69
Springer Handbook of Automation

Springer Handbook of Automation978-3-540-78831-7/1.pdf · Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles,

  • Upload
    vancong

  • View
    229

  • Download
    1

Embed Size (px)

Citation preview

Springer Handbookof Automation

Springer Handbooks providea concise compilation of approvedkey information on methods ofresearch, general principles, andfunctional relationships in physi-cal sciences and engineering. Theworld’s leading experts in thefields of physics and engineer-ing will be assigned by one orseveral renowned editors to writethe chapters comprising each vol-ume. The content is selected bythese experts from Springer sources(books, journals, online content)and other systematic and approvedrecent publications of physical andtechnical information.

The volumes are designed to beuseful as readable desk referencebooks to give a fast and comprehen-sive overview and easy retrieval ofessential reliable key information,including tables, graphs, and bibli-ographies. References to extensivesources are provided.

123

HandbookSpringerof Automation

Nof (Ed.)

With DVD-ROM, 1005 Figures, 222 in four color and 149 Tables

EditorShimon Y. NofPurdue UniversityPRISM Center, and School of Industrial Engineering315 N. Grant StreetWest Lafayette IN 47907, [email protected]

ISBN: 978-3-540-78830-0 e-ISBN: 978-3-540-78831-7DOI 10.1007/978-3-540-78831-7Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2008934574

c© Springer-Verlag Berlin Heidelberg 2009This work is subject to copyright. All rights are reserved, whether the wholeor part of the material is concerned, specifically the rights of translation,reprinting, reuse of illustrations, recitation, broadcasting, reproduction onmicrofilm or in any other way, and storage in data banks. Duplication of thispublication or parts thereof is permitted only under the provisions of theGerman Copyright Law of September 9, 1965, in its current version, andpermission for use must always be obtained from Springer. Violations areliable to prosecution under the German Copyright Law.The use of general descriptive names, registered names, trademarks, etc. inthis publication does not imply, even in the absence of a specific statement,that such names are exempt from the relevant protective laws and regulationsand therefore free for general use.

Production and typesetting: le-tex publishing services GmbH, LeipzigSenior Manager Springer Handbook: Dr. W. Skolaut, HeidelbergTypography and layout: schreiberVIS, SeeheimIllustrations: Hippmann GbR, SchwarzenbruckCover design: eStudio Calamar S.L., Spain/GermanyCover production: WMXDesign GmbH, HeidelbergPrinting and binding: Stürtz GmbH, Würzburg

Printed on acid free paper

Springer is part of Springer Science+Business Media (www.springer.com)

89/3180/YL 5 4 3 2 1 0

V

Dedication

This Springer Handbook is dedicated to all of us who collaborate with automation to advance humanity.

VII

Foreword

Automation Is for Humans and for Our Environment

Preparing to write the Foreword for this outstandingSpringer Handbook of Automation, I have followed Shi-mon Y. Nof’s statement in his Preface vision: “Thepurpose of this Handbook is to understand automa-tion knowledge and expertise for the solution of humansociety’s significant challenges; automation providedanswers in the past, and it will be harnessed to do soin the future.” The significant challenges are becomingever more complex, and learning how to address themwith the help of automation is significant too. The publi-cation of this Handbook with the excellent informationand advice by a group of top international experts is,therefore, most timely and relevant.

The core of any automatic system is the idea offeedback, a simple principle governing any regulationprocess occurring in nature. The process of feedbackgoverns the growth of living organisms and regulatesan innumerable quantity of variables on which life isbased, such as body temperature, blood pressure, cellsconcentration, and on which the interaction of livingorganisms with the environment is based, such as equi-librium, motion, visual coordination, response to stressand challenge, and so on.

Humans have always copied nature in the designof their inventions: feedback is no exception. The in-troduction of feedback in the design of man-madeautomation processes occurred as early as in the goldencentury of Hellenistic civilization, the third century BC.The scholar Ktesibios, who lived in Alexandria circa240–280 BC and whose work has been handed to usonly by the later roman architect Vitruvius, is creditedfor the invention of the first feedback device. He usedfeedback in the design of a water clock. The idea was toobtain a measure of time from the inspection of the po-sition of a floater in a tank of water filled at constantvelocity. To make this simple principle work, Ktesi-bios’s challenge was to obtain a constant flow of waterin the tank. He achieved this by designing a feedbackdevice in which a conic floating valve serves the dualpurpose of sensing the level of water in a compartmentand of moderating the outflow of water.

The idea of using feedback to moderate the ve-locity of rotating devices eventually led to the designof the centrifugal governor in the 18th century. In1787, T. Mead patented such a device for the regula-

Alberto IsidoriPresident IFAC

tion of the rotary motion of a windmill, letting the sail area be de-creased or increased as the weightsin the centrifugal governor swingoutward or, respectively, inward. Thesame principle was applied two yearslater, by M. Boulton and J. Watt,to control the steam inlet valve ofa steam engine. The basic simpleidea of proportional feedback wasfurther refined in the middle of the19th century, with the introductionof integral control to compensatefor constant disturbances. W. von Siemens, in the 1880s,designed a governor in which integral action, achievedby means of a wheel-and-cylinder mechanical integra-tor, was deliberately introduced. The same principle ofproportional and integral feedback gave rise, by theturning of the century, to the first devices for the auto-matic steering of ships, and became one of the enablingtechnologies that made the birth of aviation possible.The development of sensors, essential ingredients inany automatic control system, resulted in the creationof new companies.

The perception that feedback control and, in a widerdomain, automation were taking the shape of an au-tonomous discipline, occurred at the time of the secondworld war, where the application to radar and artilleryhad a dramatic impact, and immediately after. By theearly 1950s, the principles of this newborn disciplinequickly became a core ingredient of most industrial en-gineering curricula, professional and academic societieswere established, textbooks and handbooks becameavailable. At the beginning of the 1960s, two new driv-ing forces provoked an enormous leap ahead: the rush tospace, and the advent of digital computers in the imple-mentation of control system. The principles of optimalcontrol, pioneered by R. Bellman and L. Pontryagin, be-came indispensable ingredients for the solution of theproblem of soft landing on the moon and in mannedspace missions. Integrated computer control, introducedin 1959 by Texaco for set point adjustment and coor-dination of several local feedback loops in a refinery,quickly became the standard technique for controllingindustrial processes.

VIII

Those years saw also the birth of an InternationalFederation of Automatic Control (IFAC), as a multi-national federation of scientific and/or engineeringsocieties each of which represents, in its own nation,values and interests of scientists and professionals ac-tive in the field of automation and in related scientificdisciplines. The purpose of such Federation, establishedin Heidelberg in 1956, is to facilitate growth and dis-semination of knowledge useful to the developmentof automation and to its application to engineeringand science. Created at a time of acute internationaltensions, IFAC was a precursor of the spirit of the so-called Helsinki agreements of scientific and technicalcooperation between east and west signed in 1973. Itrepresented, in fact, a sincere manifestation of interest,from scientists and professionals of the two confrontingspheres of influence in which the world was split at thattime, toward a true cooperation and common goals. Thiswas the first opportunity, after the Second World Warthat scientists and engineers had of sharing complemen-tary scientific and technological backgrounds, notablythe early successes in the space race in the Soviet Unionand the advent of electronic computers in the UnitedStates. The first President of IFAC was an engineerfrom the Unites States, while the first World Congressof the Federation was held in Moscow in 1960. TheFederation currently includes 48 national member orga-nizations, runs more than 60 scientific Conferences witha three-year periodicity, including a World Congress ofAutomatic Control, and publishes some of the leadingJournals in the field.

Since then, three decades of steady progresses fol-lowed. Automation is now an essential ingredient inmanufacturing, in petrochemical, pharmaceutical, andpaper industry, in mining and metal industry, in conver-sion and distribution of energy, and in many services.Feedback control is indispensable and ubiquitous in au-tomobiles, ships and aircrafts. Feedback control is alsoa key element of numerous scientific instruments as wellas of consumer products, such as compact disc players.Despite of this pervasive role of automation in every as-pect of the technology, its specific value is not alwaysperceived as such and automation is often confused withother disciplines of engineering. The advent of robotics,in the late 1970s, is, in some sense, an exception to this,because the impact of robotics in modern manufacturingindustry is under the eyes of everybody. However, alsoin this case there is a tendency to consider robotics andthe associated impact on industry as an implementationof ideas and principles of computer engineering ratherthan principles of automation and feedback control.

In the recent years, though, automation and controlhave experienced a third, tumultuous expansion. Pro-gresses in the automobile industry in the last decadehave only been possible because of automation. Feed-back control loops pervade our cars: steering, breaking,attitude stabilization, motion stabilization, combustion,emissions are all feedback controlled. This is a dramaticchange that has revolutionized the way in which carsare conceived and maintained. Industrial robots havereached a stage of full maturity, but new generations ofservice robots are on their way. Four-legged and eventwo-legged autonomous walking machines are able towalk through rough terrains, service robot are able toautonomously interact with uncertain environment andadapt their mission to changing tasks, to explore hos-tile or hazardous environments and to perform jobsthat would be otherwise dangerous for humans. Servicerobots assist elderly or disabled people and are aboutto perform routine services at home. Surgical roboticsis a reality: minimally invasive micro robots are able tomove within the body and to reach areas not directly ac-cessible by standard techniques. Robots with haptic in-terfaces, able to return a force feedback to a remote hu-man operator, make tele-surgery possible. New frontiersof automation encompass applications in agriculture, inrecycling, in hazardous waste disposal, in environmentprotection, and in safe and reliable transportation.

At the dawn of the 20th century, the determinis-tic view of classical mechanics and some consequentpositivistic philosophic beliefs that dominated the 19thcentury had been shaken by the advent of relativisticphysics. Today, after a century dominated by the expan-sion of technology and, to some extent, by the beliefthat no technological goal was impossible to achieve,similar woes are feared. The clear perception that re-sources are limited, the uncertainty of the financialmarkets, the diverse rates of development among na-tions, all contribute to the awareness that the modelof development followed in so far in the industrializedworld will change. Today’s wisdom and beliefs maynot be the same tomorrow. All these expected changesmight provide yet another great opportunity for au-tomation. Automation will no longer be seen only asautomatic production, but as a complex of technologiesthat guarantee reliability, flexibility, safety, for humansas well as for the environment. In a world of limitedresources, automation can provide the answer to thechallenges of a sustainable development. Automationhas the opportunity of making a greater and even moresignificant impact on society. In the first half of the 20thcentury, the precepts of engineering and management

IX

helped solving economic recession and ease social anx-iety. Similar opportunities and challenges are occurringtoday.

This leading-edge Springer Handbook of Automa-tion will serve as a highly useful and powerful tool andcompanion to all modern-day engineers and managersin their respective profession. It comes at an appropriatetime, and provides a fundamental core of basic prin-ciples, knowledge and experience by means of whichengineers and managers will be able to quickly respondto changing automation needs and to find creative so-lutions to the challenges of today’s and tomorrow’sproblems.

It has been a privilege for many members ofIFAC to participate with Springer Publishers, Dr. Shi-mon Y. Nof, and the over 250 experts, authors and

reviewers, in creating this excellent resource of au-tomation knowledge and ideas. It provides also a fulland comprehensive spectrum of current and prospec-tive automation applications, in industry, agriculture,infrastructures, services, health care, enterprise andcommerce. A number of recently developed conceptsand powerful emerging techniques are presented herefor the first time in an organized manner, and clearly il-lustrated by specialists in those fields. Readers of thisoriginal Springer Handbook of Automation are offeredthe opportunity to learn proven knowledge from un-derlying basic theory to cutting-edge applications ina variety of emerging fields.

Alberto IsidoriRome, March 2009

XI

Foreword

Automation Is at the Center of Human Progress

As I write this Foreword for the new Springer Hand-book of Automation, the 2008 United States presidentialelections are still in full swing. Not a day seems to go bywithout a candidate or newscaster opining on the impactof cheaper, offshore labor on the US economy. Similardebates are taking place in other developed countriesaround the globe.

Some argue that off-shoring jobs leads to higherunemployment and should be prohibited. Indeed someregions have passed legislation prohibiting their localagencies from moving work to lower cost locations.

Proponents argue off-shoring leads to lower unem-ployment. In their view freeing up of the labor forcefrom lower skilled jobs allows more people to enterhigher value jobs which are typically higher paying.This boosts incomes and in turn overall domestic con-sumption.

Then, what about automation? Is the displacementor augmentation of human labor with an automated ma-chine bad for our economies, too? If so, let’s ban it!

So, let’s imagine a world in which automation didn’texist. . . .

To begin I wouldn’t be writing this Foreword on mylaptop computer since the highly sophisticated automa-tion necessary to manufacture semiconductors wouldn’texist. That’s okay I’ll just use my old typewriter. Oops,the numerical controlled machines required to manu-facture the typewriter’s precision parts wouldn’t exist.What about pencil and paper? Perhaps, but could I af-ford them given that there would be no sensors andcontrols needed to manufacture them in high volume?

IBM has been a leader and pioneer in many automa-tion fields, both as a user and a provider of automationsolutions. Beyond productivity and cost-effectiveness,automation also enables us to effectively monitor pro-cess quality, reveal to us opportunities for improvementand innovation, and assure product and service depend-ability and service-availability. Such techniques andnumerous examples to advance with automation, asusers and providers, are included in this Springer Hand-book of Automation.

The expanding complexity and magnitude of high-priority society’s problems, global needs and competi-tion forcefully challenge organizations and companies.To succeed, they need to understand detailed knowledge

J. Bruce HarreldSenior Vice President IBM

of many of the topics included in thisSpringer Handbook of Automation.Beyond an extensive reference re-source providing the expert answersand solutions, readers and learnerswill be enriched from inspiration toinnovate and create powerful appli-cations for specific needs and chal-lenges.

The best example I know isone I have witnessed first hand atIBM. Designing, developing, andmanufacturing state-of-the art micro-processors have been a fundamental driver of our suc-cess in large computer and storage systems. Thirty yearsago the manufacturing process for these microproces-sors was fairly manual and not very capital intense.Today we manufacture microprocessors in a new state-of-the-art US$ 3 billion facility in East Fishkill, NewYork. This fabrication site contains the world’s most ad-vanced logistics and material handling system includingreal-time process control and fully automated workflow.The result is a completely touchless process that in turnallows us to produce the high quality, error free, and ex-tremely fast microprocessors required for today’s highend computing systems.

In addition to chapters devoted to a variety of indus-try and service automation topics, this Springer Hand-book of Automation includes useful, well-organizedinformation and examples on theory, tools, and theirintegration for successful, measurable results.

Automation is often viewed as impacting only thetangible world of physical products and facilities. For-tunately, this is completely wrong! Automation has alsodramatically improved the way we develop software atIBM. Many years ago writing software was much likewriting a report with each individual approaching thetask quite differently and manually writing each line ofcode. Today, IBM’s process for developing software isextremely automated with libraries of previously writ-ten code accessible to all of our programmers. Thus,once one person develops a program that performsa particular function, it is quickly shared and reusedaround the globe. This also allows us to pass a projectto and from one team to the next so we can speed up cy-

XII

cle times for our clients by working on their projects 24hours a day. The physical process of writing the linesof code has been replaced with pointing and clickingat objects on a computer screen. The result has beena dramatic reduction in mistakes with a concomitantincrease in productivity. But we expect and anticipateeven more from automation in support of our future,and the knowledge and guidelines on how to do it aredescribed in this Springer Handbook of Automation.

The examples illustrated above highlight an im-portant point. While we seldom touch automation, ittouches us everyday in almost everything we do. Humanprogress is driven by day-to-day improvements in howwe live. For more than one hundred years automationhas been at the center of this exciting and meaningfuljourney. Since ancient history, humans have known howto benefit civilization with automation.

For engineers, scientists, managers and inventors,automation provides an exciting and important oppor-tunity to implement ingenious human intelligence inautomatic solutions for many needs, from simple appli-cations, to difficult and complex requirements. Increas-ingly, multi-disciplinary cooperation in the study of

automation helps in this creative effort, as detailed wellin this Springer Handbook of Automation, includingautomatic control and mechatronics, nano-automationand collaborative, software-based automation conceptsand techniques, from current and proven capabilities toemerging and forthcoming knowledge.

It is quite appropriate, therefore, that this originalSpringer Handbook of Automation has been publishednow. Its scope is vast and its detail deep. It covers thehistory as well as the social implications of automation.Then it dives into automation theory and techniques,design and modeling, and organization and manage-ment. Throughout the 94 chapters written by leadingworld experts, there are specific guidelines and exam-ples of the application of automation in almost everyfacet of today’s society and industry. Given this richcontent I am confident that this Handbook will be usefulnot only to students and faculty but practitioners, re-searchers and managers across a wide range of fieldsand professions.

J. Bruce HarreldArmonk, January 2009

XIII

Foreword

Dawn of Industrial Intelligent Robots

This Handbook is a significant educational, professionaland research resource for anyone concerned about au-tomation and robotics. It can serve well for globalenterprises and for education globally. The impacts ofautomation in many fields have been and are essentialfor increasing the intelligence of services and of in-teraction with computers and with machines. Plenty ofillustrations and statistics about the economics and so-phistication impacts of automation are included in thisHandbook.

Automation, in general, includes many computerand communication based applications, computer-integrated design, planning, management, decisionsupport, informational, educational, and organizationalresources, analytics and scientific applications, andmore. There are also many automation systems involv-ing robots. Robots have emerged from science fictioninto industrial reality in the middle of the 20th Century,and are now available worldwide as reliable, industriallymade, automated and programmable machines.

The field of robotics application is now expand-ing rapidly. As widely known, about 35% of industrialrobots in the world are operating in Japan. In the 1970s,Japan started to introduce industrial robots, especiallyautomotive spot welding robots, thereby establishingthe industrial robot market. As the industries flourishedand faced labor shortage, Japan introduced industrialrobots vigorously. Industrial robots have since earnedrecognition as being able to perform repetitive jobs con-tinuously, and produce quality products with reliability,convincing the manufacturing industry that it is keenlyimportant to use them skillfully so as to achieve itsglobal impact and competitiveness.

In recent years, the manufacturing industry facessevere cost competition, shorter lead-time, and skilledworker shortage in the aging society with lower birthrates. It is also required to manufacture many varietiesof products in varied quantity. Against this backdrop,there is a growing interest in industrial intelligent robotsas a new automation solution to these requirements. In-telligence here is not defined as human intelligence ora capacity to think, but as a capacity comparable to

Seiuemon InabaChairman Fanuc Ltd.

that of a skilled worker, with whicha machine can be equipped.

Disadvantages of relatively sim-ple, playback type robots withoutintelligent abilities result in rela-tively higher equipment costs for theelaborate peripheral equipment re-quired, such as parts feeders and partpositioning fixtures. Additionally forsimpler robots, human workers mustdaily pre-position work-pieces indesignated locations to operate therobots. In contrast, intelligent robotscan address these requirements with their vision sensor,serving as the eye, and with their force sensor, servingas the hand providing sense of touch. These intelligentrobots are much more effective and more useful. Forinstance, combined with machine tools as Robot Cellsthey can efficiently load/unload work-pieces to/frommachine tools, thereby reducing machining costs sub-stantially by enabling machine tools to operate longhours without disruptions. These successful solutionswith industrial intelligent robots have established themas a key automation component to improve global com-petitiveness of the manufacturing industry. It signifiesthe dawn of the industrial intelligent robot.

Intelligent automation, including intelligent robots,can now help, as described very well in this SpringerHandbook of Automation, not only with manufactur-ing, supply and production companies, but increasinglywith security and emergency services; with healthcaredelivery and scientific exploration; with energy explo-ration, production and delivery; and with a variety ofhome and special needs human services. I am mostthankful for the efforts of all those who participated inthe development of this useful Springer Handbook ofAutomation and contributed their expertise so that ourfuture with automation and robotics will continue tobring prosperity.

Seiuemon InabaOshino-mura, January 2009

XV

Foreword

Automation Is the Science of Integration

In our understanding of the word automation, weused to think of manufacturing processes being run bymachines without the need for human control or inter-vention. From the outset, the purpose of investing inautomation has been to increase productivity at mini-mum cost and to assure uniform quality. Permanentlyassessing and exploiting the potential for automation inthe manufacturing industries has, in fact, proved to bea sustainable strategy for responding to competition inthe marketplace, thereby securing attractive jobs.

Automation equipment and related services con-stitute a large and rapidly growing market. Supplynetworks of component manufacturers and system in-tegrators, allied with engineering skills for planning,implementing and operating advanced production fa-cilities, are regarded as cornerstones of competitivemanufacturing. Therefore, the emphasis of national andinternational initiatives aimed at strengthening the man-ufacturing base of economies is on holistic strategies forresearch and technical development, education, socio-economics and entrepreneurship.

Today, automation has expanded into almost everyarea of daily life: from smart products for everydayuse, networked buildings, intelligent vehicles and lo-gistics systems, service robots, to advanced healthcareand medical systems. In simplified terms, automationtoday can be considered as the combination of pro-cesses, devices and supporting technologies, coupledwith advanced information and communication technol-ogy (ICT), where ICT is now evolving into the mostimportant basic technology.

As a world-leading organization in the field ofapplied research, the Fraunhofer Society (Fraunhofer-Gesellschaft) has been a pioneer in relation to nu-merous technological innovations and novel systemsolutions in the broad field of automation. Its in-stitutes have led the way in research, developmentand implementation of industrial robots and computer-integrated manufacturing systems, service robots forprofessional and domestic applications, advanced ICTsystems for office automation and e-Commerce as wellas automated residential and commercial buildings.Moreover, our research and development activities inadvanced manufacturing and logistics as well as of-fice and home automation have been accompanied by

Hans-Jörg BullingerPresidentFraunhofer Society

large-scale experiments and demon-stration centers, the goal being tointegrate, assess and showcase inno-vations in automation in real-worldsettings and application scenarios.

On the basis of this experience,we can state that, apart from researchin key technologies such as sen-sors, actuators, process control anduser interfaces, automation is firstand foremost the science of integra-tion, mastering the process from thespecification, design and implemen-tation through to the operation ofcomplex systems that have to meet the highest standardsof functionality, safety, cost-effectiveness and usability.Therefore, scientists and engineers need to be expertsin their respective disciplines while at the same timehaving the necessary knowledge and skills to create andoperate large-scale systems.

The Springer Handbook of Automation is an ex-cellent means of both educating students and alsoproviding professionals with a comprehensive yet com-pact reference work for the field of automation. TheHandbook covers the broad scope of relevant tech-nologies, methods and tools and presents their use andintegration in a wide selection of application contexts:from agricultural automation to surgical systems, trans-portation systems and business process automation.

I wish to congratulate the editor, Prof. Shimon Y.Nof, on succeeding in the difficult task of coveringthe multi-faceted field of automation and of organiz-ing the material into a coherent and logically structuredwhole. The Handbook admirably reflects the connec-tion between theory and practice and represents a highlyworthwhile review of the vast accomplishments in thefield. My compliments go to the many experts who haveshared their insights, experience and advice in the indi-vidual chapters. Certainly, the Handbook will serve asa valuable tool and guide for those seeking to improvethe capabilities of automation systems – for the benefitof humankind.

Hans-Jörg BullingerMunich, January 2009

XVII

Preface

We love automation when it does what we need andexpect from it, like our most loyal partner: wash ourlaundry, count and deliver money bills, supply electric-ity where and when it is needed, search and displaymovies, maps, and weather forecasts, assemble andpaint our cars, and more personally, image to diagnoseour health problems, or tooth pains, cook our food, andphotograph our journeys. Who would not love automa-tion?

We hate automation and may even kick it when itfails us, like a betraying confidant: turn the key or pusha button and nothing happens the way we anticipate –a car does not start, a TV does not display, our cell-phone is misbehaving, the vending machine delivers thewrong item, or refuses to return change; planes are latedue to mechanical problem and business transactionsare lost or ignored due to computer glitches. Eventu-ally those problems are fixed and we turn back to thefirst paragraph, loving it again.

We are amazed by automation and all those peoplebehind it. Automation thrills us when we learn aboutits new abilities, better functions, more power, fastercomputing, smaller size, and greater reliability and pre-cision. And we are fascinated by automation’s marvels:in entertainment, communication, scientific discover-ies; how it is applied to explore space and conquerdifficult maladies of society, from medical and pharma-ceutical automation solutions, to energy supply, distanteducation, smart transportation, and we are especiallyenthralled when we are not really sure how it works,but it works.

It all starts when we, as young children, observe andnotice, perhaps we are bewildered, that a door automat-ically opens when we approach it, or when we are firstdriven by a train or bus, or when we notice the auto-matic sprinklers, or lighting, or home appliances: Howcan it work on its own? Yes, there is so much magicabout automation.

This magic of automation is what inspired a largegroup of us, colleagues and friends from aroundthe world, all connected by automation, to compile,develop, organize and present this unique SpringerHandbook of Automation: Explain to our readers whatautomation is, how it works, how it is designed andbuilt, where it is applied, and where and how it is going

to be improved and be created even better; what are thescientific principles behind it, and what are emergingtrends and challenges being confronted. All of it con-cisely yet comprehensively covered in the 94 chapterswhich are included in front of you, the readers.

Flying over beautiful Fall colored forest surround-ing Binghamton, New York in the 1970s on my wayto IBM’s symposium on the future of computing, I wasfascinated by the miracle of nature beneath the airplane:Such immense diversity of leaves’ changing colors;such magically smooth, wavy movement of the leavesdancing with the wind, as if they are programmedwith automatic control to responsively transmit cer-tain messages needed by some unseen listeners. Andthe brilliance of the sunrays reflected in these beau-tiful dancing leaves (there must be some purposeto this automatically programmed beauty, I thought).More than once, during reading the chapters that fol-low, was I reminded of this unforgettable image ofmulti-layered, interconnected, interoperable, collabora-tive, responsive waves of leaves (and services): Thetake-home lesson from that symposium was that main-frame computers hit, about that time, a barrier – itwas stated that faster computing was impossible sincemainframes would not be able to cool off the heatthey generated (unless a miracle happened). As weall know, with superb human ingenuity computing hasovercome that barrier and other barriers, and progress,including fast personal computers, better software, andwireless computer communication, resulted in majorperformance and cost-effective improvements, such asclient-server workstations, wireless access and localarea networks (LAN), duo- and multi-core architec-tures, web-based Internetworking, grids, and more hasbeen automated, and there is so much more yet tocome. Thus, more intelligent automatic control andmore responsive human–automation interfaces could beinvented and deployed for the benefit of all.

Progress in distributed, networked, and collabora-tive control theory, computing, communication, andautomation has enabled the emergence of e-Work,e-Business, e-Medicine, e-Service, e-Commerce, andmany other significant e-Activities based on automa-tion. It is not that our ancestors did not recognize thetremendous power and value of delegating effort to

XVIII

tools and machines, and furthermore, of synergy, team-work, collaborative interactions and decision-making,outsourcing and resource sharing, and in general, net-working. But only when efficient, reliable and scalableautomation reached a certain level of maturity could itbe designed into systems and infrastructures servicingeffective supply and delivery networks, social networks,and multi-enterprise practices.

In their vision, enterprises expect to simplify theirautomation utilities and minimize their burden and cost,while increasing the value and usability of all deployedfunctions and acquirable information by their timelyconversion into relevant knowledge, goods, and prac-tices. Streamlined knowledge, services and productswould then be delivered through less effort, just whennecessary and only to those clients or decision makerswho truly need them. Whether we are in business andcommerce or in service for society, the real purpose ofautomation is not merely better computing or better au-tomation, but let us increase our competitive agility andservice quality!

This Springer Handbook achieves this purpose well.Throughout the 94 chapters, divided into ten main parts,with 125 tables, numerous equations, 1005 figures, anda vast number of references, with numerous guidelines,algorithms, and protocols, models, theories, techniquesand practical principles and procedures, the 166 co-authors present proven knowledge, original analysis,best practices and authoritative expertise.

Plenty of case studies, creative examples and uniqueillustrations, covering topics of automation from the ba-sics and fundamentals to advanced techniques, casesand theories will serve the readers and benefit thestudents and researchers, engineers and managers, in-ventors, investors and developers.

Special ThanksI wish to express my gratitude and thanks to our dis-tinguished Advisory Board members, who are leadinginternational authorities, scholars, experts, and pioneersof automation, and who have guided the develop-ment of this Springer Handbook and shared with metheir wisdom and advice along the challenging edi-torial process; to our distinguished authors and ouresteemed reviewers, who are also leading experts, re-searchers, practitioners and pioneers of automation.Sadly, my personal friends and colleagues ProfessorKazuo Tanie, Professor Heinz Erbe, and Professor Wal-ter Shaufelberger, who took active part in helpingcreate this Springer Handbook, passed away beforethey could see it published. They left huge voids in

our community and in my heart, but their legacy willcontinue.

All the chapters were reviewed thoroughly andanonymously by over 90 reviewers, and went throughseveral critical reviews and revision cycles (each chap-ter was reviewed by at least five expert reviewers), toassure the accuracy, relevance, and high quality of thematerials, which are presented in the Springer Hand-book. The reviewers included:

Kemal Altinkemer, Purdue UniversityPanos J. Antsaklis, University of Notre DameHillel Bar-Gera, Ben-Gurion University, IsraelRuth Bars, Budapest University of Technology andEconomics, HungarySigal Berman, Ben-Gurion University, IsraelMark Bishop, Goldsmiths University of London, UKBarrett Caldwell, Purdue UniversityDaniel Castro-Lacouture, Georgia Institute of Tech-nologyEnrique Castro-Leon, Intel CorporationXin W. Chen, Purdue UniversityGary J. Cheng, Purdue UniversityGeorge Chiu, Purdue UniversityMeerant Chokshi, Purdue UniversityJae Woo Chung, Purdue UniversityJason Clark, Purdue UniversityRosalee Clawson, Purdue UniversityMonica Cox, Purdue UniversityJose Cruz, Ohio State UniversityJuan Manuel De Bedout, GE Power Conversion Sys-temsMenahem Domb, Amdocs, IsraelVincent Duffy, Purdue UniversityYael Edan, Ben-Gurion University, IsraelAydan Erkmen, Middle East Technical University,TurkyFlorin Filip, Academia Romana and National Insti-tute for R&D in Informatics, RomaniaGary Gear, Embry-Riddle UniversityJackson He, Intel CorporationWilliam Helling, Indiana UniversitySteve Holland, GM R&D Manufacturing SystemsResearchChin-Yin Huang, Tunghai University, TaiwanSamir Iqbal, University of Texas at ArlingtonAlberto Isidori, Universita Roma, ItalyNick Ivanescu, University Politehnica of Bucharest,RomaniaWootae Jeong, Korea Railroad Research InstituteShawn Jordan, Purdue University

XIX

Stephen Kahne, Embry-Riddle UniversityDimitris Kiritsis, EFPL, SwitzerlandHoo Sang Ko, Purdue UniversityRenata Konrad, Purdue UniversityTroy Kostek, Purdue UniversityNicholas Kottenstette, University of Notre DameDiego Krapf, Colorado State UniversitySteve Landry, Purdue UniversityMarco Lara Gracia, University of Southern IndianaJean-Claude Latombe, Stanford UniversitySeokcheon Lee, Purdue UniversityMark Lehto, Purdue UniversityHeejong Lim, LG Display, KoreaBakhtiar B. Litkouhi, GM R&D CenterYan Liu, Wright State UniversityJoachim Meyer, Ben Gurion University, IsraelGaines E. Miles, Purdue UniversityDaiki Min, Purdue UniversityJasmin Nof, University of MarylandMyounggyu D. Noh, Chungnam National Univer-sity, KoreaNusa Nusawardhana, Cummins, Inc.Tal Oron-Gilad, Ben Gurion University, IsraelNamkyu Park, Ohio UniversityJimena Pascual, Universidad Catolica de Valparaiso,ChileAnatol Pashkevich, Inst. Recherce en Communica-tion et Cybernetique, Nantes, FranceGordon Pennock, Purdue UniversityCarlos Eduardo Pereira, Federal University of RioGrande do Sul, BrazilGuillermo Pinochet, Kimberly Clark Co., ChileArik Ragowsky, Wayne State UniversityJackie Rees, Purdue UniversityTimothy I. Salsbury, Johnson Controls, Inc.Gavriel Salvendy, Tsinghua University, ChinaIvan G. Sears, GM Technical CenterRamesh Sharda, Oklahoma State UniversityMirosław J. Skibniewski, University of MarylandEugene Spafford, Purdue UniversityJose M. Tanchoco, Purdue UniversityMileta Tomovic, Purdue UniversityJocelyn Troccaz, IMAG Institut d’Ingénierie del’Information de Santé, FranceJay Tu, North Carolina State UniversityJuan Diego Velásquez, Purdue UniversitySandor M. Veres, University of Southampton, UKMatthew Verleger, Purdue UniversityFrancois Vernadat, Cour des Comptes Europeenne,LuxembourgBirgit Vogel-Heuser, University of Kassel, Germany

Edward Watson, Louisiana State UniversityJames W. Wells, GM R&D Manufacturing SystemsResearchChing-Yi Wu, Purdue UniversityMoshe Yerushalmy, MBE Simulations, IsraelYuehwern Yih, Purdue UniversitySang Won Yoon, Purdue UniversityYih-Choung Yu, Lafayette CollegeFiras Zahr, Cleveland Clinic Foundation

I wish to express my gratitude and appreciationalso to my resourceful coauthors, colleagues and part-ners from IFAC, IFPR, IFIP, IIE, NSF, TRB, RIA,INFORMS, ACM, IEEE-ICRA, ASME, and PRISMCenter at Purdue and PGRN, the PRISM Global Re-search Network, for all their support and cooperationleading to the successful creation of this Springer Hand-book.

Special thanks to my late parents, Dr. Jacob andYafa Berglas Nowomiast, whose brilliance, deep appre-ciation to scholarship, and inspiration keep enrichingme; to my wife Nava for her invaluable support and wiseadvice; to Moriah, Jasmin, Jonathan, Haim, Daniel, An-drew, Chin-Yin, Jose, Moshe, Ed, Ruth, Pornthep, JuanErnesto, Richard, Wootae, Agostino, Daniela, Tibor, Es-ther, Pat, David, Yan, Gad, Guillermo, Cristian, Carlos,Fay, Marco, Venkat, Masayuki, Hans, Laszlo, Georgi,Arturo, Yael, Dov, Florin, Herve, Gerard, Gavriel, Lily,Ted, Isaac, Dan, Veronica, Rolf, Yukio, Steve, Mark,Colin, Namkyu, Wil, Aditya, Ken, Hannah, Anne, Fang,Jim, Tom, Frederique, Alexandre, Coral, Tetsuo, andOren, and to Izzy Vardinon, for sharing with me theirthoughts, smiles, ideas and their automation exper-tise. Deep thanks also to Juan Diego Velásquez, toSpringer-Verlag’s Tom Ditzinger, Werner Skolaut andHeather King, and the le-tex team for their tremen-dous help and vision in completing this ambitiousendeavor.

The significant achievements of humans with au-tomation, in improving our life quality, innovating andsolving serious problems, and enriching our knowledge;inspiring people to enjoy automation and provoking usto learn how to invent even better and greater automa-tion solutions; the wonders and magic, opportunitiesand challenges with emerging and future automation –are all enormous. Indeed, automation is an essential andwonderful part of human civilization.

Shimon Yeshayahu Nof NowomiastWest Lafayette, Indiana

May 2009

XXI

Advisory Board

Hans-Jörg Bullinger

Fraunhofer-GesellschaftMunich, [email protected]

Hans-Jörg Bullinger is Prof. Dr.-Ing. habil. Prof. e.h. mult. Dr. h. c. mult., Presidentof the Fraunhofer-Gesellschaft, Corporate Management and Research. He obtainedMSc and PhD in Manufacturing at University of Stuttgart and joined the StuttgartFraunhofer-Institute of Production Technology and Automation, and became a full-time lecturer at the University of Stuttgart. He served there as Chairman of theUniversity, Head of the Institute for Human Factors and Technology Management(IAT) and of Fraunhofer-Institute for Industrial Engineering (IAO). In 2002 he becamethe President of the Fraunhofer-Gesellschaft. Among his honors are the Kienzle-Medal, the Gold Ring-of-Honour from the German Society of Engineers (VDI), theDistinguished Foreign Colleague Award from the Human Factor Society, the ArthurBurckhardt Award; Honorary Doctorates (DHC) from the Universities of Novi Sadand Timisoara. He has also received the Cross of Order of Merit and the Officer’sCross of Order of Merit of the Federal Republic of Germany, and the Great Cross ofthe Order of Merit from the Federal President of Germany. Dr. Bullinger is a memberof the German Chancellor’s "Council on Innovation and Economic Growth".

Rick J. Echevarria

Intel CorporationSales and Marketing GroupEnterprise Solution SalesSanta Clara, CA, [email protected]

Rick J. Echevarria is Vice President of the Sales and Marketing Group and GeneralManager of the Enterprise Solution Sales division at Intel Corporation. Beforeassuming his current position, Rick spent seven years leading Intel R©Solution Services,Intel’s worldwide professional services organization. Earlier, he spent two years asDirector of Product Marketing for Intel’s Communication Products Group and asDirector of Internet Marketing for the Enterprise Server Group. Before joining Intel in1994, Rick was a software developer for IBM Corporation in Austin, TX. Rick holdsa BS degree in industrial engineering from Purdue University and an MS degree incomputer systems management from Union College.

Yael Edan

Ben-Gurion University of the NegevDepartment of Industrial Engineeringand ManagementBeer Sheva, [email protected]

Yael Edan is a Professor in the Department of Industrial Engineeringand Management. She holds a BSc in Computer Engineering and MScin Agricultural Engineering, both from the Technion-Israel Institute ofTechnology, and a PhD in Engineering from Purdue University. Herresearch is robotic and sensor performance analysis, systems engineeringof robotic systems; sensor fusion, multi-robot and telerobotics controlmethodologies, and human-robot collaboration methods with majorcontributions in intelligent automation systems in agriculture.

Yukio Hasegawa

Waseda UniversitySystem Science InstituteTokyo, [email protected]

Yukio Hasegawa is Professor Emeritus of the System Science Instituteat Waseda University, Tokyo, Japan. He has been enjoying constructionrobotics research since 1983 as Director of Waseda ConstructionRobot Research Project (WASCOR) which has impacted automationin construction and in other fields of automation. He received theprestigious first Engelberger Award in 1977 from the American Robotssociation for his distinguished pioneering work in robotics and inRobot Ergonomics since the infancy of Japanese robotics. Amonghis numerous international contributions to robotics and automation,Professor Hasegawa assisted, as a visiting professor, to build theRobotics Institute at EPFL (Ecole Polytechnic Federal de Lausanne) inSwitzerland.

XXII Advisory Board

Steven W. Holland

General Motors R&DElectrical & Controls Integration LabWarren, MI, [email protected]

Steve Holland is a Research Fellow at General Motors R&D, where he pioneeredearly applications of robotics, vision and computer-based manufacturing. Later, heled GM’s robotics development group and then the robotics and welding supportoperations for GM North American plants. He served as Director of GM’s globalmanufacturing systems research. He is a Fellow of IEEE and received the Joseph F.Engelberger Award for his contributions to robotics. Mr. Holland has a bachelor’sdegree in Electrical Engineering from GMI and a Master in Computer Science fromStanford.

Clyde W. Holsapple

University of KentuckySchool of Management, Gatton College ofBusiness and EconomicsLexington, KY, [email protected]

Clyde Holsapple, Rosenthal Endowed Chair at the University of Kentucky, is Editor-in-Chief of the Journal of Organizational Computing and Electronic Commerce.His books include Foundations of Decision Support Systems, Decision SupportSystems – A Knowledge-based Approach, Handbook on Decision Support Systems,and Handbook on Knowledge Management. His research focuses on multiparticipantsystems, decision support systems, and knowledge management.

Rolf Isermann

Technische Universität DarmstadtInstitut für Automatisierungstechnik,Forschungsgruppe Regelungstechnikund ProzessautomatisierungDarmstadt, [email protected]

Rolf Isermann served as Professor for Control Systems and ProcessAutomation at the Institute of Automatic Control of Darmstadt Universityof Technology from 1977–2006. Since 2006 he has been ProfessorEmeritus and head of the Research Group for Control Systems andProcess Automation at the same institution. He has published bookson Modelling of Technical Processes, Process Identification, DigitalControl Systems, Adaptive Control Systems, Mechatronic Systems, FaultDiagnosis Systems, Engine Control and Vehicle Drive Dynamics Control.His current research concentrates on fault-tolerant systems, control ofcombustion engines and automobiles and mechatronic systems. RolfIsermann has held several chair positions in VDI/VDE and IFAC andorganized several national and international conferences.

Kazuyoshi Ishii

Kanazawa Institute of TechnologySocial and Industrial ManagementSystemsHakusan City, [email protected]

Kazuyoshi Ishii received his PhD in Industrial Engineering from WasedaUniversity. Dr. Ishii is a board member of the IFPR, APIEMS and theJapan Society of QC, and a fellow of the ISPIM. He is on the EditorialBoard of the International Journal of Production Economics, PPCand Intelligent Embedded Microsystems (IEMS). His interests includeproduction management, product innovation management, and businessmodels based on a comparative advantage.

Alberto Isidori

Univeristy of Rome “La Sapienza”Department of Informatics and SytematicsRome, [email protected]

Alberto Isidori is Professor of Automatic Control at the University of Rome since1975and, since 1989, also affiliated with Washington University in St. Louis. His researchinterests are primarily in analysis and design of nonlinear control systems. He isthe author of the book Nonlinear Control Systems and is the recipient of variousprestigious awards, which include the “Georgio Quazza Medal” from IFAC, the “BodeLecture Award” from IEEE, and various best paper awards from leading journals. Heis Fellow of IEEE and of IFAC. Currently he is President of IFAC.

Advisory Board XXIII

Stephen Kahne

Embry-Riddle UniversityPrescott, AZ, [email protected]

Stephen Kahne is Professor of Electrical Engineering at Embry-Riddle AeronauticalUniversity in Prescott, Arizona where he was formerly Chancellor. Prior to comingto Embry-Riddle in 1995, he had been Chief Scientist at the MITRE Corporation. Dr.Kahne earned his BS degree from Cornell University and the MS and PhD degreesfrom the University of Illinois. Following a decade at the University of Minnesota, hewas Professor at Case Western Reserve University, Professor and Dean of Engineeringat Polytechnic Institute of New York, and Professor and President of the OregonGraduate Center, Portland, Oregon. Dr. Kahne was a Division Director at the NationalScience Foundation in the early 1980s. He is a Fellow of the IEEE, AAAS, and IFAC.He was President of the IEEE Control Systems Society, a member of the IEEE Boardof Directors of the IEEE in the 1980s, and President of IFAC in the 1990s.

Aditya P. Mathur

Purdue UniversityDepartment of Computer ScienceWest Lafayette, IN, [email protected]

Aditya Mathur received his PhD in 1977 from BITS, Pilani, India inElectrical Engineering. Until 1985 he was on the faculty at BITS wherehe spearheaded the formation of the first degree granting ComputerScience department in India. In 1985 he moved briefly to Georgia Techbefore joining Purdue University in 1987. Aditya is currently a Professorand Head in the Department of Computer Science where his research isprimarily in the area of software engineering. He has made significantcontributions in software testing and software process control and hasauthored three textbooks in the areas of programming, microprocessorarchitecture, and software testing.

Hak-Kyung Sung

Samsung ElectronicsMechatronics & ManufacturingTechnology CenterSuwon, [email protected]

Hak-Kyung Sung received the Master degree in Mechanical Engineeringfrom Yonsei University in Korea and the PhD degree in ControlEngineering from Tokyo Institute of Technology in Japan, in 1985 and1992, respectively. He is currently the Vice President in the Mechtronics& Manufacturing Technology Center, Samsung Electronics. His interestsare in production engineering technology, such as robotics, control, andautomation.

Gavriel Salvendy

Department of Industrial EngineeringBeijing, P.R. China

Gavriel Salvendy is Chair Professor and Head of the Department of IndustrialEngineering at Tshinghua University, Beijing, Peoples Republic of China andProfessor emeritus of Industrial Engineering at Purdue University. His research dealswith the human aspects of design and operation of advanced computing systemsrequiring interaction with humans. In this area he has over 450 scientific publicationsand numerous books, including the Handbook of Industrial Engineering and Handbookof Human Factors and Ergonomics. He is a member of the USA National Academy ofEngineering and the recipient of the John Fritz Medal.

George Stephanopoulos

Massachusetts Institute of TechnologyCambridge, MA, [email protected]

George Stephanopoulos is the A.D. Little Professor of Chemical Engineering andDirector of LISPE (Laboratory for Intelligent Systems in Process Engineering) at MIT.He has also taught at the University of Minnesota (1974–1983) and National TechnicalUniversity of Athens, Greece (1980–1984). His research interests are in processoperations monitoring, analysis, diagnosis, control, and optimization. Recently he hasextended his research to multi-scale modeling and design of materials and nanoscalestructures with desired geometries. He is a member of the National Academy ofEngineering, USA.

XXIV

Kazuo Tanie (Δ)

Tokyo Metropolitan UniversityHuman Mechatronics System Course,Faculty of System DesignTokyo, Japan

Professor Kazuo Tanie (1946–2007), received BE, MS, Dr. eng. inMechanical Engineering from Waseda University. In 1971, he joinedthe Mechanical Engineering Laboratory (AIST-MITI), was Director ofthe Robotics Department and of the Intelligent Systems Institute ofthe National Institute of Advanced Industrial Science and Technology,Ministry of Economy, Trade, and Industry, where he led a large humanoidrobotics program.In addition, he held several academic positions in Japan, USA, and Italy.His research interests included tactile sensors, dexterous manipulation,force and compliance control for robotic arms and hands, virtual realityand telerobotics, human-robot coexisting systems, power assist systemsand humanoids. Professor Tanie was active in IEEE Robotics andAutomation Society, served as its president (2004–2005), and led severalinternational conferences. One of the prominent pioneers of roboticsin Japan, his leadership and skills led to major automation initiatives,including various walking robots, dexterous hands, seeing-eye robot(MEL Dog), rehabilitative and humanoid robotics, and network-basedhumanoid telerobotics.

Tibor Vámos

Hungarian Academy of SciencesComputer and Automation InstituteBudapest, [email protected]

Tibor Vámos graduated from the Budapest Technical University in 1949.Since 1986 he is Chairman of the Board, Computer and AutomationResearch Institute of the Hungarian Academy of Sciences, Budapest.He was President of IFAC 1981–1984 and is a Fellow of the IEEE,ECCAI, IFAC. Professor Vamos is Honorary President of the John v.Neumann Society and won the State Prize of Hungary in 1983, theChorafas Prize in 1994, the Széchenyi Prize of Hungary in 2008 and waselected “The educational scientist of the year” in 2005. His main fieldsof interest cover large-scale systems in process control, robot vision,pattern recognition, knowledge-based systems, and epistemic problems.He is author and co-author of several books and about 160 papers.

François B. Vernadat

Université Paul Verlaine MetzLaboratoire de Génie Industriel etProductique de Metz (LGIPM)Metz, [email protected]

François Vernadat received the PhD in Electrical Engineering and Automatic Controlfrom University of Clermont, France, in 1981. He has been a research officer at theNational Research Council of Canada in the 1980s and at the Institut National deRecherche en Informatique et Automatique in France in the 1990s. He joined theUniversity of Metz in 1995 as a full professor and founded the LGIPM researchlaboratory. His research interests include enterprise modeling, enterprise architectures,enterprise integration and interoperability. He is a member of IEEE and ACM andhas been vice-chairman of several technical committees of IFAC. He has over 250scientific papers in international journals and conferences.

Birgit Vogel-Heuser

University of KasselFaculty of Electrical Engineering/Computer Science, Department Chair ofEmbedded SystemsKassel, [email protected]

Birgit Vogel-Heuser graduated in Electrical Engineering and obtained her PhDin Mechanical Engineering from the RWTH Aachen in 1991. She worked nearlyten years in industrial automation for machine and plant manufacturing industry.After holding the Chair of Automation at the University of Hagen and the Chair ofAutomation/Process Control Engineering she is now head of the Chair of EmbeddedSystems at the University of Kassel. Her research work is focussed on improvement ofefficiency in automation engineering for hybrid process and heterogeneous distributedembedded systems.

Advisory Board XXV

Andrew B. Whinston

The University of Texas at AustinMcCombs School of Business, Center forResearch in Electronic CommerceAustin, TX, [email protected]

Andrew Whinston is Hugh Cullen Chair Professor in the IROM depart-ment at the McCombs School of Business at the University of Texas atAustin. He is also the Director at the Center for Research in ElectronicCommerce. His recent papers have appeared in Information SystemsResearch, Marketing Science, Management Science and the Journal ofEconomic Theory. In total he has published over 300 papers in the majoreconomic and management journals and has authored 27 books. In 2005he received the Leo Award from the Association for Information Systemsfor his long term research contribution to the information system field.

XXVII

List of Authors

Nicoletta Adamo-VillaniPurdue UniversityComputer Graphics Technology401 N. Grant StreetWest Lafayette, IN 47907, USAe-mail: [email protected]

Panos J. AntsaklisUniversity of Notre DameDepartment of Electrical Engineering205A CushingNotre Dame, IN 46556, USAe-mail: [email protected]

Cecilia R. AragonLawrence Berkeley National LaboratoryComputational Research DivisionOne Cyclotron Road, MS 50B-2239Berkeley, CA 94720, USAe-mail: [email protected]

Neda BagheriMassachusetts Institute of Technology (MIT)Department of Biological Engineering77 Massachusetts Ave. 16–463Cambridge, MA 02139, USAe-mail: [email protected]

Greg BaidenLaurentian UniversitySchool of EngineeringSudbury, ON P3E 2C6, Canadae-mail: [email protected]

Parasuram BalasubramanianTheme Work Analytics Pvt. Ltd.Gurukrupa, 508, 47th Cross, JayanagarBangalore, 560041, Indiae-mail: [email protected]

P. Pat BanerjeeUniversity of IllinoisDepartment of Mechanicaland Industrial Engineering3029 Eng. Research Facility, 842 W. TaylorChicago, IL 60607-7022, USAe-mail: [email protected]

Ruth BarsBudapest University of Technologyand EconomicsDepartment of Automationand Applied InformaticsGoldmann Gy. tér 31111 Budapest, Hungarye-mail: [email protected]

Luis BasañezTechnical University of Catalonia (UPC)Institute of Industrial and Control Engineering (IOC)Av. Diagonal 647 planta 11Barcelona 08028, Spaine-mail: [email protected]

Rashid BashirUniversity of Illinois at Urbana-ChampaignDepartment of Electrical and ComputerEngineering and Bioengineering208 North Wright StreetUrbana, IL 61801, USAe-mail: [email protected]

Wilhelm BauerFraunhofer-Institute for Industrial Engineering IAOCorporate Development and Work DesignNobelstr. 1270566 Stuttgart, Germanye-mail: [email protected]

Gary R. BertolinePurdue UniversityComputer Graphics Technology401 N. Grant St.West Lafayette, IN 47907, USAe-mail: [email protected]

Christopher BissellThe Open UniversityDepartment of Communication and SystemsWalton HallMilton Keynes, MK7 6AA, UKe-mail: [email protected]

XXVIII List of Authors

Richard BossiThe Boeing CompanyPO Box 363Renton, WA 98057, USAe-mail: [email protected]

Martin BraunFraunhofer-Institute for Industrial Engineering IAOHuman Factors EngineeringNobelstraße 1270566 Stuttgart, Germanye-mail: [email protected]

Sylvain BruniAptima, Inc.12 Gill St, Suite #1400Woburn, MA 01801, USAe-mail: [email protected]

James ButtrickThe Boeing CompanyBCA – Materials & Process TechnologyPO Box #3707Seattle, WA 98124, USAe-mail: [email protected]

Darwin G. CaldwellIstituto Italiano Di TecnologiaDepartment of Advanced RoboticsVia Morego 3016163 Genova, Italye-mail: [email protected]

Brian CarlislePrecise Automation5665 Oak Knoll LaneAuburn, CA 95602, USAe-mail: [email protected]

Dan L. CarnahanRockwell AutomationDepartment of Advanced Technology1 Allen Bradley DriveMayfield Heights, OH 44124, USAe-mail: [email protected]

Ángel R. CastañoUniversidad de SevillaDepartamento de Ingeniería de Sistemas yAutomáticaCamino de los DescubrimientosSevilla 41092, Spaine-mail: [email protected]

Daniel Castro-LacoutureGeorgia Institute of TechnologyDepartment of Building Construction280 Ferst DriveAtlanta, GA 30332-0680, USAe-mail: [email protected]

Enrique Castro-LeonJF5-103, Intel Corporation2111 NE 25th AvenueHillsboro, OR 97024, USAe-mail: [email protected]

José A. CeroniPontifica Universidad Católica de ValparaísoSchool of Industrial Engineering2241 Brazil AvenueValparaiso, Chilee-mail: [email protected]

Deming ChenUniversity of Illinois, Urbana-ChampaignElectrical and Computer Engineering (ECE)1308 W Main St.Urbana, IL 61801, USAe-mail: [email protected]

Heping ChenABB Inc.US Corporate Research Center2000 Day Hill RoadWindsor, CT 06095, USAe-mail: [email protected]

Xin W. ChenPurdue UniversityPRISM Center and School of Industrial Engineering315 N. Grant StreetWest Lafayette, IN 47907, USAe-mail: [email protected]

List of Authors XXIX

Benny C.F. CheungThe Hong Kong Polytechnic UniversityDepartment of Industrial and Systems EngineeringHung HomKowloon, Hong Konge-mail: [email protected]

Jaewoo ChungKyungpook National UniversitySchool of Business Administration1370 Sankyuk-dong Buk-guDaegu, 702-701, South Koreae-mail: [email protected]

Rodrigo J. Cruz Di PalmaKimberly Clark, Latin American OperationsSan Juan, 00919-1859, Puerto Ricoe-mail: [email protected]

Mary L. CummingsMassachusetts Institute of TechnologyDepartment of Aeronautics and Astronautics77 Massachusetts Ave.Cambridge, MA 02139, USAe-mail: [email protected]

Christian DanneggerKandelweg 1478628 Rottweil, Germanye-mail: [email protected]

Steve DavisIstituto Italiano Di TecnologiaDepartment of Advanced RoboticsVia Morego 3016163 Genova, Italye-mail: [email protected]

Xavier DelormeEcole Nationale Supérieure des Minesde Saint-EtienneCentre Genie Industriel et Informatique (G2I)158 cours Fauriel42023 Saint-Etienne, Francee-mail: [email protected]

Alexandre DolguiEcole Nationale Supérieure des Minesde Saint-EtienneDepartment of Industrial Engineeringand Computer Science158, cours Fauriel42023 Saint-Etienne, Francee-mail: [email protected]

Alkan DonmezNational Institute of Standards and TechnologyManufacturing Engineering Laboratory100 Bureau DriveGaithersburg, MD 20899, USAe-mail: [email protected]

Francis J. Doyle IIIUniversity of CaliforniaDepartment of Chemical EngineeringSanta Barbara, CA 93106-5080, USAe-mail: [email protected]

Yael EdanBen-Gurion University of the NegevDepartment of Industrial Engineeringand ManagementBeer Sheva 84105, Israele-mail: [email protected]

Thomas F. EdgarUniversity of TexasDepartment of Chemical Engineering1 University StationAustin, TX 78712, USAe-mail: [email protected]

Norbert ElkmannFraunhofer IFFDepartment of Robotic SystemsSandtorstr. 2239106 Magdeburg, Germanye-mail: [email protected]

Heinz-Hermann Erbe (Δ)Technische Universität BerlinCenter for Human–Machine SystemsFranklinstrasse 28/2910587 Berlin, Germany

XXX List of Authors

Mohamed EssafiEcole des Mines de Saint-EtienneDepartment Centre for Industrial Engineeringand Computer ScienceCours FaurielSaint-Etienne, Francee-mail: [email protected]

Florin-Gheorghe FilipThe Romanian AcademyCalea Victoriei 125Bucharest, 010071, Romaniae-mail: [email protected]

Markus FritzscheFraunhofer IFFDepartment of Robotic SystemsSandtorstr. 2239106 Magdeburg, Germanye-mail: [email protected]

Susumu FujiiSophia UniversityGraduate School of Science and Technology7-1, Kioicho, Chiyoda102-8554 Tokyo, Japane-mail: [email protected]

Christopher GanzABB Corporate ResearchSegelhofstr. 15405 Baden, Switzerlande-mail: [email protected]

Mitsuo GenWaseda UniversityGraduate School of Information,Production and Systems2-7 Hibikino, Wakamatsu-ku808-0135 Kitakyushu, Japane-mail: [email protected]

Birgit GrafFraunhofer IPADepartment of Robot SystemsNobelstr. 1270569 Stuttgart, Germanye-mail: [email protected]

John O. GrayIstituto Italiano Di TecnologiaDepartment of Advanced RoboticsVia Morego 3016163 Genova, Italye-mail: [email protected]

Rudiyanto GunawanNational University of SingaporeDepartment of Chemicaland Biomolecular Engineering4 Engineering Drive 4 Blk E5 #02-16Singapore, 117576e-mail: [email protected]

Juergen HahnTexas A&M UniversityArtie McFerrin Dept. of Chemical EngineeringCollege Station, TX 77843-3122, USAe-mail: [email protected]

Kenwood H. HallRockwell AutomationDepartment of Advanced Technology1 Allen Bradley DriveMayfield Heights, OH 44124, USAe-mail: [email protected]

Shufeng HanJohn DeereIntelligent Vehicle Systems4140 114th StreetUrbandale, IA 50322, USAe-mail: [email protected]

Nathan HartmanPurdue UniversityComputer Graphics Technology401 North Grant St.West Lafayette, IN 47906, USAe-mail: [email protected]

Yukio HasegawaWaseda UniversitySystem Science InstituteTokyo, Japane-mail: [email protected]

List of Authors XXXI

Jackson HeIntel CorporationDigital Enterprise Group2111 NE 25th AveHillsboro, OR 97124, USAe-mail: [email protected]

Jeno HetthéssyBudapest University of Technology and EconomicsDepartment of Automationand Applied InformaticsGoldmann Gy. Tér 31111 Budapest, Hungarye-mail: [email protected]

Karyn HolmesChevron Corp.100 Northpark Blvd.Covington, LA 70433, USAe-mail: [email protected]

Clyde W. HolsappleUniversity of KentuckySchool of Management,Gatton College of Business and EconomicsLexington, KY 40506-0034, USAe-mail: [email protected]

Petr HoracekCzech Technical University in PragueFaculty of Electrical EngineeringTechnicka 2Prague, 16627, Czech Republice-mail: [email protected]

William J. HorreyLiberty Mutual Research Institute for SafetyCenter for Behavioral Sciences71 Frankland RoadHopkinton, MA 01748, USAe-mail: [email protected]

Justus HortigFraunhofer IFFDepartment of Robotic SystemsSandtorstr. 2239106 Magdeburg, Germanye-mail: [email protected]

Chin-Yin HuangTunghai UniversityIndustrial Engineering and Enterprise InformationTaichung, 407, Taiwane-mail: [email protected]

Yoshiharu InabaFanuc Ltd.Oshino-mura401-0597 Yamanashi, Japane-mail: [email protected]

Samir M. IqbalUniversity of Texas at ArlingtonDepartment of Electrical Engineering500 S. Cooper St.Arlington, TX 76019, USAe-mail: [email protected]

Rolf IsermannTechnische Universität DarmstadtInstitut für Automatisierungstechnik,Forschungsgruppe Regelungstechnikund ProzessautomatisierungLandgraf-Georg-Str. 464283 Darmstadt, Germanye-mail: [email protected]

Kazuyoshi IshiiKanazawa Institute of TechnologySocial and Industrial Management SystemsYatsukaho 3-1Hakusan City, Japane-mail: [email protected]

Alberto IsidoriUniversity of Rome “La Sapienza”Department of Informatics and SytematicsVia Ariosto 2500185 Rome, Italye-mail: [email protected]

Nick A. IvanescuUniversity Politechnica of BucharestControl and ComputersSpl. Independentei 313Bucharest, 060032, Romaniae-mail: [email protected]

XXXII List of Authors

Sirkka-Liisa Jämsä-JounelaHelsinki University of TechnologyDepartment of Biotechnologyand Chemical TechnologyEspoo 02150, Finlande-mail: [email protected]

Bijay K. JayaswalAgilenty Consulting Group3541 43rd Ave. SMinneapolis, MN 55406, USAe-mail: [email protected]

Wootae JeongKorea Railroad Research Institute360-1 Woram-dongUiwang 437-757, Koreae-mail: [email protected]

Timothy L. JohnsonGeneral ElectricGlobal Research786 Avon Crest Blvd.Niskayuna, NY 12309, USAe-mail: [email protected]

Hemant JoshiResearch, Acxiom Corp.CWY2002-7 301 E. Dave Ward DriveConway, AR 72032-7114, USAe-mail: [email protected]

Michael KaplanEx Libris Ltd.313 Washington StreetNewton, MA 02458, USAe-mail: [email protected]

Dimitris KiritsisDepartment STI-IGM-LICPEPFL, ME A1 396, Station 91015 Lausanne, Switzerlande-mail: [email protected]

Hoo Sang KoPurdue UniversityPRISM Center and School of Industrial Engineering315 N Grant St.West Lafayette, IN 47907, USAe-mail: [email protected]

Naoshi KondoKyoto UniversityDivision of Environmental Science and Technology,Graduate School of AgricultureKitashirakawa-Oiwakecho606-8502 Kyoto, Japane-mail: [email protected]

Peter KopacekVienna University of TechnologyIntelligent Handling and Robotics – IHRTFavoritenstrasse 9-11/E 3251040 Vienna, Austriae-mail: [email protected]

Nicholas KottenstetteVanderbilt UniversityInstitute for Software Integrated SystemsPO Box 1829Nashville, TN 37203, USAe-mail: [email protected]

Eric KweiUniversity of California, Santa BarbaraDepartment of Chemical EngineeringSanta Barbara, CA 93106, USAe-mail: [email protected]

Siu K. KwokThe Hong Kong Polytechnic UniversityIndustrial and Systems EngineeringYuk Choi RoadKowloon, Hong Konge-mail: [email protected]

King Wai Chiu LaiMichigan State UniversityElectrical and Computer Engineering2120 Engineering BuildingEast Lansing, MI 48824, USAe-mail: [email protected]

Dean F. LamianoThe MITRE CorporationDepartment of Communicationsand Information Systems7515 Colshire DriveMcLean, VA 22102, USAe-mail: [email protected]

List of Authors XXXIII

Steven J. LandryPurdue UniversitySchool of Industrial Engineering315 N. Grant St.West Lafayette, IN 47906, USAe-mail: [email protected]

John D. LeeUniversity of IowaDepartment Mechanical and IndustrialEngineering, Human Factors Research NationalAdvanced Driving SimulatorIowa City, IA 52242, USAe-mail: [email protected]

Tae-Eog LeeKAISTDepartment of Industrial and Systems Engineering373-1 Guseong-dong, Yuseong-guDaejeon 305-701, Koreae-mail: [email protected]

Wing B. LeeThe Hong Kong Polytechnic UniversityIndustrial and Systems EngineeringYuk Choi RoadKowloon, Hong Konge-mail: [email protected]

Mark R. LehtoPurdue UniversitySchool of Industrial Engineering315 North Grant StreetWest Lafayette, IN 47907-2023, USAe-mail: [email protected]

Kauko LeiviskäUniversity of OuluControl Engineering LaboratoryOulun Yliopisto 90014, Finlande-mail: [email protected]

Mary F. LeschLiberty Mutual Research Institute for SafetyCenter for Behavioral Sciences71 Frankland RoadHopkinton, MA 01748, USAe-mail: [email protected]

Jianming LianPurdue UniversitySchool of Electrical and Computer Engineering465 Northwestern AvenueWest Lafayette, IN 47907-2035, USAe-mail: [email protected]

Lin LinWaseda UniversityInformation, Production & Systems ResearchCenter2-7 Hibikino, Wakamatsu-ku808-0135 Kitakyushu, Japane-mail: [email protected]

Laurent LinxePeugeot SAHagondang, Francee-mail: [email protected]

T. Joseph LuiWhirlpool CorporationGlobal Product Organization750 Monte RoadBenton Harbor, MI 49022, USAe-mail: [email protected]

Wolfgang MannProfactor Research and Solutions GmbHProcess Design and Automation,Forschungszentrum2444 Seibersdorf, Austriae-mail: [email protected]

Sebastian V. MassiminiThe MITRE Corporation7515 Colshire DriveMcLean, VA 22101, USAe-mail: [email protected]

Francisco P. MaturanaUniversity/Company Rockwell AutomationDepartment Advanced Technology1 Allen Bradley DriveMayfield Heights, OH 44124, USAe-mail: [email protected]

XXXIV List of Authors

Henry MirskyUniversity of California, Santa BarbaraDepartment of Chemical EngineeringSanta Barbara, CA 93106, USAe-mail: [email protected]

Sudip MisraIndian Institute of TechnologySchool of Information TechnologyKharagpur, 721302, Indiae-mail: [email protected]

Satish C. MohlejiCenter for Advanced Aviation SystemDevelopment (CAASD)The MITRE Corporation7515 Colshire Drive McLean, VA 22102-7508, USAMcLean, VA 22102-7508, USAe-mail: [email protected]

Gérard MorelCentre de Recherche en Automatique Nancy (CRAN)54506 Vandoeuvre, Francee-mail: [email protected]

René J. Moreno MaseyUniversity of SheffieldAutomatic Control and Systems EngineeringMappin StreetSheffield, S1 3JD, UKe-mail: [email protected]

Clayton MunkBoeing Commercial AirplanesMaterial & Process TechnologySeattle, WA 98124-3307, USAe-mail: [email protected]

Yuko J. NakanishiNakanishi Research and Consulting, LLC93-40 Queens Blvd. 6A, Rego ParkNew York, NY 11374, USAe-mail: [email protected]

Dana S. NauUniversity of MarylandDepartment of Computer ScienceA.V. Williams Bldg.College Park, MD 20742, USAe-mail: [email protected]

Peter NeumannInstitut für Automation und KommunikationWerner-Heisenberg-Straße 139106 Magdeburg, Germanye-mail: [email protected]

Shimon Y. NofPurdue UniversityPRISM Center and School of Industrial EngineeringWest Lafayette, IN 47907, USAe-mail: [email protected]

Anibal OlleroUniversidad de SevillaDepartamento de Ingeniería de Sistemas yAutomáticaCamino de los DescubrimientosSevilla 41092, Spaine-mail: [email protected]

John OommenCarleton UniversitySchool of Computer Science1125 Colonel Bye DriveOttawa, K1S5B6, Canadae-mail: [email protected]

Robert S. ParkerUniversity of PittsburghDepartment of Chemicaland Petroleum Engineering1249 Benedum HallPittsburgh, PA 15261, USAe-mail: [email protected]

Alessandro PasettiP&P Software GmbHHigh Tech Center 18274 Tägerwilen, Switzerlande-mail: [email protected]

Anatol PashkevichEcole des Mines de NantesDepartment of Automatic Controland Production Systems4 rue Alfred-Kastler44307 Nantes, Francee-mail: [email protected]

List of Authors XXXV

Bozenna Pasik-DuncanUniversity of KansasDepartment of Mathematics1460 Jayhawk BoulevardLawrence, KS 66045, USAe-mail: [email protected]

Peter C. PattonOklahoma Christian UniversitySchool of EngineeringPO Box 11000Oklahoma City, OK 73136, USAe-mail: [email protected]

Richard D. PattonLawson Software380 Saint Peter St.St. Paul, MN 55102-1313, USAe-mail: [email protected]

Carlos E. PereiraFederal University of Rio Grande do Sul (UFRGS)Department Electrical EngineeringAv Osvaldo Aranha 103Porto Alegre RS, 90035 190, Brazile-mail: [email protected]

Jean-François PétinCentre de Recherche en Automatiquede Nancy (CRAN)54506 Vandoeuvre, Francee-mail: [email protected]

Chandler A. PhillipsWright State UniversityDepartment of Biomedical,Industrial and Human Factors Engineering3640 Colonel Glen HighwayDayton, OH 45435-0001, USAe-mail: [email protected]

Friedrich PinnekampABB Asea Brown Boveri Ltd.Corporate StrategyAffolternstrasse 448050 Zurich, Switzerlande-mail: [email protected]

Daniel J. PowerUniversity of Northern IowaCollege of Business AdministrationCedar Falls, IA 50614-0125, USAe-mail: [email protected]

Damien PoyardPCI/SCEMM42030 Saint-Etienne, Francee-mail: [email protected]

Srinivasan RamaswamyUniversity of Arkansas at Little RockDepartment of Computer Science2801 South University AveLittle Rock, AR 72204, USAe-mail: [email protected]

Piercarlo RavazziPolitecnico di TorinoDepartment Manufacturing Systemsand EconomicsC.so Duca degli Abruzzi 2410129 Torino, Italye-mail: [email protected]

Daniel W. ReppergerWright Patterson Air Force BaseAir Force Research Laboratory711 Human Performance WingDayton, OH 45433-7022, USAe-mail: [email protected]

William RichmondWestern Carolina UniversityAccounting, Finance, Information Systemsand EconomicsCullowhee, NC 28723, USAe-mail: [email protected]

Dieter RombachUniversity of KaiserslauternDepartment of Computer Science, FraunhoferInstitute for Experimental Software Engineering67663 Kaiserslautern, Germanye-mail: [email protected]

XXXVI List of Authors

Shinsuke SakakibaraFanuc Ltd.Oshino-mura401-0597 Yamanashi, Japane-mail: [email protected]

Timothy I. SalsburyJohnson Controls, Inc.Building Efficiency Research Group507 E Michigan StreetMilwaukee, WI 53202, USAe-mail: [email protected]

Branko SarhThe Boeing Company – Phantom Works5301 Bolsa AvenueHuntington Beach, CA 92647, USAe-mail: [email protected]

Sharath SasidharanMarshall UniversityDepartment of Management and MarketingOne John Marshall DriveHuntington, WV 25755, USAe-mail: [email protected]

Brandon SavageGE Healthcare ITPollards Wood, Nightingales LaneChalfont St Giles, HP8 4SP, UKe-mail: [email protected]

Manuel Scavarda BasaldúaKimberly ClarkAvda. del Libertador St. 498 Capital Federal(C1001ABR)Buenos Aires, Argentinae-mail: [email protected]

Walter Schaufelberger (Δ)ETH ZurichInstitute of Automatic ControlPhysikstrasse 38092 Zurich, Switzerland

Bobbie D. SeppeltThe University of IowaMechanical and Industrial Engineering3131 Seamans CentreIowa City, IA 52242, USAe-mail: [email protected]

Ramesh ShardaOklahoma State UniversitySpears School of BusinessStillwater, OK 74078, USAe-mail: [email protected]

Keiichi ShiraseKobe UniversityDepartment of Mechanical Engineering1-1, Rokko-dai, Nada657-8501 Kobe, Japane-mail: [email protected]

Jason E. ShoemakerUniversity of CaliforniaDepartment of Chemical EngineeringSanta Barbara, CA 93106-5080, USAe-mail: [email protected]

Moshe ShohamTechnion – Israel Institute of TechnologyDepartment of Mechanical EngineeringTechnion CityHaifa 32000, Israele-mail: [email protected]

Marwan A. SimaanUniversity of Central FloridaSchool of Electrical Engineeringand Computer ScienceOrlando, FL 32816, USAe-mail: [email protected]

Johannes A. SoonsNational Institute of Standards and TechnologyManufacturing Engineering Laboratory100 Bureau DriveGaithersburg, MD 20899-8223, USAe-mail: [email protected]

List of Authors XXXVII

Dieter SpathFraunhofer-Institute for IndustrialEngineering IAONobelstraße 1270566 Stuttgart, Germanye-mail: [email protected]

Harald StaabABB AG, Corporate Research Center GermanyRobotics and ManufacturingWallstadter Str. 5968526 Ladenburg, Germanye-mail: [email protected]

Petra SteffensFraunhofer Institute for ExperimentalSoftware EngineeringDepartment Business Area e-GovernmentFraunhofer-Platz 167663 Kaiserslautern, Germanye-mail: [email protected]

Jörg StellingETH ZurichDepartment of Biosystems Scienceand EngineeringMattenstr. 264058 Basel, Switzerlande-mail: [email protected]

Raúl SuárezTechnical University of Catalonia (UPC)Institute of Industrial and Control Engineering (IOC)Av. Diagonal 647 planta 11Barcelona 08028, Spaine-mail: [email protected]

Kinnya TamakiAoyama Gakuin UniversitySchool of Business AdministrationShibuya 4-4-25, Shibuya-ku153-8366 Tokyo, Japane-mail: [email protected]

Jose M.A. TanchocoPurdue UniversitySchool of Industrial Engineering315 North Grant StreetWest Lafayette, IN 47907-2023, USAe-mail: [email protected]

Stephanie R. TaylorDepartment of Computer ScienceColby College, 5855 Mayflower Hill Dr.Waterville, ME 04901, USAe-mail: [email protected]

Peter TerwieschABB Ltd.8050 Zurich, Switzerlande-mail: [email protected]

Jocelyne TroccazCNRS – Grenoble UniversityComputer Aided Medical Intervention – TIMClaboratory, IN3S – School of Medicine – Domainede la Merci38700 La Tronche, Francee-mail: [email protected]

Edward TunstelJohns Hopkins UniversityApplied Physics Laboratory,Space Department11100 Johns Hopkins RoadLaurel, MD 20723, USAe-mail: [email protected]

Tibor VámosHungarian Academy of SciencesComputer and Automation Institute11 Lagymanyosi1111 Budapest, Hungarye-mail: [email protected]

István VajkBudapest University of Technology and EconomicsDepartment of Automationand Applied Informatics1521 Budapest, Hungarye-mail: [email protected]

Gyula VastagCorvinus University of BudapestInstitute of Information Technology,Department of Computer Science13-15 Fõvám tér (Sóház)1093 Budapest, Hungarye-mail: [email protected]

XXXVIII List of Authors

Juan D. VelásquezPurdue UniversityPRISM Center and School of Industrial Engineering315 N. Grant StreetWest Lafayette, IN 47907, USAe-mail: [email protected]

Matthew VerlegerPurdue UniversityEngineering Education701 West Stadium AvenueWest Lafayette, IN 47907-2045, USAe-mail: [email protected]

François B. VernadatUniversité Paul Verlaine MetzLaboratoire de Génie Industrielet Productique de Metz (LGIPM)Metz, Francee-mail: [email protected]

Agostino VillaPolitecnico di TorinoDepartment Manufacturing Systemsand EconomicsC. so Duca degli Abruzzi, 2410129 Torino, Italye-mail: [email protected]

Birgit Vogel-HeuserUniversity of KasselFaculty of Electrical Engineering/Computer Science,Department Chair of Embedded SystemsWilhelmshöher Allee 7334121 Kassel, Germanye-mail: [email protected]

Edward F. WatsonLouisiana State UniversityInformation Systems and Decision Sciences3183 Patrick F. Taylor HallBaton Rouge, LA 70803, USAe-mail: [email protected]

Theodore J. WilliamsPurdue UniversityCollege of EngineeringWest Lafayette, IN 47907, USAe-mail: [email protected]

Alon WolfTechnion Israel Institute of TechnologyFaculty of Mechanical EngineeringHaifa 32000, Israele-mail: [email protected]

Ning XiMichigan State UniversityElectrical and Computer Engineering2120 Engineering BuildingEast Lansing, MI 48824, USAe-mail: [email protected]

Moshe YerushalmyMBE Simulations Ltd.10, Hamefalsim St.Petach Tikva 49002, Israele-mail: [email protected]

Sang Won YoonPurdue UniversityPRISM Center and School of Industrial Engineering315 N. Grant StreetWest Lafayette, IN 47907-2023, USAe-mail: [email protected]

Stanislaw H. ZakPurdue UniversitySchool of Electrical and Computer Engineering465 Northwestern AvenueWest Lafayette, IN 47907-2035, USAe-mail: [email protected]

XXXIX

Contents

List of Abbreviations ................................................................................. LXI

Part A Development and Impacts of Automation

1 Advances in Robotics and Automation: Historical PerspectivesYukio Hasegawa ...................................................................................... 3References .............................................................................................. 4

2 Advances in Industrial Automation: Historical PerspectivesTheodore J. Williams ................................................................................ 5References .............................................................................................. 11

3 Automation: What It Means to Us Around the WorldShimon Y. Nof.......................................................................................... 133.1 The Meaning of Automation ........................................................... 143.2 Brief History of Automation ........................................................... 263.3 Automation Cases .......................................................................... 283.4 Flexibility, Degrees, and Levels of Automation ................................ 393.5 Worldwide Surveys: What Does Automation Mean to People? .......... 433.6 Emerging Trends ........................................................................... 473.7 Conclusion .................................................................................... 513.8 Further Reading ............................................................................ 51References .............................................................................................. 52

4 A History of Automatic ControlChristopher Bissell ................................................................................... 534.1 Antiquity and the Early Modern Period ........................................... 534.2 Stability Analysis in the 19th Century .............................................. 564.3 Ship, Aircraft and Industrial Control Before WWII ............................ 574.4 Electronics, Feedback and Mathematical Analysis ........................... 594.5 WWII and Classical Control: Infrastructure ....................................... 604.6 WWII and Classical Control: Theory ................................................. 624.7 The Emergence of Modern Control Theory ....................................... 634.8 The Digital Computer ..................................................................... 644.9 The Socio-Technological Context Since 1945 .................................... 654.10 Conclusion and Emerging Trends .................................................... 664.11 Further Reading ............................................................................ 67References .............................................................................................. 67

XL Contents

5 Social, Organizational, and Individual Impacts of AutomationTibor Vámos ............................................................................................ 715.1 Scope of Discussion:

Long and Short Range of Man–Machine Systems ............................. 725.2 Short History ................................................................................. 745.3 Channels of Human Impact ............................................................ 755.4 Change in Human Values ............................................................... 765.5 Social Stratification, Increased Gaps ............................................... 785.6 Production, Economy Structures, and Adaptation............................ 815.7 Education ..................................................................................... 865.8 Cultural Aspects ............................................................................. 885.9 Legal Aspects, Ethics, Standards, and Patents ................................. 885.10 Different Media and Applications of Information Automation .......... 905.11 Social Philosophy and Globalization ............................................... 915.12 Further Reading ............................................................................ 91References .............................................................................................. 92

6 Economic Aspects of AutomationPiercarlo Ravazzi, Agostino Villa............................................................... 936.1 Basic Concepts in Evaluating Automation Effects ............................. 966.2 The Evaluation Model .................................................................... 976.3 Effects of Automation in the Enterprise .......................................... 986.4 Mid-Term Effects of Automation..................................................... 1026.5 Final Comments ............................................................................ 1116.6 Capital/Labor and Capital/Product Ratios

in the Most Important Italian Industrial Sectors .............................. 113References .............................................................................................. 115

7 Impacts of Automation on PrecisionAlkan Donmez, Johannes A. Soons............................................................ 1177.1 What Is Precision? ......................................................................... 1177.2 Precision as an Enabler of Automation ........................................... 1187.3 Automation as an Enabler of Precision ........................................... 1197.4 Cost and Benefits of Precision ........................................................ 1197.5 Measures of Precision .................................................................... 1207.6 Factors That Affect Precision ........................................................... 1207.7 Specific Examples and Applications in Discrete Part Manufacturing .. 1217.8 Conclusions and Future Trends ....................................................... 124References .............................................................................................. 125

8 Trends in AutomationPeter Terwiesch, Christopher Ganz ............................................................ 1278.1 Environment ................................................................................. 1288.2 Current Trends............................................................................... 1308.3 Outlook ......................................................................................... 1408.4 Summary ...................................................................................... 142References .............................................................................................. 142

Contents XLI

Part B Automation Theory and Scientific Foundations

9 Control Theory for Automation: FundamentalsAlberto Isidori.......................................................................................... 1479.1 Autonomous Dynamical Systems .................................................... 1489.2 Stability and Related Concepts ....................................................... 1509.3 Asymptotic Behavior ...................................................................... 1539.4 Dynamical Systems with Inputs ...................................................... 1549.5 Feedback Stabilization of Linear Systems ........................................ 1609.6 Feedback Stabilization of Nonlinear Systems .................................. 1639.7 Tracking and Regulation ................................................................ 1699.8 Conclusion .................................................................................... 172References .............................................................................................. 172

10 Control Theory for Automation – Advanced TechniquesIstván Vajk, Jeno Hetthéssy, Ruth Bars ...................................................... 17310.1 MIMO Feedback Systems ................................................................ 17310.2 All Stabilizing Controllers ............................................................... 17610.3 Control Performances .................................................................... 18110.4 H2 Optimal Control......................................................................... 18310.5 H∞ Optimal Control ....................................................................... 18510.6 Robust Stability and Performance .................................................. 18610.7 General Optimal Control Theory ...................................................... 18910.8 Model-Based Predictive Control ..................................................... 19110.9 Control of Nonlinear Systems ......................................................... 19310.10 Summary ...................................................................................... 196References .............................................................................................. 197

11 Control of Uncertain SystemsJianming Lian, Stanislaw H. Zak .............................................................. 19911.1 Background and Overview ............................................................. 20011.2 Plant Model and Notation .............................................................. 20311.3 Variable-Structure Neural Component ............................................ 20311.4 State Feedback Controller Development .......................................... 20911.5 Output Feedback Controller Construction ........................................ 21111.6 Examples ...................................................................................... 21311.7 Summary ...................................................................................... 216References .............................................................................................. 217

12 Cybernetics and Learning AutomataJohn Oommen, Sudip Misra ...................................................................... 22112.1 Basics ........................................................................................... 22112.2 A Learning Automaton ................................................................... 22312.3 Environment ................................................................................. 22312.4 Classification of Learning Automata................................................ 22412.5 Estimator Algorithms ..................................................................... 22812.6 Experiments and Application Examples .......................................... 232

XLII Contents

12.7 Emerging Trends and Open Challenges ........................................... 23312.8 Conclusions ................................................................................... 234References .............................................................................................. 234

13 Communication in Automation, Including Networkingand WirelessNicholas Kottenstette, Panos J. Antsaklis................................................... 23713.1 Basic Considerations ...................................................................... 23713.2 Digital Communication Fundamentals ............................................ 23813.3 Networked Systems Communication Limitations ............................. 24113.4 Networked Control Systems ............................................................ 24213.5 Discussion and Future Research Directions...................................... 24513.6 Conclusions ................................................................................... 24613.7 Appendix ...................................................................................... 246References .............................................................................................. 247

14 Artificial Intelligence and AutomationDana S. Nau ............................................................................................ 24914.1 Methods and Application Examples ................................................ 25014.2 Emerging Trends and Open Challenges ........................................... 266References .............................................................................................. 266

15 Virtual Reality and AutomationP. Pat Banerjee ........................................................................................ 26915.1 Overview of Virtual Reality and Automation Technologies ................ 26915.2 Production/Service Applications ..................................................... 27115.3 Medical Applications ..................................................................... 27315.4 Conclusions and Emerging Trends .................................................. 276References .............................................................................................. 277

16 Automation of Mobility and NavigationAnibal Ollero, Ángel R. Castaño ................................................................ 27916.1 Historical Background .................................................................... 27916.2 Basic Concepts .............................................................................. 28016.3 Vehicle Motion Control................................................................... 28316.4 Navigation Control and Interaction with the Environment ............... 28516.5 Human Interaction ........................................................................ 28816.6 Multiple Mobile Systems ................................................................ 29016.7 Conclusions ................................................................................... 292References .............................................................................................. 292

17 The Human Role in AutomationDaniel W. Repperger, Chandler A. Phillips ................................................. 29517.1 Some Basics of Human Interaction with Automation ....................... 29617.2 Various Application Areas .............................................................. 297

Contents XLIII

17.3 Modern Key Issues to Consider as Humans Interact with Automation 29917.4 Future Directions of Defining Human–Machine Interactions ............ 30117.5 Conclusions ................................................................................... 302References .............................................................................................. 302

18 What Can Be Automated? What Cannot Be Automated?Richard D. Patton, Peter C. Patton ............................................................ 30518.1 The Limits of Automation ............................................................... 30518.2 The Limits of Mechanization .......................................................... 30618.3 Expanding the Limit ...................................................................... 30918.4 The Current State of the Art ............................................................ 31118.5 A General Principle ........................................................................ 312References .............................................................................................. 313

Part C Automation Design: Theory, Elements, and Methods

19 Mechatronic Systems – A Short IntroductionRolf Isermann.......................................................................................... 31719.1 From Mechanical to Mechatronic Systems ....................................... 31719.2 Mechanical Systems and Mechatronic Developments ....................... 31919.3 Functions of Mechatronic Systems .................................................. 32119.4 Integration Forms of Processes with Electronics .............................. 32319.5 Design Procedures for Mechatronic Systems .................................... 32519.6 Computer-Aided Design of Mechatronic Systems ............................. 32819.7 Conclusion and Emerging Trends .................................................... 329References .............................................................................................. 329

20 Sensors and Sensor NetworksWootae Jeong .......................................................................................... 33320.1 Sensors ......................................................................................... 33320.2 Sensor Networks ............................................................................ 33820.3 Emerging Trends ........................................................................... 346References .............................................................................................. 347

21 Industrial Intelligent RobotsYoshiharu Inaba, Shinsuke Sakakibara ..................................................... 34921.1 Current Status of the Industrial Robot Market ................................. 34921.2 Background of the Emergence of Intelligent Robots ........................ 35021.3 Intelligent Robots.......................................................................... 35221.4 Application of Intelligent Robots .................................................... 35921.5 Guidelines for Installing Intelligent Robots ..................................... 36221.6 Mobile Robots ............................................................................... 36221.7 Conclusion .................................................................................... 36321.8 Further Reading ............................................................................ 363References .............................................................................................. 363

XLIV Contents

22 Modeling and Software for AutomationAlessandro Pasetti, Walter Schaufelberger (Δ) ........................................... 36522.1 Model-Driven Versus Reuse-Driven Software Development.............. 36622.2 Model-Driven Software Development ............................................. 36822.3 Reuse-Driven Software Development ............................................. 37122.4 Current Research Directions ........................................................... 37622.5 Conclusions and Emerging Trends .................................................. 379References .............................................................................................. 379

23 Real-Time Autonomic AutomationChristian Dannegger ................................................................................ 38123.1 Theory .......................................................................................... 38223.2 Application Example: Modular Production Machine Control ............. 38523.3 Application Example: Dynamic Transportation Optimization ............ 39123.4 How to Design Agent-Oriented Solutions for Autonomic Automation.. 40223.5 Emerging Trends and Challenges .................................................... 402References .............................................................................................. 404

24 Automation Under Service-Oriented GridsJackson He, Enrique Castro-Leon .............................................................. 40524.1 Emergence of Virtual Service-Oriented Grids ................................... 40624.2 Virtualization ................................................................................ 40624.3 Service Orientation ........................................................................ 40824.4 Grid Computing ............................................................................. 41424.5 Summary and Emerging Challenges ................................................ 41424.6 Further Reading ............................................................................ 415References .............................................................................................. 416

25 Human Factors in Automation DesignJohn D. Lee, Bobbie D. Seppelt.................................................................. 41725.1 Automation Problems .................................................................... 41825.2 Characteristics of the System and the Automation ........................... 42225.3 Application Examples and Approaches to Automation Design .......... 42425.4 Future Challenges in Automation Design ........................................ 429References .............................................................................................. 432

26 Collaborative Human–Automation Decision MakingMary L. Cummings, Sylvain Bruni ............................................................. 43726.1 Background .................................................................................. 43826.2 The Human–Automation Collaboration Taxonomy (HACT) ................. 43926.3 HACT Application and Guidelines .................................................... 44226.4 Conclusion and Open Challenges .................................................... 445References .............................................................................................. 446

Contents XLV

27 TeleoperationLuis Basañez, Raúl Suárez ........................................................................ 44927.1 Historical Background and Motivation ............................................ 45027.2 General Scheme and Components .................................................. 45127.3 Challenges and Solutions ............................................................... 45427.4 Application Fields .......................................................................... 45927.5 Conclusion and Trends ................................................................... 464References .............................................................................................. 465

28 Distributed Agent Software for AutomationFrancisco P. Maturana, Dan L. Carnahan, Kenwood H. Hall ....................... 46928.1 Composite Curing Background ........................................................ 47128.2 Industrial Agent Architecture ......................................................... 47328.3 Building Agents for the Curing System ............................................ 47528.4 Autoclave and Thermocouple Agents .............................................. 47728.5 Agent-Based Simulation ................................................................ 47828.6 Composite Curing Results and Recommendations ............................ 48028.7 Conclusions ................................................................................... 48428.8 Further Reading ............................................................................ 484References .............................................................................................. 485

29 Evolutionary Techniques for AutomationMitsuo Gen, Lin Lin .................................................................................. 48729.1 Evolutionary Techniques ................................................................ 48829.2 Evolutionary Techniques for Industrial Automation ......................... 49229.3 AGV Dispatching in Manufacturing System ...................................... 49429.4 Robot-Based Assembly-Line System ............................................... 49729.5 Conclusions and Emerging Trends .................................................. 50129.6 Further Reading ............................................................................ 501References .............................................................................................. 501

30 Automating Errors and Conflicts Prognostics and PreventionXin W. Chen, Shimon Y. Nof ...................................................................... 50330.1 Definitions .................................................................................... 50330.2 Error Prognostics and Prevention Applications ................................ 50630.3 Conflict Prognostics and Prevention ............................................... 51230.4 Integrated Error and Conflict Prognostics and Prevention ................ 51330.5 Error Recovery and Conflict Resolution............................................ 51530.6 Emerging Trends ........................................................................... 52030.7 Conclusion .................................................................................... 521References .............................................................................................. 522

XLVI Contents

Part D Automation Design: Theory and Methods for Integration

31 Process AutomationThomas F. Edgar, Juergen Hahn ............................................................... 52931.1 Enterprise View of Process Automation ........................................... 52931.2 Process Dynamics and Mathematical Models ................................... 53131.3 Regulatory Control ......................................................................... 53331.4 Control System Design ................................................................... 53431.5 Batch Process Automation ............................................................. 53831.6 Automation and Process Safety ...................................................... 54131.7 Emerging Trends ........................................................................... 54331.8 Further Reading ............................................................................ 543References .............................................................................................. 543

32 Product AutomationFriedrich Pinnekamp................................................................................ 54532.1 Historical Background .................................................................... 54532.2 Definition of Product Automation................................................... 54632.3 The Functions of Product Automation ............................................. 54632.4 Sensors ......................................................................................... 54732.5 Control Systems ............................................................................. 54732.6 Actuators ...................................................................................... 54832.7 Energy Supply ............................................................................... 54832.8 Information Exchange with Other Systems ...................................... 54832.9 Elements for Product Automation ................................................... 54832.10 Embedded Systems........................................................................ 55432.11 Summary and Emerging Trends ...................................................... 557References .............................................................................................. 558

33 Service AutomationFriedrich Pinnekamp................................................................................ 55933.1 Definition of Service Automation .................................................... 55933.2 Life Cycle of a Plant ....................................................................... 55933.3 Key Tasks and Features of Industrial Service ................................... 56033.4 Real-Time Performance Monitoring ................................................ 56233.5 Analysis of Performance ................................................................ 56333.6 Information Required for Effective and Efficient Service .................. 56333.7 Logistics Support ........................................................................... 56633.8 Remote Service.............................................................................. 56733.9 Tools for Service Personnel ............................................................. 56833.10 Emerging Trends: Towards a Fully Automated Service ...................... 568References .............................................................................................. 569

34 Integrated Human and Automation SystemsDieter Spath, Martin Braun, Wilhelm Bauer............................................... 57134.1 Basics and Definitions ................................................................... 57234.2 Use of Automation Technology ....................................................... 579

Contents XLVII

34.3 Design Rules for Automation .......................................................... 58534.4 Emerging Trends and Prospects for Automation .............................. 594References .............................................................................................. 596

35 Machining Lines AutomationXavier Delorme, Alexandre Dolgui, Mohamed Essafi, Laurent Linxe,Damien Poyard ........................................................................................ 59935.1 Machining Lines ............................................................................ 60035.2 Machining Line Design................................................................... 60335.3 Line Balancing .............................................................................. 60535.4 Industrial Case Study ..................................................................... 60635.5 Conclusion and Perspectives .......................................................... 615References .............................................................................................. 616

36 Large-Scale Complex SystemsFlorin-Gheorghe Filip, Kauko Leiviskä ...................................................... 61936.1 Background and Scope .................................................................. 62036.2 Methods and Applications ............................................................. 62236.3 Case Studies .................................................................................. 63236.4 Emerging Trends ........................................................................... 634References .............................................................................................. 635

37 Computer-Aided Design, Computer-Aided Engineering,and VisualizationGary R. Bertoline, Nathan Hartman, Nicoletta Adamo-Villani .................... 63937.1 Modern CAD Tools .......................................................................... 63937.2 Geometry Creation Process ............................................................. 64037.3 Characteristics of the Modern CAD Environment .............................. 64237.4 User Characteristics Related to CAD Systems .................................... 64337.5 Visualization ................................................................................. 64437.6 3-D Animation Production Process ................................................. 645References .............................................................................................. 651

38 Design Automation for MicroelectronicsDeming Chen ........................................................................................... 65338.1 Overview....................................................................................... 65338.2 Techniques of Electronic Design Automation ................................... 65738.3 New Trends and Conclusion ........................................................... 665References .............................................................................................. 667

39 Safety Warnings for AutomationMark R. Lehto, Mary F. Lesch, William J. Horrey ......................................... 67139.1 Warning Roles ............................................................................... 67239.2 Types of Warnings ......................................................................... 67639.3 Models of Warning Effectiveness .................................................... 680

XLVIII Contents

39.4 Design Guidelines and Requirements ............................................. 68439.5 Challenges and Emerging Trends .................................................... 690References .............................................................................................. 691

Part E Automation Management

40 Economic Rationalization of Automation ProjectsJosé A. Ceroni .......................................................................................... 69940.1 General Economic Rationalization Procedure .................................. 70040.2 Alternative Approach to the Rationalization of Automation Projects. 70840.3 Future Challenges and Emerging Trends

in Automation Rationalization ....................................................... 71140.4 Conclusions ................................................................................... 712References .............................................................................................. 713

41 Quality of Service (QoS) of AutomationHeinz-Hermann Erbe (Δ) ......................................................................... 71541.1 Cost-Oriented Automation ............................................................. 71841.2 Affordable Automation .................................................................. 72141.3 Energy-Saving Automation ............................................................ 72541.4 Emerging Trends ........................................................................... 72841.5 Conclusions ................................................................................... 731References .............................................................................................. 732

42 Reliability, Maintainability, and SafetyGérard Morel, Jean-François Pétin, Timothy L. Johnson ............................. 73542.1 Definitions .................................................................................... 73642.2 RMS Engineering ........................................................................... 73842.3 Operational Organization and Architecture for RMS ......................... 74142.4 Challenges, Trends, and Open Issues .............................................. 745References .............................................................................................. 746

43 Product Lifecycle Managementand Embedded Information DevicesDimitris Kiritsis ........................................................................................ 74943.1 The Concept of Closed-Loop PLM .................................................... 74943.2 The Components of a Closed-Loop PLM System ................................ 75143.3 A Development Guide for Your Closed-Loop PLM Solution ................ 75543.4 Closed-Loop PLM Application ......................................................... 76143.5 Emerging Trends and Open Challenges ........................................... 763References .............................................................................................. 764

44 Education and Qualification for Control and AutomationBozenna Pasik-Duncan, Matthew Verleger................................................ 76744.1 The Importance of Automatic Control in the 21st Century ................. 76844.2 New Challenges for Education ........................................................ 768

Contents XLIX

44.3 Interdisciplinary Nature of Stochastic Control .................................. 76944.4 New Applications of Systems and Control Theory ............................. 77044.5 Pedagogical Approaches ................................................................ 77244.6 Integrating Scholarship, Teaching, and Learning............................. 77544.7 The Scholarship of Teaching and Learning ...................................... 77544.8 Conclusions and Emerging Challenges ............................................ 776References .............................................................................................. 776

45 Software ManagementPeter C. Patton, Bijay K. Jayaswal ............................................................. 77945.1 Automation and Software Management ......................................... 77945.2 Software Distribution..................................................................... 78145.3 Asset Management ........................................................................ 78645.4 Cost Estimation ............................................................................. 78945.5 Further Reading ............................................................................ 794References .............................................................................................. 794

46 Practical Automation SpecificationWolfgang Mann....................................................................................... 79746.1 Overview....................................................................................... 79746.2 Intention ...................................................................................... 79846.3 Strategy ........................................................................................ 80046.4 Implementation ............................................................................ 80346.5 Additional Impacts ........................................................................ 80346.6 Example ....................................................................................... 80446.7 Conclusion .................................................................................... 80746.8 Further Reading ............................................................................ 807References .............................................................................................. 808

47 Automation and EthicsSrinivasan Ramaswamy, Hemant Joshi ..................................................... 80947.1 Background .................................................................................. 81047.2 What Is Ethics, and How Is It Related to Automation? ...................... 81047.3 Dimensions of Ethics ..................................................................... 81147.4 Ethical Analysis and Evaluation Steps ............................................. 81447.5 Ethics and STEM Education ............................................................. 81747.6 Ethics and Research....................................................................... 82247.7 Challenges and Emerging Trends .................................................... 82547.8 Additional Online Resources .......................................................... 82647.A Appendix: Code of Ethics Example .................................................. 827References .............................................................................................. 831

L Contents

Part F Industrial Automation

48 Machine Tool AutomationKeiichi Shirase, Susumu Fujii .................................................................... 83748.1 The Advent of the NC Machine Tool ................................................. 83948.2 Development of Machining Center and Turning Center .................... 84148.3 NC Part Programming .................................................................... 84448.4 Technical Innovation in NC Machine Tools ....................................... 84748.5 Key Technologies for Future Intelligent Machine Tool ...................... 85648.6 Further Reading ............................................................................ 857References .............................................................................................. 857

49 Digital Manufacturing and RFID-Based AutomationWing B. Lee, Benny C.F. Cheung, Siu K. Kwok ............................................ 85949.1 Overview....................................................................................... 85949.2 Digital Manufacturing Based on Virtual Manufacturing (VM) ............ 86049.3 Digital Manufacturing by RFID-Based Automation ........................... 86449.4 Case Studies of Digital Manufacturing and RFID-Based Automation.. 86749.5 Conclusions ................................................................................... 877References .............................................................................................. 878

50 Flexible and Precision AssemblyBrian Carlisle ........................................................................................... 88150.1 Flexible Assembly Automation ....................................................... 88150.2 Small Parts .................................................................................... 88650.3 Automation Software Architecture .................................................. 88750.4 Conclusions and Future Challenges ................................................. 89050.5 Further Reading ............................................................................ 890References .............................................................................................. 890

51 Aircraft Manufacturing and AssemblyBranko Sarh, James Buttrick, Clayton Munk, Richard Bossi ........................ 89351.1 Aircraft Manufacturing and Assembly Background ........................... 89451.2 Automated Part Fabrication Systems: Examples .............................. 89551.3 Automated Part Inspection Systems: Examples................................ 90351.4 Automated Assembly Systems/Examples ......................................... 90551.5 Concluding Remarks and Emerging Trends ...................................... 908References .............................................................................................. 909

52 Semiconductor Manufacturing AutomationTae-Eog Lee............................................................................................. 91152.1 Historical Background .................................................................... 91152.2 Semiconductor Manufacturing Systems

and Automation Requirements ...................................................... 91252.3 Equipment Integration Architecture and Control ............................. 91452.4 Fab Integration Architectures and Operation................................... 921

Contents LI

52.5 Conclusion .................................................................................... 925References .............................................................................................. 925

53 Nanomanufacturing AutomationNing Xi, King Wai Chiu Lai, Heping Chen ................................................... 92753.1 Overview....................................................................................... 92753.2 AFM-Based Nanomanufacturing ..................................................... 93053.3 Nanomanufacturing Processes ....................................................... 93753.4 Conclusions ................................................................................... 944References .............................................................................................. 944

54 Production, Supply, Logistics and DistributionRodrigo J. Cruz Di Palma, Manuel Scavarda Basaldúa................................ 94754.1 Historical Background .................................................................... 94754.2 Machines and Equipment Automation for Production ..................... 94954.3 Computing and Communication Automation for Planning

and Operations Decisions............................................................... 95154.4 Automation Design Strategy ........................................................... 95454.5 Emerging Trends and Challenges .................................................... 95554.6 Further Reading ............................................................................ 958References .............................................................................................. 959

55 Material Handling Automation in Productionand Warehouse SystemsJaewoo Chung, Jose M.A. Tanchoco........................................................... 96155.1 Material Handling Integration ........................................................ 96255.2 System Architecture ....................................................................... 96455.3 Advanced Technologies.................................................................. 96955.4 Conclusions and Emerging Trends .................................................. 977References .............................................................................................. 977

56 Industrial Communication ProtocolsCarlos E. Pereira, Peter Neumann.............................................................. 98156.1 Basic Information .......................................................................... 98156.2 Virtual Automation Networks ......................................................... 98356.3 Wired Industrial Communications .................................................. 98456.4 Wireless Industrial Communications ............................................... 99156.5 Wide Area Communications ........................................................... 99356.6 Conclusions ................................................................................... 99556.7 Emerging Trends ........................................................................... 99556.8 Further Reading ............................................................................ 997References .............................................................................................. 998

57 Automation and Robotics in Mining and Mineral ProcessingSirkka-Liisa Jämsä-Jounela, Greg Baiden ................................................. 100157.1 Background .................................................................................. 100157.2 Mining Methods and Application Examples..................................... 1004

LII Contents

57.3 Processing Methods and Application Examples ............................... 100557.4 Emerging Trends ........................................................................... 1009References .............................................................................................. 1012

58 Automation in the Wood and Paper IndustryBirgit Vogel-Heuser ................................................................................. 101558.1 Background Development and Theory ............................................ 101558.2 Application Example, Guidelines, and Techniques .......................... 101858.3 Emerging Trends, Open Challenges ................................................. 1024References .............................................................................................. 1025

59 Welding AutomationAnatol Pashkevich ................................................................................... 102759.1 Principal Definitions ...................................................................... 102759.2 Welding Processes ......................................................................... 102859.3 Basic Equipment and Control Parameters ....................................... 103159.4 Welding Process Sensing, Monitoring, and Control .......................... 103359.5 Robotic Welding ............................................................................ 103559.6 Future Trends in Automated Welding ............................................. 103859.7 Further Reading ............................................................................ 1039References .............................................................................................. 1039

60 Automation in Food ProcessingDarwin G. Caldwell, Steve Davis, René J. Moreno Masey, John O. Gray ........ 104160.1 The Food Industry ......................................................................... 104260.2 Generic Considerations in Automation for Food Processing .............. 104360.3 Packaging, Palletizing, and Mixed Pallet Automation ...................... 104660.4 Raw Product Handling and Assembly.............................................. 104960.5 Decorative Product Finishing.......................................................... 105460.6 Assembly of Food Products – Making a Sandwich............................ 105560.7 Discrete Event Simulation Example ................................................. 105660.8 Totally Integrated Automation ....................................................... 105760.9 Conclusions ................................................................................... 105860.10 Further Reading ............................................................................ 1058References .............................................................................................. 1058

Part G Infrastructure and Service Automation

61 Construction AutomationDaniel Castro-Lacouture........................................................................... 106361.1 Motivations for Automating Construction Operations ....................... 106461.2 Background .................................................................................. 106561.3 Horizontal Construction Automation ............................................... 106661.4 Building Construction Automation .................................................. 106861.5 Techniques and Guidelines

for Construction Management Automation ..................................... 1070

Contents LIII

61.6 Application Examples .................................................................... 107361.7 Conclusions and Challenges ........................................................... 1076References .............................................................................................. 1076

62 The Smart BuildingTimothy I. Salsbury .................................................................................. 107962.1 Background .................................................................................. 107962.2 Application Examples .................................................................... 108362.3 Emerging Trends ........................................................................... 108862.4 Open Challenges............................................................................ 109062.5 Conclusions ................................................................................... 1092References .............................................................................................. 1092

63 Automation in AgricultureYael Edan, Shufeng Han, Naoshi Kondo .................................................... 109563.1 Field Machinery............................................................................. 109663.2 Irrigation Systems ......................................................................... 110163.3 Greenhouse Automation ................................................................ 110463.4 Animal Automation Systems........................................................... 111163.5 Fruit Production Operations ........................................................... 111663.6 Summary ...................................................................................... 1121References .............................................................................................. 1122

64 Control System for Automated Feed PlantNick A. Ivanescu ...................................................................................... 112964.1 Objectives ..................................................................................... 112964.2 Problem Description ...................................................................... 113064.3 Special Issues To Be Solved ............................................................ 113164.4 Choosing the Control System .......................................................... 113164.5 Calibrating the Weighing Machines ................................................ 113264.6 Management of the Extraction Process ........................................... 113364.7 Software Design: Theory and Application ........................................ 113364.8 Communication ............................................................................. 113664.9 Graphical User Interface on the PLC ................................................ 113664.10 Automatic Feeding of Chicken ........................................................ 113764.11 Environment Control in the Chicken Plant ...................................... 113764.12 Results and Conclusions................................................................. 113864.13 Further Reading ............................................................................ 1138References .............................................................................................. 1138

65 Securing Electrical Power System OperationPetr Horacek ............................................................................................ 113965.1 Power Balancing ........................................................................... 114165.2 Ancillary Services Planning ............................................................ 1153References .............................................................................................. 1162

LIV Contents

66 Vehicle and Road AutomationYuko J. Nakanishi .................................................................................... 116566.1 Background .................................................................................. 116566.2 Integrated Vehicle-Based Safety Systems (IVBSS) ............................. 117166.3 Vehicle Infrastructure Integration (VII) ............................................ 117666.4 Conclusion and Emerging Trends .................................................... 117766.5 Further Reading ............................................................................ 1178References .............................................................................................. 1180

67 Air Transportation System AutomationSatish C. Mohleji, Dean F. Lamiano, Sebastian V. Massimini ...................... 118167.1 Current NAS CNS/ATM Systems Infrastructure .................................... 118367.2 Functional Role of Automation in Aircraft for Flight Safety

and Efficiency ............................................................................... 119467.3 Functional Role of Automation in the Ground System

for Flight Safety and Efficiency ....................................................... 119567.4 CNS/ATM Functional Limitations with Impact

on Operational Performance Measures ........................................... 119667.5 Future Air Transportation System Requirements

and Functional Automation ........................................................... 120367.6 Summary ...................................................................................... 1211References .............................................................................................. 1212

68 Flight Deck AutomationSteven J. Landry....................................................................................... 121568.1 Background and Theory ................................................................. 121568.2 Application Examples .................................................................... 121768.3 Guidelines for Automation Development ........................................ 122668.4 Flight Deck Automation in the Next-Generation Air-Traffic System .. 123468.5 Conclusion .................................................................................... 123668.6 Web Resources .............................................................................. 1236References .............................................................................................. 1237

69 Space and Exploration AutomationEdward Tunstel ........................................................................................ 124169.1 Space Automation/Robotics Background ......................................... 124269.2 Challenges of Space Automation .................................................... 124369.3 Past and Present Space Robots and Applications ............................. 124869.4 Future Directions and Capability Needs........................................... 125069.5 Summary and Conclusion............................................................... 125169.6 Further Reading ............................................................................ 1251References .............................................................................................. 1252

70 Cleaning AutomationNorbert Elkmann, Justus Hortig, Markus Fritzsche ..................................... 125370.1 Background and Cleaning Automation Theory ................................. 125470.2 Examples of Application ................................................................ 1256

Contents LV

70.3 Emerging Trends ........................................................................... 1263References .............................................................................................. 1263

71 Automating Information and Technology ServicesParasuram Balasubramanian .................................................................. 126571.1 Preamble ...................................................................................... 126571.2 Distinct Business Segments ............................................................ 126771.3 Automation Path in Each Business Segment ................................... 126971.4 Information Technology Services .................................................... 127471.5 Impact Analysis ............................................................................. 128171.6 Emerging Trends ........................................................................... 1282References .............................................................................................. 1282

72 Library AutomationMichael Kaplan ....................................................................................... 128572.1 In the Beginning: Book Catalogs and Card Catalogs ......................... 128572.2 Development of the MARC Format and Online Bibliographic Utilities 128672.3 OpenURL Linking and the Rise of Link Resolvers .............................. 129072.4 Future Challenges .......................................................................... 129672.5 Further Reading ............................................................................ 1296References .............................................................................................. 1297

73 Automating Serious GamesGyula Vastag, Moshe Yerushalmy ............................................................. 129973.1 Theoretical Foundation and Developments:

Learning Through Gaming.............................................................. 129973.2 Application Examples .................................................................... 130373.3 Guidelines and Techniques for Serious Games ................................ 130673.4 Emerging Trends, Open Challenges ................................................. 130973.5 Additional Reading ....................................................................... 1310References .............................................................................................. 1310

74 Automation in Sports and EntertainmentPeter Kopacek .......................................................................................... 131374.1 Robots in Entertainment, Leisure, and Hobby ................................. 131574.2 Market .......................................................................................... 133074.3 Summary and Forecast .................................................................. 133074.4 Further Reading ............................................................................ 1331References .............................................................................................. 1331

Part H Automation in Medical and Healthcare Systems

75 Automatic Control in Systems BiologyHenry Mirsky, Jörg Stelling, Rudiyanto Gunawan, Neda Bagheri,Stephanie R. Taylor, Eric Kwei, Jason E. Shoemaker, Francis J. Doyle III....... 133575.1 Basics ........................................................................................... 1335

LVI Contents

75.2 Biophysical Networks .................................................................... 133775.3 Network Models for Structural Classification.................................... 134075.4 Dynamical Models ......................................................................... 134275.5 Network Identification................................................................... 134675.6 Quantitative Performance Metrics................................................... 134975.7 Bio-inspired Control and Design .................................................... 135375.8 Emerging Trends ........................................................................... 1354References .............................................................................................. 1354

76 Automation and Control in Biomedical SystemsRobert S. Parker ....................................................................................... 136176.1 Background and Introduction ........................................................ 136176.2 Theory and Tools ........................................................................... 136476.3 Techniques and Applications ......................................................... 136976.4 Emerging Areas and Challenges ...................................................... 137376.5 Summary ...................................................................................... 1375References .............................................................................................. 1375

77 Automation in Hospitals and HealthcareBrandon Savage ...................................................................................... 137977.1 The Need for Automation in Healthcare .......................................... 138077.2 The Role of Medical Informatics ..................................................... 138277.3 Applications .................................................................................. 138977.4 Conclusion .................................................................................... 1396References .............................................................................................. 1396

78 Medical Automation and RoboticsAlon Wolf, Moshe Shoham........................................................................ 139778.1 Classification of Medical Robotics Systems ...................................... 139878.2 Kinematic Structure of Medical Robots............................................ 140378.3 Fundamental Requirements from a Medical Robot .......................... 140478.4 Main Advantages of Medical Robotic Systems .................................. 140478.5 Emerging Trends in Medical Robotics Systems ................................. 1405References .............................................................................................. 1406

79 Rotary Heart Assist DevicesMarwan A. Simaan .................................................................................. 140979.1 The Cardiovascular Model .............................................................. 141079.2 Cardiovascular Model Validation .................................................... 141479.3 LVAD Pump Model .......................................................................... 141579.4 Combined Cardiovascular and LVAD Model ...................................... 141679.5 Challenges in the Development of a Feedback Controller

and Suction Detection Algorithm .................................................... 141879.6 Conclusion .................................................................................... 1420References .............................................................................................. 1420

Contents LVII

80 Medical InformaticsChin-Yin Huang....................................................................................... 142380.1 Background .................................................................................. 142380.2 Diagnostic–Therapeutic Cycle ......................................................... 142480.3 Communication and Integration .................................................... 142580.4 Database and Data Warehouse....................................................... 142680.5 Medical Support Systems ............................................................... 142780.6 Medical Knowledge and Decision Support System ........................... 142980.7 Developing a Healthcare Information System .................................. 143080.8 Emerging Issues ............................................................................ 1431References .............................................................................................. 1432

81 Nanoelectronic-Based Detection for Biology and MedicineSamir M. Iqbal, Rashid Bashir .................................................................. 143381.1 Historical Background .................................................................... 143381.2 Interfacing Biological Molecules ..................................................... 143481.3 Electrical Characterization of DNA Molecules on Surfaces ................. 143881.4 Nanopore Sensors for Characterization of Single DNA Molecules ....... 144181.5 Conclusions and Outlook ................................................................ 1447References .............................................................................................. 1447

82 Computer and Robot-Assisted Medical InterventionJocelyne Troccaz....................................................................................... 145182.1 Clinical Context and Objectives ....................................................... 145182.2 Computer-Assisted Medical Intervention ........................................ 145282.3 Main Periods of Medical Robot Development .................................. 145482.4 Evolution of Control Schemes ......................................................... 145882.5 The Cyberknife System: A Case Study ............................................... 145982.6 Specific Issues in Medical Robotics ................................................. 146182.7 Systems Used in Clinical Practice .................................................... 146282.8 Conclusions and Emerging Trends .................................................. 146382.9 Medical Glossary ........................................................................... 1463References .............................................................................................. 1464

Part I Home, Office, and Enterprise Automation

83 Automation in Home AppliancesT. Joseph Lui ............................................................................................ 146983.1 Background and Theory ................................................................. 146983.2 Application Examples, Guidelines, and Techniques ......................... 147283.3 Emerging Trends and Open Challenges ........................................... 148183.4 Further Reading ............................................................................ 1483References .............................................................................................. 1483

84 Service Robots and Automation for the Disabled/LimitedBirgit Graf, Harald Staab ......................................................................... 148584.1 Motivation and Required Functionalities ........................................ 1486

LVIII Contents

84.2 State of the Art .............................................................................. 148684.3 Application Example: the Robotic Home Assistant Care-O-bot ......... 149384.4 Application Example: the Bionic Robotic Arm ISELLA ........................ 149684.5 Future Challenges .......................................................................... 1499References .............................................................................................. 1499

85 Automation in Education/Learning SystemsKazuyoshi Ishii, Kinnya Tamaki ................................................................ 150385.1 Technology Aspects of Education/Learning Systems ......................... 150385.2 Examples ...................................................................................... 151185.3 Conclusions and Emerging Trends .................................................. 1523References .............................................................................................. 1524

86 Enterprise Integration and InteroperabilityFrançois B. Vernadat................................................................................ 152986.1 Definitions and Background .......................................................... 153086.2 Integration and Interoperability Frameworks ................................. 153286.3 Standards and Technology for Interoperability ................................ 153386.4 Applications and Future Trends ...................................................... 153586.5 Conclusion .................................................................................... 1537References .............................................................................................. 1537

87 Decision Support SystemsDaniel J. Power, Ramesh Sharda .............................................................. 153987.1 Characteristics of DSS ..................................................................... 154087.2 Building Decision Support Systems ................................................. 154487.3 DSS Architecture ............................................................................ 154687.4 Conclusions ................................................................................... 154787.5 Further Reading ............................................................................ 1547References .............................................................................................. 1548

88 Collaborative e-Work, e-Business, and e-ServiceJuan D. Velásquez, Shimon Y. Nof ............................................................. 154988.1 Background and Definitions .......................................................... 154988.2 Theoretical Foundations of e-Work

and Collaborative Control Theory (CCT) ............................................ 155288.3 Design Principles for Collaborative e-Work, e-Business,

and e-Service ............................................................................... 156288.4 Conclusions and Challenges ........................................................... 157188.5 Further Reading ............................................................................ 1572References .............................................................................................. 1573

89 e-CommerceClyde W. Holsapple, Sharath Sasidharan ................................................... 157789.1 Background .................................................................................. 157889.2 Theory .......................................................................................... 158089.3 e-Commerce Models and Applications ............................................ 1585

Contents LIX

89.4 Emerging Trends in e-Commerce .................................................... 159189.5 Challenges and Emerging Issues in e-Commerce ............................. 1592References .............................................................................................. 1594

90 Business Process AutomationEdward F. Watson, Karyn Holmes ............................................................. 159790.1 Definitions and Background .......................................................... 159890.2 Enterprise Systems Application Frameworks .................................... 160690.3 Emerging Standards and Technology .............................................. 160990.4 Future Trends ................................................................................ 161090.5 Conclusion .................................................................................... 1611References .............................................................................................. 1611

91 Automation in Financial ServicesWilliam Richmond ................................................................................... 161391.1 Overview of the Financial Service Industry ...................................... 161491.2 Community Banks and Credit Unions .............................................. 161691.3 Role of Automation in Community Banks and Credit Unions ............ 161991.4 Emerging Trends and Issues ........................................................... 162591.5 Conclusions ................................................................................... 1626References .............................................................................................. 1626

92 e-GovernmentDieter Rombach, Petra Steffens................................................................. 162992.1 Automating Administrative Processes ............................................. 162992.2 The Evolution of e-Government ..................................................... 163092.3 Proceeding from Strategy to Roll-Out: Four Dimensions of Action .... 163392.4 Future Challenges in e-Government Automation ............................ 1639References .............................................................................................. 1641

93 Collaborative Analytics for Astrophysics ExplorationsCecilia R. Aragon ..................................................................................... 164593.1 Scope............................................................................................ 164593.2 Science Background....................................................................... 164693.3 Previous Work ............................................................................... 164893.4 Sunfall Design Process ................................................................... 164993.5 Sunfall Architecture and Components ............................................. 165093.6 Conclusions ................................................................................... 1666References .............................................................................................. 1668

Part J Appendix

94 Automation StatisticsJuan D. Velásquez, Xin W. Chen, Sang Won Yoon, Hoo Sang Ko .................. 167394.1 Automation Statistics ..................................................................... 167494.2 Automation Associations................................................................ 1685

LX Contents

94.3 Automation Laboratories Around the World .................................... 169394.4 Automation Journals from Around the World .................................. 1696

Acknowledgements ................................................................................... 1703About the Authors ..................................................................................... 1707Detailed Contents ...................................................................................... 1735Subject Index ............................................................................................. 1777

LXI

List of Abbreviations

α-HL α-hemolysinβCD β-cyclodextrinµC micro controller*FTTP fault-tolerance time-out protocol2-D two-dimensional3-D-CG three-dimensional computer graphic3-D three-dimensional3G third-generation3PL third-party logistics3SLS three-stage least-square4-WD four-wheel-drive

A

A-PDU application layer protocol data unitA/D analog-to-digitalAAAI Association for the Advancement of

Artificial IntelligenceAACC American Automatic Control CouncilAACS automated airspace computer systemAAN appliance area networkABAS aircraft-based augmentation systemABB Asea Brown BoveriABCS automated building construction systemABMS agent-based management systemABS antilock brake systemAC/DC alternating current/direct currentACARS aircraft communications addressing and

reporting systemACAS aircraft collision avoidance systemACAS automotive collision avoidance systemACCO active control connection objectACC adaptive cruise controlACC automatic computer controlACE area control errorACGIH AmericanConference of Governmental

Industrial HygienistsACH automated clearing houseACMP autonomous coordinate measurement

planningACM Association for Computing MachineryACM airport capacity modelACN automatic collision notificationACT-R adaptive control of thought-rationalAC alternating-currentADAS advanced driver assistance systemADA Americans with Disabilities ActADC analog-to-digital converterADS-B automatic dependent

surveillance-broadcastADSL asymmetric digital subscriber line

ADT admission/transfer/dischargeaecXML architecture, engineering and

construction extensive markup languageAFCS automatic flight control systemAFM atomic force microscopyAFP automated fiber placementAF application frameworkAGC automatic generation controlAGL above ground levelAGV autonomous guided vehicleAHAM Association of Home Appliance

ManufacturersAHP analytical hierarchy processAHS assisted highway systemAIBO artificial intelligence robotAIDS acquired immunodeficiency syndromeAIM-C accelerated insertion of

materials-compositeAIMIS agent interaction management systemAIMac autonomous and intelligent machine toolAI artificial intelligenceALB assembly line balancingALD atomic-layer depositionALU arithmetic logic unitAMHS automated material-handling systemAMPA autonomous machining process analyzerANFIS adaptive neural-fuzzy inference systemANN artificial neural networkANSI American National Standards InstituteANTS Workshop on Ant Colony optimization

and Swarm IntelligenceAOCS attitude and orbit control systemAOC airline operation centerAOI automated optical inspectionAOP aspect-oriented programmingAO application objectAPC advanced process controlAPFDS autopilot/flight director systemAPI applications programming interfaceAPL application layerAPM alternating pulse modulationAPO advance planner and optimizerAPS advanced planning and schedulingAPTMS 3-aminopropyltrimethoxysilaneAPT automatically programmed toolAPU auxiliary power unitAPV approach procedures with vertical

guidanceAQ as-quenchedARCS attention, relevance, confidence,

satisfaction

LXII List of Abbreviations

ARIS architecture for information systemsARL Applied Research LaboratoryARPANET advanced research projects agency netARPM the application relationship protocol

machineARSR air route surveillance radarARTCC air route traffic control centerARTS automated radar terminal systemaRT acyclic real-timeAS/RC automated storage/enterprise resourceAS/RS automatic storage and retrieval systemASAS airborne separation assurance systemASCII American standard code for information

interchangeASDE airport surface detection equipmentASDI aircraft situation display to industryASE application service elementASIC application-specific ICASIMO advanced step in innovation mobilityASIP application-specific instruction set

processorASI actuator sensor interfaceASME American Society of Mechanical

EngineersASP application service providerASRS automated storage and retrieval systemASR airport surveillance radarASSP application-specific standard partASTD American Society for Training and

DevelopmentASW American Welding SocietyASi actuator sensor interfaceAS ancillary serviceATCBI-6 ARSR are ATC beacon interrogatorATCSCC air traffic control system command centerATCT air traffic control towerATC available transfer capabilityATIS automated terminal information serviceATL automated tape layupATM air traffic managementATM asynchronous transfer modeATM automatic teller machineATPG automatic test pattern generationAT adenine–thymineAUTOSAR automotive open system architectureAUV autonomous underwater vehicleAVI audio video interleavedAWSN ad hoc wireless sensor networkAleph automated library expandable programawGA adaptive-weight genetic algorithmA&I abstracting and indexing

B

B-rep boundary representationB2B business-to-business

B2C business-to-consumerBAC before automatic controlBALLOTS bibliographic automation of large library

operations using time sharingBAP Berth allocation planningBAS building automation systemsBA balancing authorityBBS bulletin-board systemBCC before computer controlBCD binary code to decimalBDD binary decision diagramBDI belief–desire–intentionBIM building information modelBI business intelligenceBLR brick laying robotBMP best-matching protocolBOL beginning of lifeBOM bill of materialBPCS basic process control systemBPEL business process execution languageBPMN business process modeling notationBPM business process managementBPO business process outsourcingBPR business process reengineeringBP broadcasting protocolbp base pairBSS basic service setBST biochemical systems theoryBS base station

C

C2C consumer-to-consumerCAASD center for advanced aviation system

developmentCAA National Civil Aviation AuthorityCAD/CAM computer-aided design/manufactureCADCS computer aided design of control systemCAEX computer aided engineering exchangeCAE computer-aided engineeringCAI computer-assisted (aided) instructionCAMI computer-assisted medical interventionCAMP collision avoidance metrics partnershipCAM computer-aided manufacturingCANbus controller area network busCAN control area networkCAOS computer-assisted ordering systemCAPP computer aided process planningCAPS computer-aided processing systemCASE computer-aided software engineeringCAS collision avoidance systemCAS complex adaptive systemCAW carbon arc weldingCA conflict alertCBM condition-based maintenanceCBT computer based training

List of Abbreviations LXIII

CCC Chinese Control ConferenceCCD charge-coupled deviceCCGT combined-cycle gas turbineCCMP create–collect–manage–protectCCM CORBA component modelCCP critical control pointCCTV closed circuit televisionCCT collaborative control theoryCDMS conflict detection and management

systemCDTI cockpit display of traffic informationCDU control display unitCD compact discCEC Congress on Evolutionary ComputationCEDA conflict and error detection agentCEDM conflict and error detection managementCEDM conflict and error detection modelCEDP conflict and error detection protocolCEDP conflict and error diagnostics and

prognosticsCED concurrent error detectionCEO chief executive officersCEPD conflict and error prediction and detectionCERIAS Center of Education and Research in

Information Assurance and SecurityCERN European Organization for Nuclear

ResearchCERT Computer Emergency Response TeamCE Council EuropeCFD computational fluid dynamicsCFG context-free grammarCFIT controlled flight into terraincGMP current good manufacturing practiceCG computer graphicsCHAID chi-square automatic interaction detectorCHART Maryland coordinated highways action

response teamCH cluster-headCIA CAN in automationCICP coordination and

interruption–continuation protocolCIM computer integrated manufacturingCIO chief information officerCIP common industrial protocolCIRPAV computer-integrated road pavingCLAWAR climbing and walking autonomous robotCLSI Computer Library Services Inc.CL cutter locationCME chemical master equationCMI computer-managed instructionCML case method learningCMM capability maturity modelCMS corporate memory systemCMTM control, maintenance, and technical

managementCM Clausius–Mossotti

CNC computer numerical controlCNO collaborative networked organizationCNS collision notification systemCNS communication, navigation, and

surveillanceCNT carbon nanotubeCOA cost-oriented automationCOBOL common business-oriented languageCOCOMO constructive cost modelCODESNET collaborative demand and supply networkCOMET collaborative medical tutorCOMSOAL computer method of sequencing

operations for assembly linesCOM component object modelCOP coefficient of performanceCOQ cost of qualityCORBA common object request broker

architectureCO connection-orientedCPA closest point of approachCPLD complex programmable logic deviceCPM critical path methodCPOE computerized provider order entryCPU central processing unitCP constraint programmingCP coordination protocolCQI continuous quality improvementCRF Research Center of FiatCRM customer relationship managementCRP cooperation requirement planningCRT cathode-ray tubecRT cyclic real-timeCSCL computer-supported collaborative

learningCSCW computer-supported collaborative workCSG constructive solid geometryCSR corporate social responsibilityCSS Control Systems SocietyCSU customer support unitCSW curve speed warning systemCTC cluster tool controllerCTMC cluster tool module communicationCT computed tomographyCURV cable-controlled undersea recovery

vehicleCVT continuously variable transmissionCV controlled variablesCo-X collaborative tool for function X

D

D/A digital-to-analogD2D discovery-to-deliveryDAC digital-to-analog converterDAFNet data activity flow network

LXIV List of Abbreviations

DAISY differential algebra for identifiability ofsystems

DAM digital asset managementDARC Duke Annual Robo-Climb CompetitionDAROFC direct adaptive robust output feedback

controllerDARPA Defense Advanced Research Projects

AgencyDARSFC direct adaptive robust state feedback

controllerDAS driver assistance systemDA data acquisitionDB databaseDCOM distributed component object modelDCSS dynamic case study scenarioDCS distributed control systemDCS disturbance control standardDC direct-currentDDA demand deposit accountDDC direct digital controlDEA discrete estimator algorithmDEM discrete element methodDEP dielectrophoreticDES discrete-event systemDFBD derived function block diagramDFI data activity flow integrationDFM design for manufacturingDFT discrete Fourier transformDGC DARPA Grand ChallengeDGPA discretized generalized pursuit algorithmDGPS differential GPSDHCP dynamic host configuration protocolDHS Department of Homeland SecurityDICOM digital imaging and communication in

medicineDIN German Institute for NormalizationDIO digital input/outputDISC death inducing signalling complexDLC direct load controlDLF Digital Library FoundationDMC dynamic matrix controlDME distance measuring equipmentDMOD distance modificationDMPM data link mapping protocol machineDMP decision-making processesDMP dot matrix printerDMSA/DMSN distributed microsensor array and

networkDMS dynamic message signDM decision-makingDNA deoxyribonucleic acidDNC direct numerical controlDNS domain name systemDOC Department of CommerceDOF degrees of freedomDOP degree of parallelism

DOT US Department of TransportationDO device objectDPA discrete pursuit algorithmDPC distributed process controlDPIEM distributed parallel integration evaluation

methodDP decentralized peripheryDRG diagnostic related groupDRR digitally reconstructed radiographDR digital radiographyDSA digital subtraction angiographyDSDL domain-specific design languageDSDT distributed signal detection theoreticDSL digital subscriber lineDSL domain-specific languageDSN distributed sensor networkDSP digital signal processorDSRC dedicated short-range communicationDSSS direct sequence spread spectrumDSS decision support systemDTC direct torque controlDTL dedicated transfer lineDTP desktop printingDTSE discrete TSE algorithmDUC distributable union catalogDVD digital versatile diskDVI digital visual interfaceDV disturbance variablesDXF drawing interchange formatDoD Department of DefenseDoS denial of service

E

E-CAE electrical engineering computer aidedengineering

E-PERT extended project estimation and reviewtechnique

E/H electrohydraulicEAI enterprise architecture interfaceEAP electroactive polymerEA evolutionary algorithmEBL electron-beam lithographyEBM evidence-based medicineEBP evidence-based practiceEBW electron beam weldingebXML electronic business XMLEB electron beamECG electrocardiogramECU electronic control unitEC European CommunityEDA electronic design automationEDCT expected departure clearance timeEDD earliest due dateEDGE enhanced data rates for GSM evolution

List of Abbreviations LXV

EDIFACT Electronic Data Interchange forAdministration, Commerce and Transport

EDI electronic data interchangeEDPA error detection and prediction algorithmsEDPVR end-diastolic pressure–volume

relationshipEDS electronic die sortingEDV end-diastolic volumeEEC European Economic CommunityEEPROM electrically erasable programmable

read-only memoryEES equipment engineering systemEFIS electronic flight instrument systemEFSM extended finite state machineEFT electronic funds transferEGNOS European geostationary navigation

overlay serviceEHEDG European Hygienic Engineering and

Design GroupEICAS engine indicating and crew alerting

systemEIF European Interoperability FrameworkEII enterprise information integrationEIS executive information systemEIU Economist Intelligence UnitEI Enterprise integrationeLPCO e-Learning professional competencyELV end-of-life of vehicleEL electroluminescenceEMCS energy management control systemsEMF electromotive forceEMO evolutionary multiobjective optimizationEMR electronic medical recordEMS energy management systemEOL end-of-lifeEPA Environmental Protection AgencyEPC engineering, procurement, and

contsructionEPGWS enhanced GPWSEPROM erasable programmable read-only

memoryEPSG Ethernet PowerLink Standardization

GroupEP evolutionary programmingERMA electronic recording machine accountingERM electronic resources managementERP enterprise resource planningESA European Space AgencyESB enterprise service busESD electronic software deliveryESD emergency shutdownESL electronic system-levelESPVR end-systolic pressure–volume

relationshipESP electronic stability programESR enterprise services repository

ESSENCE Equation of State: Supernovae TraceCosmic Expansion

ESS extended service setES enterprise systemES evolution strategyETA estimated time of arrivalETC electronic toll collectionETG EtherCAT Technology GroupETH Swiss Federal Technical universityETMS enhanced traffic management systemET evolutionary techniqueEURONORM European Economic CommunityEU European UnionEVA extravehicular activityEVD eigenvalue–eigenvector decompositionEVM electronic voting machineEVS enhanced vision systemEWMA exponentially-weighted moving averageEWSS e-Work support systemEXPIDE extended products in dynamic enterpriseEwIS enterprise-wide information system

F

FAA US Federal Aviation Administrationfab fabrication plantFACT fair and accurate credit transactionFAF final approach fixFAL fieldbus application layerFAQ frequently asked questionsFASB Financial Accounting Standards BoardFAST final approach spacing toolFA factory automationFA false alarmFBA flux balance analysisFBD function block diagramFCAW flux cored arc weldingFCC flight control computerFCW forward collision warningFCW forward crash warningFDA US Food and Drug AdministrationFDD fault detection and diagnosisFDL-CR facility description language–conflict

resolutionFDL facility design languageFESEM field-emission scanning electron

microscopeFFT fast Fourier transformFHSS frequency hopping spread spectrumFIFO first-in first-outFIM Fisher information matrixFIPA Foundation for Intelligent Physical

AgentsFIRA Federation of International Robot-Soccer

Associations

LXVI List of Abbreviations

FISCUS Föderales Integriertes StandardisiertesComputer-Unterstütztes Steuersystem –federal integrated standardizedcomputer-supported tax system

FIS fuzzy inference systemfJSP flexible jobshop problemFK forward kinematicsFLC fuzzy logic controlFL fuzzy-logicFMCS flight management computer systemFMC flexible manufacturing cellFMC flight management computerFMEA failure modes and effects analysisFMECA failure mode, effects and criticality

analysisFMS field message specificationFMS flexible manufacturing systemFMS flexible manufacturing systemFMS flight management systemFM Fiduccia–MattheysesFM frequency-modulationFOC federation object coordinatorFOGA Foundations of Genetic AlgorithmsFOUP front open unified podFOV field of viewFPGA field-programmable gate arraysFPID feedforward PIDFP flooding protocolFSK frequency shift keyingFSM finite-state machineFSPM FAL service protocol machineFSSA fixed structure stochastic automatonFSS flight service stationFSW friction stir weldingFTA fault tree analysisFTC fault tolerant controlFTE flight technical errorFTE full-time equivalentFTL flexible transfer lineFTP file transfer protocolFTSIA fault-tolerance sensor integration

algorithmFTTP fault tolerant time-out protocalFW framework

G

G2B government-to-businessG2C government-to-citizenG2G government-to-governmentGAGAN GEO augmented navigationGAIA geometrical analytic for interactive aidGAMP good automated manufacturing practiceGATT General Agreement on Tariffs and TradeGA genetic algorithmsGBAS ground-based augmentation system

GBIP general purpose interface busGBS goal-based scenarioGDP gross domestic productGDP ground delay programGDSII graphic data system IIGDSS group decision support systemGECCO Genetic and Evolutionary Computation

ConferenceGEM generic equipment modelGERAM generalized enterprise reference

architecture and methodologyGIS geographic information systemGLS GNSS landing systemGLUT4 activated Akt and PKCζ trigger glucose

transporterGMAW gas metal arc weldingGMCR graph model for conflict resolutionGNSS global navigation satellite systemGPA generalized pursuit algorithmGPC generalized predictive controlGPRS general packet radio serviceGPS global positioning systemGPWS ground-proximity warning systemGP genetic programmingGRAI graphes de résultats et activités interreliésGRAS ground regional augmentation systemGRBF Gaussian RBFGSM global system for mobile communicationGTAW gas tungsten arc weldingGUI graphic user interface

H

HACCP hazard analysis and critical control pointsHACT human–automation collaboration

taxonomyHAD heterogeneous, autonomous, and

distributedHART highway addressable remote transducerHCI human–computer interactionHCS host computer systemHDD hard-disk driveHEA human error analysisHEFL hybrid electrode fluorescent lampHEP human error probabilityHERO highway emergency response operatorHES handling equipment schedulingHFDS Human Factors Design StandardHF high-frequencyHID high-intensity dischargeHIS hospital information systemHITSP Healthcare Information Technology

Standards PanelHIT healthcare information technologyHIV human immunodeficiency virusHJB Hamilton–Jacobi–Bellman

List of Abbreviations LXVII

HL7 Health Level 7HMD helmet-mounted displayHMI human machine interfaceHMM hidden Markov modelHMS hierarchical multilevel systemHOMO highest occupied molecular orbitalHPC high-performance computingHPLC high-performance liquid chromatographyHPSS High-Performance Storage SystemHPWREN High-Performance Wireless Research and

Education NetworkHP horsepowerHRA human reliability analysisHR human resourcesHSE high speed EthernetHSI human system interfaceHSMS high-speed message standardHTN hierarchical task networkHTTP hypertext transfer protocolHUD heads up displayHUL Harvard University LibraryHVAC heating, ventilation, air-conditioningHazop hazardous operationHiL hardware-in-the-loop

I

i-awGA interactive adaptive-weight geneticalgorithm

I(P)AD intelligent (power) assisting deviceI/O input/outputIAMHS integrated automated material handling

systemIAT Institut Avtomatiki i TelemekhanikiIAT interarrival timeIB internet bankingICAO International Civil Aviation OrganizationICORR International Conference on

Rehabilitation RoboticsICRA International Conference on Robotics and

AutomationICT information and communication

technologyIC integrated circuitIDEF integrated definition methodIDL Interactive Data LanguageIDM iterative design modelID identificationID instructional designIEC International Electrotechnical

CommissionIFAC International Federation of Automatic

ControlIFC industry foundation classIFF identify friend or foeIFR instrument flight rules

IGRT image-guided radiation therapyIGS intended goal structureIGVC Intelligent Ground Vehicle CompetitionIHE integrating the healthcare enterpriseIIT information interface technologyIK inverse kinematicsILS instrument landing systemILS integrated library systemIL instruction listIMC instrument meteorological conditionIMC internal model controllerIML inside mold lineIMM interactive multiple modelIMRT intensity modulated radiotherapyIMS infrastructure management serviceIMT infotronics and mechatronics technologyIMU inertial measurement unitINS inertial navigation systemIO inputoutputIPA intelligent parking assistIPS integrated pond systemIPv6 internet protocol version 6IP inaction–penaltyIP industrial protocolIP integer programmingIP intellectual propertyIP internet protocolIRAF Image Reduction and Analysis FacilityIRB institutional review boardIRD interactive robotic deviceIROS Intelligent Robots and SystemsIRR internal rate of returnIRS1 insulin receptor substrate-1IR infraredISA instruction set architectureISCIS intra-supply-chain information systemiSCSI Internet small computer system interfaceISDN integrated services digital networkISELLA intrinsically safe lightweight low-cost

armISIC/MED Intelligent Control/Mediterranean

Conference on Control and AutomationISM industrial, scientific, and medicalISO-OSI International Standards Organization

Open System InterconnectionISO International Organization for

StandardizationISO independent system operatorISP internet service providerISS input-to-state stabilityIS information systemITC information and communications

technologyITS intelligent transportation systemIT information technologyIVBSS integrated vehicle-based safety system

LXVIII List of Abbreviations

IVI Intelligent Vehicle InitiativeIV intravenous

J

J2EE Java to Enterprise EditionJAUGS joint architecture for unmanned ground

systemJCL job control languageJDBC Java database connectivityJDEM Joint Dark Energy MissionJDL job description languageJIT just-in-timeJLR join/leave/remainJPA job performance aidJPDO joint planning and development officeJPL Jet Propulsion LaboratoryJSR-001 Java specification requestJava RTS Java real-time systemJava SE Java standard runtime environmentJeLC Japan e-Learning Consortium

K

KADS knowledge analysis and documentationsystem

KCL Kirchhoff’s current lawKCM knowledge chain managementKIF knowledge interchange formatKISS keep it simple systemKM knowledge managementKPI key performance indicatorsKQML knowledge query and manipulation

languageKS knowledge subsystemKTA Kommissiya Telemekhaniki i AvtomatikiKVL Kirchhoff’s voltage lawKWMS Kerry warehouse management system

L

LAAS local-area augmentation systemLADARS precision laser radarLAN local-area networkLA learning automataLBNL Lawrence Berkeley National LaboratoryLBW Laser beam weldingLC/MS liquid-chromatography mass

spectroscopyLCD liquid-crystal displayLCG LHC computing gridLCMS learning contents management systemLCM lane change/merge warningLC lean constructionLDW lane departure warningLDW lateral drift warning system

LD ladder diagramLEACH low-energy adaptive clustering hierarchyLED light-emitting diodeLEEPS low-energy electron point sourceLEO Lyons Electronic OfficeLES logistic execution systemLFAD light-vehicle module for LCM, FCW,

arbitration, and DVILF low-frequencyLHC Large Hadron ColliderLHD load–haul–dumpLIFO last-in first-outLIP learning information packageLISI levels of information systems

interoperabilityLISP list processingLLWAS low-level wind-shear alert systemLMFD left matrix fraction descriptionLMI linear matrix inequalityLMPM link layer mapping protocol machineLMS labor management systemLNAV lateral navigationLOA levels of automationLOCC lines of collaboration and commandLOC level of collaborationLOINC logical observation identifiers names and

codesLOM learning object metadata/learning object

reference modelLORANC long-range navigational systemLPV localizer performance with vertical

guidanceLP linear programmingLQG linear-quadratic-GaussianLQR linear quadratic regulatorLQ linear quadraticLS/AMC living systems autonomic machine

controlLS/ATN living systems adaptive transportation

networkLS/TS Living Systems Technology SuiteLSL low-level switchLSST Large Synoptic Survey TelescopeLSS large-scale complex systemLS language subsystemLTI linear time-invariantLUMO lowest unoccupied molecular orbitalLUT look-up tableLVAD left ventricular assist deviceLVDT linear variable differential transformer

M

m-SWCNT metallic SWCNTM/C machining centerM2M machine-to-machine

List of Abbreviations LXIX

MAC medium access controlMADSN mobile-agent-based DSNMAG metal active gasMAN metropolitan area networkMAP manufacturing assembly pilotMAP mean arterial pressureMAP missed approach pointMARC machine-readable catalogingMARR minimum acceptable rate of returnMAS multiagent systemMAU medium attachment unitMAV micro air vehicleMBP Manchester bus poweredMCC motor control centerMCDU multiple control display unitMCP mode control panelMCP multichip packageMCS material control systemMDF medium-density fiberMDI manual data inputMDP Markov decision processMDS management decision systemMD missing a detectionMEMS micro-electromechanical systemMEN multienterprise networkMERP/C ERP e-learning by MBE simulations with

collaborationMERP Management Enterprise Resource

PlanningMES manufacturing execution systemMETU Middle East Technical UniversityMFD multifunction displayMHA material handling automationMHEM material handling equipment machineMHIA Material Handling Industry of AmericaMH material handlingMIG metal inert gasMIMO multi-input multi-outputMIP mixed integer programmingMIS management information systemMIS minimally invasive surgeryMIT Massachusetts Institute of TechnologyMIT miles in-trailMKHC manufacturing know-how and

creativityMLE maximum-likelihood estimationMMS man–machine systemMMS material management systemMOC mine operation centermoGA multiobjective genetic algorithmMOL middle of lifeMOM message-oriented middlewareMPAS manufacturing process automation

systemMPA metabolic pathway analysisMPC model-based predictive control

mPDPTW multiple pick up and delivery problemwith time windows

MPEG Motion Pictures Expert GroupMPLS multi protocol label switchingMPS master production scheduleMQIC Medical Quality Improvement

ConsortiumMRI magnetic resonance imagingMRO maintenance, repair, and operationsMRPII material resource planning (2nd

generation)MRPI material resource planning (1st

generation)MRP manufacturing resources planningMRR material removal rateMSAS MTSAT satellite-based augmentation

systemMSAW minimum safe warning altitudeMSA microsensor arrayMSDS material safety data sheetMSI multisensor integrationMSL mean sea levelMTBF mean time between failureMTD maximum tolerated doseMTE minimum transmission energyMTSAT multifunction transport satelliteMTTR mean time to repairMUX multiplexorMVFH minimum vector field histogramMV manipulated variablesMWCNT multi-walled carbon nanotubeMWKR most work remainingMcTMA multicenter traffic management advisorMcr multi-approach to conflict resolutionMeDICIS methodology for designing

interenterprise cooperative informationsystem

MidFSN middleware for facility sensor networkMips million instructions per secondM&S metering and spacing

N

NAE National Academy of EngineeringNAICS North American Industry Classification

SystemNASA National Aeronautics and Space

AdministrationNASC Naval Air Systems CommandNAS National Airspace SystemNATO North Atlantic Treaty OrganizationNBTI negative-bias temperature instabilityNCS networked control systemNC numerical controlNDB nondirectional beaconNDHA National Digital Heritage Archive

LXX List of Abbreviations

NDI nondestructive inspectionNDRC National Defence Research CommitteeNEAT Near-Earth Asteroid Tracking ProgramNEFUSER neural-fuzzy system for error recoveryNEFUSER neuro-fuzzy systems for error recoveryNEMA National Electrical Manufacturers

AssociationNEMS nanoelectromechanical systemNERC North American Electric Reliability

CorporationNERSC National Energy Research Scientific

Computing CenterNES networked embedded systemNFC near field communicationNHTSA National Highway Traffic Safety

AdministrationNICU neonatal intensive care unitNIC network interface cardNIR near-infraredNISO National Information Standards

OrganizationNIST National Institute of StandardsNLP natural-language processingNNI national nanotechnology initiativenon RT nonreal-timeNP nondeterministic polynomial-timeNPC nanopore channelNPV net present valueNP nominal performanceNRE nonrecurring engineeringnsGA nondominated sorting genetic algorithmnsGA II nondominated sorting genetic

algorithm IINSS Federal Reserve National Settlement

SystemNS nominal stabilityNURBS nonuniform rational B-splinesNYSE New York Stock ExchangeNaroSot Nano Robot World Cup Soccer

TournamentNoC network on chip

O

O.R. operations researchO/C open-circuitOAC open architecture controlOAGIS open applications groupOAI-PMH open archieves initiative protocol for

metadate harvestingOASIS Organization for the Advancement of

Structured Information StandardsOBB oriented bounding boxOBEM object-based equipment modelOBS on-board softwareOBU onboard unit

OCLC Ohio College Library CenterODBC object database connectivityODE ordinary differential equationODFI originating depository financial

institutionOECD Organization for Economic Cooperation

and DevelopmentOEE overall equipment effectivenessOEM original equipment manufacturerOGSA open grid services architectureOHT overhead hoist transporterOHT overhead transportOLAP online analytical processOLE object linking and embeddingOML outside mold lineOMNI office wheelchair with high

manoeuvrability and navigationalintelligence

OMS order managements systemONIX online information exchangeOOAPD object-oriented analysis, design and

programmingOODB object-oriented databaseOOM object-oriented methodologyOOOI on, out, off, inOOP object-oriented programmingOO object-orientedOPAC online public access catalogOPC AE OPC alarms and eventsOPC XML-DA OPC extensible markup language (XML)

data accessOPC online process controlOPM object–process methodologyOQIS online quality information systemORF operating room of the futureORTS open real-time operating systemOR operating roomOR operation researchOSHA Occupation Safety and Health

AdministrationOSRD Office of Scientific Research and

DevelopmentOSTP Office of Science and Technology PolicyOS operating systemOTS operator training systemsOWL web ontology language

P

P/D pickup/deliveryP/T place/transitionPACS picture archiving and communications

systemPAM physical asset managementPAM pulse-amplitude modulationPAN personal area network

List of Abbreviations LXXI

PARR problem analysis resolution and rankingPAT process analytical technologyPAW plasma arc weldingPBL problem-based learningPBPK physiologically based pharmacokineticPCA principal component analysisPCBA printed circuit board assemblyPCB printed circuit boardPCFG probabilistic context-free grammarPCI Peripheral Component InterconnectPCR polymerase chain reactionPC personal computerPDA personal digital assistantPDC predeparture clearancePDDL planning domain definition languagePDF probability distribution functionpdf probability distribution functionPDITC 1,4-phenylene diisothiocyanatePDKM product data and knowledge managementPDM product data managementPDSF Parallel Distributed Systems FacilityPDT photodynamic therapyPD pharmacodynamicsPECVD plasma enhanced chemical vapor

depositionPEID product embedded information devicePERA Purdue enterprise reference architecturePERT/CPM program evaluation and review

technique/critical path methodPERT project evaluation and review techniquePET positron emission tomographyPE pulse echoPFS precision freehand sculptorPF preference functionPGP pretty good privacyPHA preliminary hazard analysisPHERIS public-health emergency response

information systemPHR personal healthcare recordPI3K phosphatidylinositol-3-kinasePID proportional, integral, and derivativePISA Program for International Student

AssessmentPI proportional–integralPKI public-key infrastructurePKM parallel kinematic machinePK pharmacokineticsPLA programmable logic arrayPLC programmable logic controllerPLD programmable logic devicePLM product lifecycle managementPMC process module controllerPMF positioning mobile with respect to fixedPM process modulePOMDP partially observable Markov decision

process

POS point-of-salePPFD photosynthetic photon flux densityPPS problem processing subsystemPRC phase response curvePROFIBUS-DP process field bus–decentralized peripheralPROMETHEE preference ranking organization method

for enrichment evaluationPR primary frequencyPSAP public safety answering pointPSC product services centerPSF performance shaping factorPSH high-pressure switchPSK phase-shift keyingPSM phase-shift maskPS price settingPTB German Physikalisch-Technische

BundesanstaltPTO power takeoffPTP point-to-point protocolPTS predetermined time standardPWM pulse-width-modulationPXI PCI extensions for instrumentationProVAR professional vocational assistive robotProlog programming in logicsP&ID piping & instrumentation diagram

Q

QAM quadrature amplitude modulationQTI question and test interoperabilityQoS quality of service

R

R.U.R. Rossum’s universal robotsR/T mPDPSTWmultiple pick up and delivery problem

with soft time windows in real timeRAID redundant array of independent diskRAID robot to assist the integration of the

disabledRAIM receiver autonomous integrity monitoringrALB robot-based assembly line balancingRAM random-access memoryRAP resource allocation protocolRAS recirculating aquaculture systemRA resolution advisoryRBC red blood cellRBF radial basis functionrcPSP resource-constrained project scheduling

problemRCP rapid control prototypingRCRBF raised-cosine RBFRC remote controlRC repair centerRDB relational databaseRDCS robust design computation system

LXXII List of Abbreviations

RDCW FOT Road Departure Crash Warning SystemField Operational Test

RDCW road departure crash warningRDF resource description frameworkRET resolution enhancement techniqueRE random environmentRFID radiofrequency identificationRF radiofrequencyRGB red–green–blueRGV rail-guided vehicleRHC receding horizon controlRHIO regional health information organizationRIA Robotics Industries AssociationRISC reduced instruction set computerRIS real information systemRI reward–inactionRLG Research Libraries GroupRLG ring-laser-gyroRMFD right matrix fraction descriptionRMS reconfigurable manufacturing systemsRMS reliability, maintainability, and safetyRMS root-mean-squareRM real manufacturingRNAV area navigationRNA ribonucleic acidRNG random-number generatorRNP required navigation performanceROBCAD robotics computer aided designROI return on investmentROM range-of-motionROT runway occupancy timeROV remotely operated underwater vehicleRO read onlyRPC remote procedure callRPM revolutions per minuteRPN risk priority numberRPS real and physical systemRPTS robot predetermined time standardRPU radar processing unitRPV remotely piloted vehicleRPW ranked positioned weightRP reward–penaltyRRT rapidly exploring random treeRSEW resistance seam weldingRSW resistance spot weldingRS robust stabilityRT DMP real-time decision-making processesRT-CORBA real-time CORBARTA required time of arrivalRTDP real-time dynamic programmingRTD resistance temperature detectorRTE real-time EthernetRTK GPS real-time kinematic GPSRTL register transfer levelRTM resin transfer moldingRTM robot time & motion method

RTOS real-time operating systemRTO real-time optimizationRTO regional transmission organizationRTSJ real-time specification for JavaRT radiotherapyRT register transferrwGA random-weight genetic algorithmRW read/writeRZPR power reserveRZQS quick-start reserveRecon retrospective conversionR&D research and development

S

s-SWCNT semiconducting MWCNTS/C short-circuitSACG Stochastic Adaptive Control GroupSADT structured analysis and design techniqueSAGA Standards und Architekturen für

e-Government-Anwendungen – standardsand architectures for e-Governmentapplications

sALB simple assembly line balancingSAM self-assembled monolayerSAM software asset managementSAN storage area networkSAO Smithsonian Astrophysical ObservatorySAW submerged arc weldingSA situation awarenessSBAS satellite-based augmentation systemSBIR small business innovation researchSBML system biology markup languageSCADA supervisory control and data acquisitionSCARA selective compliant robot armSCC somatic cell countSCM supply chain managementSCNM slot communication network managementSCN suprachiasmatic nucleusSCORM sharable content object reference modelSCST source-channel separation theoremSDH synchronous digital hierarchySDSL symmetrical digital subscriber lineSDSS Sloan Digital Sky Survey IISDSS spatial decision support systemSDS sequential dynamic systemSDT signal detection theorySECS semiconductor equipment

communication standardSEC Securities and Exchange ComissionSEER surveillance, epidemiology, and end

resultSEI Software Engineering InstituteSELA stochastic estimator learning algorithmSEMI Semiconductor Equipment and Material

International

List of Abbreviations LXXIII

SEM scanning electron microscopySEM strategic enterprise managementSESAR Single European Sky ATM researchSESS steady and earliest starting scheduleSFC sequential function chartSFC space-filling curveSHMPC shrinking horizon model predictive

controlSIFT scale-invariant feature transformSIL safety integrity levelSIM single input moduleSISO single-input single-outputSIS safety interlock systemSKU stock keeping unitSLAM simultaneous localization and mapping

techniqueSLA service-level agreementSLIM-MAUD success likelihood index

method-multiattribute utilitydecomposition

SLP storage locations planningSL sensitivity levelSMART Shimizu manufacturing system by

advanced robotics technologySMAW shielded metal arc weldingSMA shape-memory alloysSMC sequential Monte CarloSME small and medium-sized enterprisesSMIF standard mechanical interfaceSMS short message serviceSMTP simple mail transfer protocolSMT surface-mounting technologySNA structural network analysisSNIFS Supernova Integral Field SpectrographSNLS Supernova Legacy SurveySNOMED systematized nomenclature

of medicineSNfactory Nearby Supernova FactorySN supernovaSOAP simple object access protocolSOA service-oriented architectureSOC system operating characteristicSOI silicon-on-insulatorSONAR sound navigation and rangingSO system operatorSPC statistical process controlSPF/DB superplastic forming/diffusion bondingSPF super plastic formingSPIN sensor protocol for information via

negotiationSPI share price indexSQL structured query languageSRAM static random access memorySRI Stanford Research InstituteSRL science research laboratorySRM supplier relationship management

SSADM structured systems analysis and designmethod

SSA stochastic simulation algorithmssDNA single-strand DNASSH secure shellSSL secure sockets layerSSO single sign-onSSR secondary surveillance radarSSSI single-sensor, single-instrumentSSV standard service volumeSS speed-sprayerSTARS standard terminal automation

replacement systemSTAR standard terminal arrival routeSTA static timing analysisSTCU SmallTown Credit UnionSTEM science, technology, engineering, and

mathematicsSTM scanning tunneling microscopeSTTPS single-truss tomato production systemST structured textSUV sports utility vehicleSVM support vector machineSVS synthetic vision systemSV stroke volumeSWCNT single-walled carbon nanotubeSWP single-wafer processingSW stroke workSaaS software as a serviceServSim maintenance service simulatorSiL software-in-the-loopSmac second mitochondrial-activator caspaseSoC system-on-chipSoD services-on-demandSoS systems of systemsSoTL scholarship of teaching and learningSunfall Supernova Factory Assembly LinespEA strength Pareto evolutionary algorithmSysML systems modeling language

T

TACAN tactical air navigationTALplanner temporal action logic plannerTAP task administration protocolTAR task allocation ratioTA traffic advisoryTB terabytesTCAD technology computer-aided designTCAS traffic collision avoidance systemTCP/IP transmission control protocol/internet

protocolTCP transmission control protocolTCS telescope control systemTDMA time-division multiple access

LXXIV List of Abbreviations

TEAMS testability engineering and maintenancesystem

TEG timed event graphTEM transmission electron microscopeTER tele-ultrasonic examinationTFM traffic flow managementTHERP technique for human error rate predictionTHR total hip replacementTHW time headwayTIE/A teamwork integration evaluator/agentTIE/MEMS teamwork integration evaluator/MEMSTIE/P teamwork integration evaluator/protocolTIF data information forwardingTIG tungsten inert gasTIMC techniques for biomedical engineering

and complexity managementTLBP transfer line balancing problemTLPlan temporal logic plannerTLX task load indexTMA traffic management advisorTMC traffic management centerTMC transport module controllerTMS transportation management systemTMU traffic management unitTOP time-out protocolTO teleoperatorTPN trading process networkTPS throttle position sensorTPS transaction processing systemTRACON terminal radar approach controlTRIPS trade related aspects of intellectual

property rightsTRV total removal volumeTSCM thin-seam continuous miningTSE total system errorTSMP time synchronized mesh protocolTSTP transportation security training portalTTC time-to-collisionTTF time to failureTTR time to repairTTU through transmission ultrasoundTU transcriptional unitTV televisionTestLAN testers local area network

U

UAT universal access transceiverUAV unmanned aerial vehicleUCMM unconnected message managerUCTE Union for the Co-ordination of

Transmission of ElectricityUDDI universal description, discovery, and

integrationUDP user datagram protocolUEML unified enterprise modeling language

UGC user generated contentUHF ultrahigh-frequencyUI user interfaceUMDL University of Michigan digital libraryUML universal modeling languageUMTS universal mobile telecommunications

systemUMTS universal mobile telecommunications

systemUN/CEFACT United Nations Centre for Trade

Facilitation and Electronic BusinessUN United NationsUPC universal product codeUPMC University of Pittsburgh Medical CenterUPS uninterruptible power supplyURET user request evaluation toolURL uniform resource locatorURM unified resource managementUR universal relayUSB universal serial busUSC University of Southern CaliforniaUTLAS University of Toronto Library

Automation SystemUT ultrasonic testingUV ultravioletUWB ultra wire band

V

VAN-AP VAN access pointVAN value-added networkVAN virtual automation networkVAV variable-air-volumeVCR video cassette recorderVCT virtual cluster toolVDL VHF digital linkVDU visual display unitveGA vector evaluated genetic algorithmVE virtual environmentVFD variable-frequency driveVFEI virtual factory equipment interfaceVFR visual flight ruleVHDL very high speed integrated circuit

hardware description languageVHF very high-frequencyVICS vehicle information and communication

systemVII vehicle infrastructure integrationVIS virtual information systemVLSI very-large-scale integrationVMEbus versa module eurobusVMIS virtual machining and inspection systemVMI vendor-managed inventoryVMM virtual machine monitorVMT vehicle miles of travelVM virtual machine

List of Abbreviations LXXV

VM virtual manufacturingVNAV vertical navigationVNC virtual network computingVOD virtual-object-destinationVORTAC VOR tactical air navigationVOR VHF omnidirectional rangeVPS virtual physical systemVP virtual prototypingVRP vehicle routing problemVR virtual realityVSG virtual service-oriented environmentVSP vehicle scheduling problemVSSA variable structure stochastic automataVTLS Virginia Tech library systemVTW virtual training workshopVTx virtualization technologyVoD video on demand

W

W/WL wired/wirelessWAAS wide-area augmentation systemWAN wide area networkWASCOR WASeda construction robotWBI wafer burn-inWBS work breakdown structureWBT web-based trainingWCDMA wideband code division multiple accessWFMS workflow management systemWI-Max worldwide interoperability for microwave

accessWIM World-In-MiniaturWIP work-in-progressWISA wireless interface for sensors and actuatorWLAN wireless local area network

WLN Washington Library NetworkWL wireless LANWMS warehouse management systemWMX weight mapping crossoverWORM write once and read manyWPAN wireless personal area networkWSA work safety analysisWSDL web services description languageWSN wireless sensor networkWS wage settingWTO World Trade OrganizationWWII world war 2WWW World Wide WebWfMS workflow management systemWi-Fi wireless fidelity

X

XIAP X-linked inhibitor of apoptosis proteinXML extensible mark-up languageXSLT extensible stylesheet language

transformationXöV XML for public administration

Y

Y2K year-2000YAG Nd:yttrium–aluminum–garnetZDO Zigbee device object

Z

ZVEI Zentralverband Elektrotechnik- undElektronikindustrie e.V.