT low-temperatureLT-STM low-temperature scanning tunneling

microscopyLTM laser tracking microrheologyLTO low-temperature oxideLTRS laser tweezers Raman spectroscopyLUMO lowest unoccupied molecular orbitalLVDT linear variable differential transformer

M

m-SWNT metallic single-walled carbon nanotubeMACE metal-assisted chemical etchingMALDI matrix-assisted desorption or ionizationMALDI-TOF matrix-assisted laser desorption

ionization-time of flight massspectrometer

MAPK mitogen-activated protein kinaseMBE molecular beam epitaxyMC microcantileverMCBJ mechanically controlled break junctionMCM multichip moduleMD molecular dynamicsMDA malondialdehydeME metal evaporatedMEAM modified EAMMED monolithic elastomer deviceMEMS microelectromechanical systemMExFM magnetic exchange force microscopyMExFS magnetic exchange force spectroscopyMFC mass flow controllerMFFD microflow-focusing deviceMFM magnetic force microscopyMHD magnetohydrodynamicMIC minimum inhibitory concentrationmicro-CT micro-computer tomographyMIM metal/insulator/metalMLE maximum likelihood estimatorMLG multilayer grapheneMM machine modelMMS methylmethanesulfonateMOCVD metalorganic chemical vapor depositionMOEMS microoptoelectromechanical systemsMOS metal–oxide–semiconductorMOSFET metal–oxide–semiconductor field-effect

transistorMP metal particleMPCVD microwave plasma CVDMPECVD microwave-PECVDMPPD multiple path particle dosimetryMPTMS 3-mercaptopropyltrimethoxysilaneMR magnetoresistanceMRAM magnetoresistive random access memoryMRFM magnetic resonance force microscopyMRI magnetic resonance imagingmRNA messenger ribonucleic acidMRP molecular recognition phases

List of Abbreviations XXXVII

mSBF modified simulated body fluidMSCK magnetic shell cross-linked knedel-like

nanoparticlesMscL mechanosensitive channel of large

conductanceMSS membrane-type surface stress sensorMST microsystem technologyMTTF mean time to failureMTX methotrexateMUMP multi-user MEMS processMWNT multiwalled (carbon) nanotube

N

NAA neutron activation analysisNAC N-acetyl-cysteineNAT nuclear analytical techniqueNCG glass nanochannelNE nuclear envelopeNEMS nanoelectromechanical systemNEXAFS near-edge x-ray absorption fine structureNGL next-generation lithographyNHS N-hydroxysuccinimideNIL nanoimprint lithographyNIR near-infraredNMP nitroxide mediated polymerizationNMR nuclear magnetic resonanceNOEMS nanooptoelectromechanical systemsNP nanoparticleNPC nuclear pore complexNR nanorodNRAM nonvolatile random access memoryNRM nanorobotic manipulatorNSOM near-field scanning optical microscopyNSS neurotransmitter sodium symporterNST nanosystem technologyNT nanotubeNTA nitrile-tri-acetic acidnTP nanotransfer printingNW nanowire

O

O-E-O optical-electronic-optical switchesODDMS n-octadecylmethyl (dimethylamino)

silaneODMS n-octyldimethyl (dimethylamino) silaneODP n-octadecylphosphonateODTS octadecyltrichlorosilaneOLED organic light-emitting deviceOM optical microscopeOMCTS octamethylcyclotetrasiloxaneOMVPE organometallic vapor phase epitaxyOS optical stretcherOTF optical transfer functionOTRS optical tweezers Raman spectroscopyOTS octadecyltrichlorosilane

P

PA peptide amphiphilePA-GFP photoactivatable green fluorescent

proteinPA-PF photoactivatable protein fluorophoresPAH polycyclic aromatic hydrocarbonPALM photoactivated localization microscopyPAMAM polyamidoaminePANI polyanilinePBC periodic boundary conditionPBD polybutadienePBG photonic band gapPBS phosphate buffered salinePCL polycaprolactonePCR polymerase chain reactionPCR-CE polymerase chain reaction-capillary

electrophoresisPDF probability density functionPDGF platelet-derived growth factorPDK process design kitPDMS poly(dimethylsiloxane)PE polyethylenePECVD plasma-enhanced chemical vapor

depositionPEDOT polyethylene dioxythiophenePEEK polyether ether ketonePEG polyethylene glycolPEGMA poly(ethylene glycol) methacrylatePEI polyethyleniminePERK PKR-like endoplasmic reticulum kinasePES photoemission spectroscopyPET poly(ethylene terephthalate)PETN pentaerythritol tetranitratePEUT poly(ether urethane)PFDA perfluorodecanoic acidPFDP perfluorodecylphosphonatePFDTES perfluorodecyltriethoxysilanePFPE perfluoropolyetherPFTS perfluorodecyltricholorosilanePGA polyglycolic acidPhC photonic crystalPI polyimidePI3K phosphatidylinositol-3-kinasePIN p-type/intrinsic/n-typePIT phase inversion temperaturePKA protein kinasePKC protein kinase CPKI protein kinase inhibitorPL photoluminescencePLA polylactic acidPLAF poly(lactide fumarate)PLD pulsed laser depositionPLGA poly(lactic-co-glycolic acid)PLGF poly(lactide-co-glycolide fumarate)PLL phase lock loopPMAA poly(methacrylic acid)PMMA poly(methyl methacrylate)PMN polymorphonuclear

XXXVIII List of Abbreviations

PMN–PT lead magnesium niobate-lead titanatePmPV poly[(m-phenylenevinylene)-co-(2,5-

dioctoxy-p-phenylenevinylene)]PMT photomultiplier tubePN purine nucleotidePNA peptide nucleic acidPNIPAm poly(N-isopropylacrylamide)poly-Si polysiliconPOM polyoxymethylenePP plasmon polaritonPPDDAC poly(diallyldimethylammonium

chloride)PPGMA poly(propylene glycol) methacrylatePPMA poly(propyl methacrylate)PPNF polypropylene nonwoven fabricPS polystyrenePS-b-PDMS poly(styrene-b-dimethylsiloxane)PSA prostate-specific antigenPSD position-sensitive detectorPSF point spread functionPSG phosphosilicate glassPT Prandtl–TomlinsonPTCDA perylenetetracarboxylic dianhydridePTFE polytetrafluoroethylenePTR pole-tip recessionPTX paclitaxelPVD physical vapor depositionPZT lead zirconate titanate

Q

QB quantum boxesQCM quartz crystal microbalanceQD quantum dotQEM quantum electromechanicsQHE quantum Hall effectQPD quadrant photodiodeQSAR quantitative structure–activity

relationshipQWR quantum wire

R

RAFT reversible addition and fragmentationtransfer

RAM random access memoryRBC red blood cellRDL redistribution layerRESLOFT reversible saturable optical fluorescence

transitionRF radio frequencyRF MEMS radio frequency MEMSRGD arginine–glycine–aspartic acidRH relative humidityRHEED reflection high-energy electron

diffractionRIE reactive ion etchingRKKY Ruderman–Kittel–Kasuya–YoshidaRMS root mean square

RNA ribonucleic acidRO reverse osmosisROS reactive oxygen speciesRSF rate-and-state frictionRT room temperatureRT-DC real-time deformability cytometryRT-PCR reverse-transcription PCRRTA rapid thermal annealingRTP rapid thermal processing

S

s-SWNT semiconducting single-walled carbonnanotube

SA-MCtW self-assembly-based multi-chip-to-waferbonding

SAED selected area electron diffractionSAIL self-aligned imprint lithographySAM self-assembled monolayerSAW surface acoustic waveSB Schottky barrierSCC stress corrosion crackingSCFv single-chain fragment variableSCIL substrate conformal imprint lithographySCM scanning capacitance microscopySCPM scanning chemical potential microscopySCREAM single-crystal reactive etching and

metallizationSDA scratch drive actuatorSEcM scanning electrochemical microscopySEFM scanning electrostatic force microscopySEM scanning electron microscopySERT serotonin transporterSET single electron transistorSFA surface force apparatusSFAM scanning force acoustic microscopySFM scanning force microscopySHG second harmonic generationSHiMMeR Sandia high-volume measurement of

micromachine reliabilitySHO simple harmonic oscillatorSICM scanning ion conductance microscopySKPM scanning Kelvin probe microscopySL soft lithographySLIPS slippery liquid-infused surfacesSLS solution–liquid–solidSMA shape memory alloySMFS single molecule force spectroscopySMLM single molecule localization microscopySMM scanning magnetic microscopySMR suspended micro-channel resonatorSMRT single-molecule real-timeSNOM scanning near-field optical microscopySNR signal-to-noise ratioSNS superconductor–normal

metal–superconductorSOD superoxide dismutaseSOFI superresolution optical fluctuation

imaging

List of Abbreviations XXXIX

SOG spin-on-glassSOI silicon-on-insulatorSOIMEMS silicon-on-insulator

microelectromechanical systemsSoS silicon-on-sapphireSP sputteringSP-STM spin-polarized scanning tunneling

microscopySPECT single-photon emission computed

tomographySPIM selective plane illumination microscopySPM scanning probe microscopySPN spherical polymeric nanoconstructSPR surface plasmon resonanceSPS spark plasma sinteringsptPALM single-particle tracking PALMSQL standard quantum limitSRAM static random access memorySRCD synchrotron radiation circular dichroism

spectroscopySSIL step-and-stamp imprinting lithographySSRM scanning spreading resistance

microscopySTED stimulated emission depletionSTEM scanning transmission electron

microscopeSThM scanning thermal microscopySTM scanning tunneling microscopySTORM stochastic optical reconstruction

microscopySTP standard temperature and pressureSTS scanning tunneling spectroscopySUN Sad1p/UNC-84SVR surface-to-volume ratioSWNT single-walled (carbon) nanotube

T

TASA template assisted self-assemblyTB-BGA top–bottom ball grid arrayTCP tricresyl phosphateTEM transmission electron microscopyTEP thermoelectric powerTFET tunnel field-effect transistorTFM traction force microscopyTGA thermogravimetric analysisTGF transforming growth factorTHC tetrahydrocurcuminTHF tetrahydrofuranTHG third harmonic generationTIRF total internal reflection fluorescenceTM tapping modeTMA trimethylaluminumTMP turbo-molecular pumpTNT trinitrotolueneTP tribopolymerTR torsional resonance

TREC topography and recognition imagingTRIM transport of ions in mattertRNA transfer ribonucleic acidTSV through-silicon viaTTF tetrathiafulvaleneTTS time-temperature superpositionTXM transmission x-ray microscopy

U

UAA unnatural AAUFP ultrafine particleUHF ultra high frequencyUHV ultrahigh vacuumULSI ultra large scale integrationUML unified modeling languageUNCD ultrananocrystalline diamondUPR unfolded protein responseUV ultravioletUV-Vis ultraviolet-visible

V

VBS vinculin binding siteVCO voltage-controlled oscillatorVCSEL vertical-cavity surface-emitting laservdW van der WaalsVE vascular endothelialVEGF vascular endothelial growth factorVGCNF vapor-grown carbon nanofilamentVHH variable heavy–heavyVING vertical nanowire array integrated

nanogeneratorVLDL very low density lipoproteinVLS vapor–liquid–solidVLSI very large-scale integrationVOC volatile organic compoundVPE vapor-phase epitaxyVSM vital-sign monitoringVSS vapor–solid–solid

W

WAT wafer acceptance testWLCSP wafer-level chip-scale packaging

X

XAFS x-ray absorption fine structureXANES x-ray absorption near-edge structureXPS x-ray photoelectron spectroscopyXRD x-ray diffractionXRF x-ray fluorescence

Z

ZMW zero-mode waveguide