37
1 Solutions to Spectroscopy Problems Building Bridges to Knowledge Photo exiting a tunnel on the Freeway in Shanghai, China 1. Convert 3.96 μm to cm -1 2. Give a brief explanation about the theory of infrared spectroscopy. An infrared spectrum occurs when the frequency of infrared radiation incident on organic molecules equals the frequency of the vibrating bonds attached to atoms in the molecule. The infrared energy absorbed is equal to the energy associated with the vibrating molecule. The radiation absorbed 3.96 x 10 6 x 1 m 1 x 10 6 m x 100 cm 1 m = 3.96 x 10 4 cm = λ ν cm 1 = 1 λ = 1 3.96 x 10 4 cm = 2.53 x 10 3 cm 1

Solutions to Spectroscopy Problems, Building Bridges to Knowledge

Embed Size (px)

DESCRIPTION

Solutions to the problems on pages 138 to 158 of "Spectroscopy, Building Bridges to Knowledge."

Citation preview

Page 1: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

1

SolutionstoSpectroscopyProblemsBuildingBridgestoKnowledge

PhotoexitingatunnelontheFreewayinShanghai,China

1. Convert3.96μmtocm-1

2. Giveabriefexplanationaboutthetheoryofinfraredspectroscopy.

Aninfraredspectrumoccurswhenthefrequencyofinfraredradiationincidentonorganicmoleculesequalsthefrequencyofthevibratingbondsattachedtoatomsinthemolecule.Theinfraredenergyabsorbedisequaltotheenergyassociatedwiththevibratingmolecule.Theradiationabsorbed

3.96 x 10−6 x 1 m1 x 106 m

x 100 cm1 m

= 3.96 x 10−4 cm = λ

ν cm−1 = 1λ

= 13.96 x 10−4 cm

= 2.53 x 103 cm−1

Page 2: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

2

canbemeasured,orthelighttransmittedcanbemeasured.Thelightabsorbedortransmittedisrelatedtothewavelengthorwavenumbercorrespondingtothelightabsorbedortransmitted.

3. Calculatetheapproximatestretchingvibration,inwavenumbers,fortheC-Fbondiftheforceconstant,k,isapproximately760N/m.

4. Howmanyfundamentalvibrationsarepredictedforthenon-linearwatermolecule?Howmanyfundamentalvibrationsarepredictedforthelinearcarbondioxidemolecule?Thetheoreticalnumberoffundamentalvibrationsforwaterwouldbedeterminedby3n–6

3(3)-6=3

1λm

= νm−1 = 5.309 x 10−10 s

m760 kg-m/ms2

(12.0 g/6.022 x1023) x (19.0 g/6.022 x 1023)12.0 g

6.022 x 1023 + 19.0 g6.022 x 1023

1λm

= νm−1 = 5.309 x 10−10 s

m760 kg-m/ms2

(1.99 x 10−23 g) x (3.155 x 10−23 g)1.99 x 10−23 g + 3.155 x 10−23 g

1λm

= νm−1 = 5.309 x 10−10 s

m760 kg/s2

6.278 x 10−46 g2

5.145 x 10−23 g

1λm

= νm−1 = 5.309 x 10−10 s

m760 kg/s2

1.22 x 10−23 g

1λm

= νm−1 = 5.309 x 10−10 s

m760 kg/s2

1.22 x 10−23 g x 1 kg1000 g

1λm

= νm−1 = 5.309 x 10−10 m−1 x 2.50 x 1014 1

s = 1.33 x 105 m−1

1λcm

= νcm−1 = 1.33 x 105 m−1 x 1 m

100 cm = 1.33 x 103 cm−1

Page 3: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

3

Thetheoreticalnumberoffundamentalvibrationsforthelinear moleculecarbondioxide,CO2,wouldbedeterminedby3n-5 3(3)-5=4

5. Listsfourreasonswhyallpredictedfundamentalvibrationsofabondmaynotappearintheinfraredspectrum.Thereisnochangeinthedipolemomentofthemoleculeduringvibration.Absorptionoccursoutsidetheregionofthespectrumunderobservation.

Thevibrationsresultinabsorptionssoclosethattheycoalesce. Theabsorptionsaretooweaktobeseen.

6. DrawtheexpectedfundamentalvibrationsforCO2andlabelthedegeneratemodes.Thenumberofvibrationsexpectedforcarbondioxide,alinearmolecule,wouldbe3(3)-5=4.Thefourpossiblevibrationmodesare:

Page 4: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

4

Thetwobendingmodes,CandD,aredegenerate(thesameinenergy);therefore,onlyonebendingvibrationisobservedintheinfrared(IR).ThesymmetricalstretchingvibrationAdoesnotinvolveachangeindipolemoment,i.e.,thedipolemomentofAiszero;therefore,thisstretchingvibrationisinfraredinactive.Theseillustrationscanberepeatedforanyoftheaxes,andtheresultswouldbethesame.Sonomatterhowthemoleculemovesinspace,thereareonlytwovibrationsthatwouldbeIRactive–theasymmetricalstretchingvibrationandthebendingvibration.Therefore,theIRspectrumofcarbondioxidewouldbe:

7. UsingthedatainTable10.2,calculatethewavenumbersfortheC≡Nand

C≡Cstretchingvibrations.Thecalculatedwavenumberforthecarbon-nitrogentriplebondis:

1λm

= νm−1 = 5.309 x 10−10 s

m1750 kg-m/ms2

(12.0 g/6.022 x 1023)(14.0 g/6.022 x 1023)12.0 g

6.022 x 1023 + 14.0 g 6.022 x 1023

1λm

= νm−1 = 5.309 x 10−10 s

m1750 kg-m/ms2

1.07 x 10−23 g1λm

= νm−1 = 5.309 x 10−10 s

m1750 kg-m/ms2

1.07 x 10−23 g x 1 kg1000 g

1λm

= νm−1 = 5.309 x 10−10 s

m x 4.045 x 1014 1

s = 2.15 x 105 m−1

Page 5: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

5

Thecalculatedwavenumberforthecarbon-carbontriplebondis:

8. PredictwhichofthefollowingcompoundswouldgivelittleornoC≡Cstretchingtransmittancebands:

(a)H-C≡C-CH3(b)H-C≡C-CH2CH3 (c)CH3C≡CCH3(d)CH3CH2CH2C≡CCH3

Theinfraredstretchingvibrationforthetriplebondin“c”wouldnotbeobservedbecausethereisnochangeinthedipolemomentofthemoleculeduringvibration.

9. Thecarbon-oxygendoublebondappearsatahigherwavenumber(higherfrequencyofinfraredradiation)thanthecarbon-oxygensinglebond.Giveanexplanationforthisobservation.Thecarbon-oxygendoublebondhasastrongerforceconstantthanthecarbon-oxygensinglebond,andtheforceconstantisdirectlyproportionaltothewavenumber.

10. Acertaincompoundgivesacarbonylabsorptionatapproximately1775cm-1.Whichofthefollowingcompoundswouldgiverisetoatransmittancebandat1775cm-1?Giveanexplanationforyourselection.

1λcm

= νcm−1 = 2.15 x 105 m−1 x 1 m

100 cm = 2.15 x 103 cm−1

1λm

= νm−1 = 5.309 x 10−10 s

m1560 kg-m/ms2

(12.0 g/6.022 x 1023)(12.0 g/6.022 x 1023)12.0 g

6.022 x 1023 + 12.0 g 6.022 x 1023

1λm

= νm−1 = 5.309 x 10−10 s

m1560 kg-m/ms2

9.95 x 10−24 g

1λm

= νm−1 = 5.309 x 10−10 s

m1560 kg-m/ms2

9.95 x 10−24 g x 1 kg1000 g

1λm

= νm−1 = 5.309 x 10−10 s

m x 3.96 x 1014 1

s = 2.10 x 105 m−1

1λcm

= νcm−1 = 2.10 x 105 m−1 x 1 m

100 cm = 2.10 x 103 cm−1

Page 6: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

6

Theinfraredspectrumof“d”(cyclobutanone)wouldexhibitacarbonylabsorptionat1775cm-1.Cyclobutanonehasanglestrainsofabout19.5o,andthisstrainincreasesthenumericalvalueoftheforceconstant,k.Theforceconstantisdirectlyproportionaltothewavenumber;consequently,thewavenumberincreasesfromanexpectedvalueofabout1724cm-1to1775cm-1.

11.WhenacarbonylgroupisconjugatedwithaC-Cdoublebond,theconjugationlowerstheobservedwavenumberbyapproximately20cm-1ascomparedtoanonconjugatedcarbonyl.Forexample,compoundsAhasastrongtransmittancebandat1715cm-1andcompoundBhasastrongtransmittancebandat1685cm-1.

Basedonthetransmittancebandforcyclohexanoneat1715cm-1and1724cm-1forcyclopentanone,predicttheabsorptionfor

Thetransmittancebandfor2-cyclohexenonewouldbe1695cm-1,andthetransmittancebandfor2-cyclopentenonewouldbe1704cm-1.

CH3 C

O

CH3

O O O

a b c d

CH3

CH3

C H CH2 C CH3

O

C

CH3

CH3

CH C

O

CH3

A B

O O

and

Page 7: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

7

12.Howcouldyouuseinfraredspectroscopytodistinguishbetweenthefollowingcompoundpairs?Indicatethecharacteristicabsorptionsexpectedforeachstructure.

(a)

Thecarboxylicacidwouldexhibitabroad0Hstretchingvibrationbetween3500cm-1-2500cm-1andacarbonylstretchingvibrationbetween1720cm-1-1696cm-1.ThealdehydewouldexhibitaC-Hstretchingvibrationofthehydrogenattachedtothecarbonylgroupbetween2830cm-1-2695cm-1,andacarbonylstretchingvibrationatabout1724cm-1.

(b)

Theketonewouldexhibitastretchingvibrationbetweenatapproximately1724cm-1.Theesterwouldexhibitacarbonylstretchingvibrationbetween1750cm-1-1735cm-1,andcarbon-oxygentransmittancebandsat1250cm-1and1051cm-1.(c)

2-Cyclohexenonewouldexhibitacarbonylstretchingvibrationat1695cm-1,andcyclohexanonewouldexhibitacarbonylstretchingvibrationat1715cm-1.

C

O

C

O

CH3CH2CH2 OH CH3CH2CH2 H

CH3C

O

C

O

CH3CH2CH2 CH3CH2CH2 OCH3

O O

Page 8: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

8

(d)

Thenitrilewouldexhibitasharptransmittancebandbetween2260cm-1-2222cm-1.TheAlkynewouldnotexhibitatransmittancebandbetween2260cm-1-2100cm-1,becausethemoleculeissymmetrical;therefore,thereisnochangeinthedipolemomentofthemoleculeduringvibration.(e)

Cyclobutanone(transmittancebandatapproximately1780cm-1)ismorestrainedthancyclohexanone(transmittancebandatapproximately1715cm-1);therefore,thecarbonyltransmittanceband(approximately1780cm-1)forcyclobutanonewouldappearatahigherwavenumber.(f)

Thet-butylgroupischaracterizedbytwobendingvibrationsat1395cm-1–1385cm-1andamoreintensetransmittancebandnear1370cm-1.Thesetransmittancebandsarenotexhibited1-butanol.(g)

Theisopropylgroupischaracterizedbyastrongdoubletbetween1388cm-1–1380cm-1asaconsequenceofbendingvibrations.Thisdoubletisnotexhibitedbyn-pentane.

CH3 CC CH3CH3CH2C N

OO

CH3

CH3

CH3

C OH CH3CH2CH2CH2OH

CH2 CHCH3CH2CH2CH2CH3 CH3CH CH3

CH3 CH3

Page 9: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

9

(h)

2-Butanonewouldexhibitastrongtransmittancebandatabout1724cm-1.Thisisnotthecaseforethylmethylether;however,theetherwouldexhibitastrongtransmittancebandbetween1150cm-1–1085cm-1.(i)

Thecarboxylicacid,cyclohexylaceticacid,wouldexhibitabroadtransmittancebandbetween3300cm-1–2500cm-1andanintensetransmittancebandforthecarbonylgroupbetween1720cm-1–1695cm-1.1-Propanolwouldexhibitatransmittancebandbetween3200cm-1–3000cm-1.(j)

2-Methylpropanoicacidwouldexhibitabroadtransmittancebandbetween3300cm-1–2500cm-1andanintensetransmittancebandforthecarbonylgroupbetween1720cm-1–1695cm-1. Theanhydridewouldexhibittwostrongtransmittancebandsat1786cm-1and1724cm-1

CH3

O

CH3CH2CH2CH3CH2C OCH3

O

CCH3CH2CH2OH CH2 OH

CH3

CH3

CH3

CH

CH C

C

O

O

O

H3C

H3C

CHH3C C

O

OH

Page 10: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

10

13. SketchtheH1NMRspectrumfor

C C

CH3

O

C

H

H

H

a. b.

C C

CH3

H

H O

H

Page 11: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

11

a.

Jisthespacingcoupling;therefore,JachasalargervaluethanJab;JachasalargervaluethanJbc;andJabhasalargervaluethanJbc.

Page 12: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

12

b.

Thehydrogenatomsonthemethylgroupwouldappearasadoubletatabout1.2ppm.Thehydrogenatomsonmethinegroupwouldappearasaseptet(amultiplex)fartherdownfield(atapproximately2.8ppm)thanthehydrogenatomsonthemethylenegroup.Thehydrogenatomsonthemethylenegroupwouldappearasadoubletatabout2.3ppm.14. Thearomaofcoffeeis,inpart,relatedtocompoundA,C5H8O2.CompoundAcan

berepresentedbythefollowingtheoreticalH1NMRspectrum.C5H8O2,exhibitsastrongIRtransmittanceat1750cm-1.SuggestastructureforcompoundA.

H1NMRofCompoundA

Page 13: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

13

15.2’-deoxyuridine,compoundB,hasthefollowingH1NMRspectrum:

NMRspectrumofcompoundB Assignasmanysignalsasyoucantotheappropriateprotonsin2’-deoxyuridine.Thehydrogenatomsthatmaybedistinguishableare:

O

N

N

H

HH

O

H

H

CH2OH

HH

H

HO

1

234

5

1'

2' 3'

4'

5'

6

Compound B

Page 14: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

14

(1) Thetwohydrogenatomsonthecarbon-carbondoublebondlabeled4and5.Thehydrogenatomoncarbon4isadistorteddoubletthatappearsatabout6.2ppm,andthehydrogenatomoncarbon5isadistorteddoubletthatappearsatabout5.6ppm.

(2) Thetwohydrogenatomsonthecarbon2thatappearasasingletatabout5.2ppm.

(3) Thehydrogenatomoncarbon4’thatappearsasadistortedtripletcloseto4.0ppm,andthetwohydrogenatomsoncarbon5’thatappearasadistortedtripletaround3.9ppm.

Theremaininghydrogenatomsaredifficulttoidentifyfromthespectrumbecausetheyexhibitoverlappingsignalsinproximityfields.

16. Determinestructuresfortheproductsofthefollowingpathway:

FollowingistheH1NMRofB:

(CH3)3CCH=CHC(CH3)3

B2H6

C10H23B (infrared spectrum at 2500 cm-1)A

(1) 30% H2O2

(2) H2O

C10H22O

B

Page 15: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

15

H1NMRofCompoundB ThestructuralformulaforC10H23Bwouldbe:

ThestructuralformulaforC10H22Owouldbe:

17. Suggeststructuresformoleculesexhibitingthefollowingspectra.Give

rationalesforyouranswersbyexplainingthechemicalshifts,spin-spininteractionsand,ifprovided,theelectricalintegrationforeachspectrum.

(a) DeterminethestructuralformulaforC7H7ClO;thecompoundexhibitsthefollowingspectra:

Page 16: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

16

H1NMRforC7H7ClO ElectricalIntegration:2:2:3

ChemicalShifts:Para-substitutedpatternbetween6.9ppm-7.3ppmforadisubstitutedaromaticcompoundinwhichthegroupsattachedtothearomaticnucleusaredifferent.Methylprotonsat3.2ppmsuggeststhatthecarbonatomofthemethylgroupisattachedtoanelectronegativeatom.Spin-spinInteraction:Nospin-spininteractionforthemethylprotons;therefore,theprotonsofthemethylgroupappearasasinglet.Thespin-spininteractionofthearomaticprotonsarecomplicated,butsignalofpara-disubstitutedaromaticprotonsresemblewhatappearstobeaquartet,butaromaticprotonsattachedtothecarbonatomsofpara-disubstitutedaromaticcompoundsresemblewhatappearstobeaquartet,but,inreality,thespin-spininteractionprocessissomewhatmorecomplicated.

Page 17: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

17

13CNMRforC7H7ClOThe13CNMRspectrumsuggeststhattherearefivetypesofcarbonsinC7H7ClO.

(1) Analiphaticcarbonatomattachedtoanoxygenatomatabout63ppm(2) Four(4)aromaticcarbonatomsbetween110ppm-170ppm.

Oxygenismoreelectronegativethanchlorine.Thearomaticcarbonatomat159ppmisattachedtoanoxygenatom;thecarbonatomat130ppmisattachedtoachlorineatom;thecarbonatomatabout123ppmisattachedtoacarbonatomadjacenttothecarbonatomattachedtotheoxygenatom;andthecarbonatomatabout118ppmisattachedtothecarbonatomadjacenttothecarbonatomattachedtothechlorineatom.Thedatafromthespectrasuggestthatthestructureisp-chloroanisole.

(b) DeterminethestructuralformulaforC9H9ClO;thecompoundexhibitsthefollowingspectra:

Page 18: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

18

H1NMRforC9H9ClO ElectricalIntegration:2:2:2:3

ChemicalShifts:Para-substitutedpatternbetween7.5ppm-8.0ppmforadisubstitutedaromaticcompoundinwhichthegroupsattachedtothearomaticnucleusaredifferent.Thespectrumexhibitsmethylprotonsat1.0ppmandmethyleneprotonsatabout2.6ppm.Thissuggeststhatthemethylenecarbonatomisattachedtoanelectronegativegroup.Spin-spinInteraction:Theprotonsonthecarbonatomofthemethylgrouparesplitintoatriplet.Thetripletsuggeststhatthemethylgroupisattachedtoacarbonatomwithtwoprotonsattached(themethylenegroup).Theprotonsonthecarbonatomofthemethylenegrouparesplitintoaquartet.Thequartetsuggestthatthemethylenegroupisattachedtoacarbonatomwiththreeprotons(themethylgroup).Themethylgroupandthemethylenegroupformanethylgroup,CH3CH2–

Page 19: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

19

Theadjacentprotonsofthemethylenegroupwouldexperienceaquartetwithapeakratioof1:3:3:1.

Theadjacentprotonsofthemethylgroupwouldexperienceatripletwithapeakratioof1:2:1.Thespin-spininteractionofthearomaticprotonsarecomplicated,butaromaticprotonsattachedtothecarbonatomsofpara-disubstitutedaromaticcompoundsresemblewhatappearstobeaquartet,but,inreality,thespin-spininteractionprocessissomewhatmorecomplicated.

13CNMRforC9H9ClO

Acarefulanalysisofthe13CNMRspectrumsuggeststhatthereareseventypesofcarbonsinC9H9ClO.

(1) Twoaliphaticcarbonatomsbetween13ppm-38ppm.(2) Onecarbonylcarbonatomat220ppm(3) Four(4)aromaticcarbonatomsbetween110ppm-170ppm.

Thecarbonatomofthemethylgroupisat13ppm.Thecarbonatomofthemethylenegroupisat38ppm.

Chorineismoreelectronegativethanthecarbonylgroup.Thearomaticcarbonatomat138ppmisattachedtoachlorineatom;thecarbonatomat126ppmisattachedtoacarbonylgroup;thecarbonatomat125ppmisadjacenttothecarbonatomattachedtothecarbonylgroup;and

Page 20: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

20

thecarbonatomatabout124ppmisattachedtothecarbonatomadjacenttothecarbonatomattachedtothecarbonylgroup.Thedatafromthespectrasuggestthatthestructureisp-chlorophenylethylketone(2-[p-chlorophenyl]-1-propanone).

(c) DeterminethestructuralformulaforC12H14O4,thecompoundexhibitsthefollowingspectra:

H1NMRforC12H14O4 ElectricalIntegration:4:2:3

ChemicalShifts:Para-substitutedappearsapparentatabout8.2ppmforadisubstitutedaromaticcompoundinwhichthegroupsattachedtothearomaticnucleusareidentical.Thespectrumexhibitsmethylprotonsat1.2ppmandmethyleneprotonsatabout3.9ppm.Themethylenecarbonatomisattachedtoastrongelectronegativegroup.Spin-spinInteraction:Theprotonsonthecarbonatomofthemethylgrouparesplitintoatriplet.Thetripletsuggeststhatthemethylgroupisattachedtoacarbonatomwithtwoprotons(amethylenegroup).

Page 21: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

21

Theprotonsonthecarbonatomofthemethylenegrouparesplitintoaquartet.Thequartetsuggeststhatthemethylenegroupisattachedtoacarbonatomwiththreeprotons(amethylgroup).Themethylgroupandthemethylenegroupformanethylgroup,CH3CH2–

13CNMRforC12H14O4

Analysisofthe13CNMRspectrumsuggeststhattherearefivetypesofcarbonsinC12H14O4.

(1) Twotypesofaliphaticcarbonatoms-oneat17ppmandtheotherat61ppm.

(2) Carbonylcarbonatomatabout175ppm(3) Two(2)typesofaromaticcarbonatoms-oneat125ppmand

theotherat125ppm.

Thecarbonatomofthemethylgroupisat13ppm.Thecarbonatomofthemethylenegroupisat38ppm.Theshiftat38ppmsuggeststhatoneofthealiphaticgroups,themethylenegroup,isattachedtoanoxygenatom.Thearomaticcarbonatomat135ppmisattachedtoacarbonylgroup;thecarbonatomat125ppmisadjacenttothecarbonatomattachedtothecarbonylgroup.Thedatafromthespectrasuggestthatthestructureisdiethylterephthalate(diethylbenzene-1,4-dicarboxylate).

Page 22: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

22

(d) DeterminethestructuralformulaforC5H9O4N,thecompoundexhibitsthefollowingspectra:

H1NMRforC5H9O4N ElectricalIntegration:2:1:3:3

ChemicalShifts:Therearefour(4)typesofprotonsexhibitedbythespectrum.Thesignalsinclude:

(1) Methylprotonsatabout1.2ppm(2) Anothermethylgroupatabout1.4ppm(3) Methineprotonatabout2.6ppm.Themethineprotonisattachedto

anelectronegativeatom(probablynitrogen)(4) Methyleneprotonsatabout4.0ppm.

Spin-spinInteraction:Themethylprotonsat1.2ppmaresplitintoadoublet.Thedoubletsuggeststhatthemethylgroupisattachedtoacarbonatomwithoneprotonattached(amethinegroup).Themethineprotonat2.6ppmissplitintoaquartet.Thissuggestthatthemethineprotonisonacarbonatomattachedtoacarbonatomwiththreeprotons(amethylgroup).Themethylprotonsat1.4ppmaresplitintoatriplet.Thetripletsuggeststhatthemethylgroupisattachedtoacarbonatomwithtwoprotonsattached(amethylenegroup).Themethyleneprotonat4.0ppmissplitintoaquartet.Thissuggeststhatthemethyleneprotonisonacarbonatomattachedtoacarbonatomwiththreeprotons(amethylgroup).Themethylgroupandthemethylenegroupformanethylgroup,CH3CH2-Themethylgroupandthemethinegroupform

Page 23: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

23

WheretheXandtheYrepresentatomswithprotonsattached.

13CNMRforC5H9O4N

Analysisofthe13CNMRspectrumsuggeststhattherearefivetypesofcarbonsinC5H9O4N.(1) Fouraliphaticcarbonatoms-oneatabout17ppm;oneatabout18ppm;

oneatabout38ppm;andoneatabout61ppm.(2) Carbonylcarbonatomatabout183ppm

Theshiftat38ppmsuggeststhatoneofthealiphaticgroups,themethinegroup,isattachedtoanitrogenatom.Theshiftat61ppmsuggeststhatoneofthealiphaticgroups,themethylenegroup,isattachedtoanoxygenatom.Thedatafromthespectrasuggestthatthestructureisethyl2-nitropropanoate.

Page 24: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

24

(e) DeterminethestructuralformulaforC6H14O,thecompoundexhibitsthefollowingspectra:

H1NMRforC6H14OElectricalIntegration:1:6ChemicalShifts:Therearetwo(2)typesofprotonsexhibitedbythespectrum.Thesignalsinclude:

(1) Methylprotonsatabout1.2ppm(2) Methineprotonatabout3.7ppm.Themethineprotonisattachedto

anelectronegativeatom(oxygen)

Spin-spinInteraction:Themethylprotonsat1.2ppmaresplitintoadoublet.Thedoubletsuggeststhatthemethylgroupisattachedtoacarbonatomwithoneprotonattached(amethinegroup).Themethineprotonsat3.7ppmaresplitintoamultiplet(aseptet).Theseptetsuggeststhatthemethinegroupisattachedtocarbonatomswithsixprotons(twomethylgroups).

Page 25: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

25

13CNMRforC6H14OAnalysisofthe13CNMRspectrumsuggeststhattherearetwotypesofcarbonsinC6H14O.(1) Onetypeofcarbonatomatabout21ppm(2) Anothertypeofcarbonatomatabout75ppm

Theshiftat75ppmsuggeststhatthecarbonatomofthemethinegroupisattachedtoanoxygenatom.Thedatafromthespectrasuggestthatthestructureisdiisopropylether.

(f) DeterminethestructuralformulaforC7H12O4,thecompoundexhibitsthefollowingNMRandC-13spectra:

Page 26: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

26

H1NMRforC7H12O4

ChemicalShifts:Therearethree(3)typesofprotonsexhibitedbythespectrum.Thesignalsinclude:

(1) Oneatabout1.5ppm(2) Anotheratabout3.4ppm.(3) Thefinaloneat4.0ppm

Thechemicalshiftsat3.4ppmand4.0ppmsuggestthattheprotonsresideoncarbonatomsthatareattachedtoelectronegativeatoms.Spin-spinInteraction:Theprotonsat1.5ppmaresplitintoatriplet.Thetripletsuggeststhattheprotonsareattachedtoacarbonatomthatisattachedtoacarbonatomthathastwoprotonsattached(amethylenegroup).Theprotonsat3.4ppmformasinglet.Therefore,theprotonsexhibitingnospin-spininteraction(asingletsuggeststhattheyareattachedtoacarbonatomthatisattachedtoatomsthatdonothaveprotonsattached).

whereXandYdonothaveprotonsattached

Theprotonsat4.0ppmformaquartet.Thequartetsuggeststhattheprotonsareattachedtoacarbonatomthatisattachedtoacarbonatomthathasthreeprotonsattached(amethylgroup).

Page 27: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

27

13CNMRforC7H12O4

Analysisofthe13CNMRspectrumsuggeststhattherearefourtypesofcarbonsinC7H12O4.

(1) Threealiphaticcarbonsat17ppm;39ppm;and61ppmrespectively

(2) Acarbonylcarbonatabout179ppm

Theshiftat61ppmsuggeststhatthecarbonatomisattachedtoanoxygenatom,andtheshiftat39ppmsuggeststhatthecarbonatomisattachedtoacarbonylgroup.Thedatafromthespectrasuggestthatthestructureisdiethylmalonate.

(g) DeterminethestructuralformulaforC4H10O,thecompoundexhibitsthefollowingspectra:

Page 28: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

28

H1NMRforC4H10O ElectricalIntegration:2:1:1:6

ChemicalShifts:Therearefour(4)typesofprotonsexhibitedbythespectrum.Thesignalsinclude:

(1) Sixmethylprotonsatabout1.0ppm(2) Amethineprotonatabout1.8ppm.Themethineprotonisattached

toacarbonatomthatisattachedtoanelectronegativeatom(oxygen)(3) Twomethyleneprotonsat3.5ppmthatareattachedtoacarbonatom

attachedtoanoxygenatom.(4) Aprotonattachedtoanoxygenatomat2.9ppm.

Spin-spinInteraction:Themethylprotonsat1.0ppmaresplitintoadoublet.Thedoubletsuggeststhatthemethylgroupisattachedtoacarbonatomwithoneprotonattached(amethinegroup).Themethineprotonsat1.8ppmaresplitintoamultiplet.Themultiplexsuggeststhatthemethinegroupisattachedtocarbonatomswithseveralprotons(inthiscaseabout8protons(twomethylgroupsandamethylenegroup).Themethylenegroupat3.5ppmarespitintoadoublet.Theshiftat2.9ppmisduetotheprotondirectlyattachedtoanoxygenatom.Theprotonsofalcohol(OH)generallyundergorapidexchangewithneighboringmolecules;therefore,theOHshiftisnormallyobservedasasinglet.

Page 29: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

29

13CNMRforC4H10O

Analysisofthe13CNMRspectrumsuggeststhattherearethreetypesofcarbonsinC4H10O.Thethreealiphaticcarbonsexhibitchemicalshiftsatapproximately19ppm;32ppm;and72ppmrespectivelyTheshiftat72ppmsuggeststhatthecarbonatomisattachedtoanoxygenatom,andtheshiftat39ppmsuggeststhatthecarbonatomisattachedtoacarbonatomthatisattachedtoanoxygenatom.Thedatafromthespectrasuggestthatthestructureisisobutylalcohol(2-methyl-1-propanol).

(h) DeterminethestructuralformulaforC11H9NO4,thecompoundexhibits

thefollowingspectra(achallengingproblem):

Page 30: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

30

protonmagneticspectrum

ElectricalIntegration:4:1:1:3ChemicalShifts:Therearefour(4)typesofprotonsexhibitedbythespectrum.Thesignalsinclude:

(1) methylprotonsat1.7ppm(2) Amethineprotonatabout5.7ppm.Themethineprotonisattached

toacarbonatomthatisattachedtoanelectronegativeatom(oxygen)(3) protononanoxygenatomgivingasignalat2.5ppm(4) Fouraromaticprotonsat8.2ppm.Thereisnospittingofthearomatic

hydrogensbecausetheelectronegativegroupsattachedinaparaarrangementaresimilar,butnotexactlythesame.Suchaphenomenonisfrequentlyobservedinmagneticresonancespectroscopy.

Spin-spinInteraction:Themethylprotonsat1.7ppmaresplitintoadoublet.Thedoubletsuggeststhatthemethylgroupisattachedtoacarbonatomwithoneprotonattached(amethinegroup).Themethineprotonsat5.7ppmaresplitintoaquartet,andeachsignalofthequartetisspitadoubletindicatingthatthesplittingoccurswithdifferentJ-couplingconstants.Theresultingsignalsuggeststhatthemethinegroupisattachedtoacarbonatomwiththreeprotonsattachedandanotheratomwithoneprotonattached.

TMS

δ δδ δ δ0

4

11

3

1.72.55.78.2

Page 31: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

31

ThisotheratomindicatedasXinthepartialstructuremustbeoxygen.Therefore,thepartialstructurewouldbe:

Characteristicinfraredabsorptionsatabout:2222cm-13333cm-11751cm-1

Thetransmittancebandat2222cm-1isthecarbon-nitrogentriplebondstretchingvibrationofanitrile.Thetransmittanceband3333cm-1istheO-Hstretchingvibration.Thetransmittanceband1751cm-1istheapartialcarbonylstretchingvibrationofananhydride.Thesedatasuggestthatthestructureis2-hydroxypropanoatep-cyanobenzenoateanhydride.

Page 32: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

32

18. DeterminethestructureofC7H8Sifthecompoundexhibitsthefollowingspectradata:

H1NMRforC7H8S

13CNMRforC7H8S

Page 33: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

33

PartialmassspectrumofC7H8S

19. DeterminethestructureofC9H10ifthecompoundexhibitsthefollowingprotonmagneticresonanceandcarbon-13magneticresonancespectra.

Page 34: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

34

20. DeterminethestructureofC12H14O4ifthecompoundexhibitsthefollowingthefollowingprotonmagneticspectrum:

Page 35: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

35

21. SuggestareasonablestructureforC8H10fromits13CNMRspectrum,its13CNMRDEPT-45spectrum,its13CNMRDEPT-90spetrum,andits13CNMRDEPT-135spectrum.

The13CNMRspectrumforC8H10

ThespectrasuggestthattherearefivetypesofhydrogenatomsinC8H10.Thesecarbonatomsaremethylcarbonatomsthatappearbetween8-35ppmrelevanttoTMS,andfourkindsofaromaticcarbonatomsthatappearbetween110-170ppmrelevanttoTMS.13CNMRDEPT-45spectrumforC8H10

Thequaternarysignalsvanishin13CNMRDEPT-45spectra;therefore,asignaldisappearsintheDEPT-45spectrumforC8H10indicatingthatthestructurecontainsaquaternarycarbonatom.13CNMRDEPT-90spectrumforC8H10

Page 36: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

36

13CNMRDEPT-90spectraexhibitnegativephasesformethylandmethylenegroupsandapositivephaseformethinegroups.The13CNMRDEPT-90ofC8H10exhibitanegativephaseat20ppmsuggestingthatC8H10containsamethylgroup.

13CNMRDEPT-135spectrumforC8H10

13CNMRDEPT-135spectraexhibitnegativephasesformethylenegroupsandpositivephasesformethineandmethylgroups.The13CNMRDEPT-135spectrumforC8H10doesnotexhibitanynegativephases.ThissuggeststhatC8H10doesnotcontainmethylenegroups.Therefore,thestructureconsistentwiththeC-13spectradatais:

Page 37: Solutions to Spectroscopy Problems, Building Bridges to Knowledge

37

m-Xylene(1,3-dimethylbenzene)